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Introduction

Let ZG be the integral group ring of a group G and A(G) be its augmenta-
tion ideal. For each n >_ 1, the subgroup Dn(G) G N (1 + An(G)) is the n-th
dimension subgroup of G. It is easily verified that Dn(G)

_
vn(G), the n-th

term of the lower central series of G. The validity of the reverse inequality,
namely, Dn(G) c_ n(G), is known as the dimension subgroup problem for G.
Rips [8] has constructed an example of a finite 2-group such that D4(G)
"Y4(G). On the other hand, a well-known result due to P. Hall and S.A.
Jennings states that if the lower central factors "yk(G)/’yk/ I(G) are torsion free
for all k >_ 1, then Dn(G) vn(G) for all n >_ 1 (cf. [6, Corollary 3.1]). In
particular, it follows that if G F/F" is a free metabelian group, then
Dn(G) n(G) for all n. For a free center-by-metabelian group G=
F/[F", F], the lower central factors have elementary abelian 2-subgroups
(Ridley [7], Hurley [5]), and hence these groups are not covered by the
Hall-Jennings result. The purpose of this paper is to prove that if G is a free
center-by-metabelian group, then D(G)= ,n(G) for all n. This answers a
question of I.B.S. Passi (verbal communication).

In terms of the free group ring ZF, with G F/R, the dimension subgroup
problem reduces to identifying the subgroup F N (1 + r + |n) as R. n(F),
where f=A(F)=ZF(F-1) and r=ZF(R-1). If R=[F",F], then
r |af, where a ZF(F’- 1), so as a first approximation to the identifica-
tion of F (1 + r + In), in Section 3 we identify F (1 + far + f n) for all
n. (The identification F t (1 + Ia + n) F" /n(F) for all n has been
shown by N.D. Gupta [2]).
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2. Notation and preliminaries

Our commutator notation is as follows"

[g, g, g] [[gx, g], g],
[gl, g2; g3, g4] [[g, g2], [g3, g4]]

for group elements gi, and

(rl, rE) rlrE rErl, (rl, rE, r3) ((rl, rE), r3),
((x, ), (r, r,)) (rx, r; r,

for ring elements ri. Also, ,n(G) is the n-th term of the lower central series of
G,G’= 3,2(G), G"= 3,2(G’). Other unexplained notation follows Gupta-
Hurley-Levin [3].
As in [3], [4], [5], our basic tool is the following power series representation

of F/IF", F]: Let Z[[yx, Y2,"" ]] be the free associative power series ring
over Z generated by Yi, > 1, and denote by C the ideal generated by all
elements y(yj, Yk)Yl. Set P Z[[yx, Y2, ]]/C and denote the generators
of P by x y + C, > 1. The group U(P) of units of P is a center-by-meta-
belian group (Hurley [5]). If F is a free group freely generated by fl, f2,-..,
then

O:f-, 1 + x

defines a homomorphism of F into U(P). For any word w F, w0 is a power
series of the form

wO 1 + E (wO),,
i>1

where (w0)i denotes the component of w0 of terms of total degree i. In
particular, if w Yk(F), then (w0) 0 for all < k 1. The linear exten-
sion of 8 yields the ring homomorphism

O:ZF --, P

with Ker 0 far. Thus, we obtain a power series representation of ZF/r,
where r ZF(R 1), R [F", F].

Apart from the subgroups [F", F] and 3,+1(F) of F, in the sequel we shall
refer to the fully invariant subgroups K6(F ), Uc(F ), c even, c > 6, and Tc(F),
c odd, c >_ 5, defined as follows.



260 CHANDER KANTA GUPTA AND FRANK LEVIN

(i) K6(F) is the fully invariant closure of

U6 H[fl,r, f2,r; fl,r, f2.r, f3.r, f4,r]

[f,f4, f;f,f4, f,f][f,,f,k;f,f,fx, f4]
[f,fx, f4;f,f,f,f"]tf4, f,f;f4, f,k,f]
[f,,fx’f-;f,,f,f,f][f,f,,f;f,f,k, f4]
[f,f,f;f,fx, f,f4][f,f-,fl;f,f,k, f4],

where runs over those permutations of {1,2, 3,4} with 1, < 2,,3, < 4,.

(ii) Uc(F ) is the fully invariant closure of [fl, f2; fl, f2,..., f-2].
* -1 where(iii) Tc(F) is the fully invariant closure of 0 wd g/hc/,

w* =[f,f.;k, f4,k,...,L]
X[fx, f;f4,k,k,...,L]
X[fl, f4;k,f,k,...,L];
rI[f, f:zo; f3,,, f4,,, fs,..., f],

where o ranges over the powers of the permutation (2, 3, 4);

g+ I-I[f, fo; fx, f3o, f4o, f5,..., fc]

[fo, f3o; fo, fx, f4o, k,--.,fc]
[ko, f;ko, f4o, ko, k,...,L]
[ko, f4o; ko, f,o,f,k,...,Ll,

o as above;

hc+l fi l-I f, ko; i, i4o, ko, i,, k,..., k,..., ic]
k=5 o

o as above, where fk indicates fk missing from the sequence f5,-.., f-
The following Lemma follows from the definitions and the identity

[r, s] 1 + r-’s-l(r, s),

valid for any ring units.
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LEMMA 2.1 (i) [4, LEMMA 3.4]. Let

wO= [l+z1,1+z:;l+z3,...,l+zn],

where 1 + z FO. Then

we 1 + ( 1)n-4( (1 +z3) -1 .(l+z,)-(z1, z2)z5. zn z3, z4)

(z3, z4)z5 zn(1 + Zl)-1(1 + z:)-l(z, z:), n>4.

(ii)

([1 + z,l + z,...,1 + z,]),
(Z1, Z2)Z Zn + (-1)’zn... z3(z, n>3.

Lemma 2.1 (ii) follows by a straight-forward expansion. Using Lemma 2.1
(i) the various degree components (wO)i of the power series w0 can be
determined directly by using the power series expansion

(1 + z) -1 1 z + z- z + ....
The main properties required of the fully invariant subgroups listed earlier

are stated in the following Lemmas.

LEMMA 2.2 (C.K. GUPTA [1]). (i) F (1 + faf) K6(F) [F", F].
(ii) K6(F)

_
[F", F] if and only if rank F < 3.

(iii) u 2 [F", F] for all u K6(F).

LEMMA 2.3.
(i)
(ii)
(iii)

(iv)

(v)
(vi)

(vii)

Let c be odd, c > 5.
<w*O)c= O.
,2 [F",vc f],/+ :(F).
v*O)c (v*O)c+l O. Hence, for any w Tc(F ), (wO)c (wO)c+
-’0.
If v*v0)+ 0 for some v Vc+ x(V), then (V*cVO)c+: 4 O. In
particular, (V*cVO)c+: 4 0 for any v

T(F)

_
F ", F y+ (F) if F has rank less than c.

w*(f,..., f) =- w*(fxo,..., fco) modulo IF", r] Vc+I(F), for any
permutation o of {1, 2,..., c).
If (wO)c 0 for some w F" N Pc(F), then

w T(F). K6(F ) [F", F].
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Proof (i), (iv) and (vi) are proved in [4, Lemma 3.8]. (ii) follows by direct
expansion, using Lemma 2.1. (iii) follows from (ii) and the fact that

for any v ,c( F).

(v) follows from the fact that Wc* [F", F] ,/c+(F) if F has rank less than
c [4, Lemma 4.1 (ii)]. Finally, (vii) follows from Lemma 4.1 (ii) and (iv) of [4].

LEMMA 2.4. Let u U(F), c even, c > 6.
(i) u 2 IF", El. V+x(F).
(ii) (UO)c O.
(iii) If

(iv)

(v)

(vi)

then u F", F "c+ I(F) if and only if each fi, j occurs an even
number of times.

If ( uvO)c+ 0 for some v Yc+ (F), then

u [F", FI "/c+(F ).

If (wO 0 for some w F" tq ,/(F), then

w Uc(f). K6(F). [F", F]. Vc+(F).

For c >_ 8 define u I-Io[fo, rE,,; f,,, rE,,, f3,,,-.., ffc-2)o], where o
ranges over all those permutations of (1,..., c- 2} with lo < 20 and
30 <4o< <(c-2). Thenu[F",F].Vc+(F).

Proof. (i) and (iii) are straight forward consequences of Lemma 3.1 (i) of
[4]. (ii) follows directly by using Lemma 2.1. (v) follows from Lemma 4.1 (i)
and (iii) of [4]. (vi) is proved in Lemma 4.3 of [4]. For the proof of (iv) we
proceed as follows: For any w F let Otij(WO)n denote the component of
(w0), of terms beginning with x and ending with xj. By Lemma 4.2 of [4], if
u involves c- 2 generators and (uO)c/ =- 0 (2) then u u, as defined in
(vi). By Lemma 4.4 of [4], if F has rank less than c 2 then

u [F",F].y+I(F) if (u0)c+l =- 0 (2).

Hence, in each case u [F", F]. ,/c+t(F) if (UO)c+I 0 (2). However, in
the proofs of these lemmas the weaker hypothesis that a,(uO)/ =- 0 (2) was
all that was used, and it follows that u [F", F]. ,/+t(F) if a,(uO)c+l 0
(2), for all i. On the other hand, if v yc+(F), then it follows easily from
Lemma 2.1 (ii) that aii(VO)c+ =- 0 (2), and, hence, if (u v O)c+t 0, then
Olii(UO)c+l =-- 0 (2), also.
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3. F N (1 + far + f+l)

Let D(c)= F N (1 + far + fc+l).

THEOREMA. (i) D(c)=y+x(F) /fl <c<4.
(ii) D(c) Tc(F ) K6(F) [F", F]. ,c+x(F) for c odd, c > 5.
(iii) D(c) Tc_x(F) Uc(F ) K6(F) [F", F]. Yc+x(F) for c

c>6.
even,

Proof. It follows from Lemmas 2.2 (i), 2.3 (iii) and 2.4 (ii) that D(c)
contains the respective right sides of (i), (ii) and (iii), so it remains to prove the
reverse inclusions. Thus, suppose w D(c), that is, (w0)i 0 for all < c,
since far Ker 0. For the proofs of our results it will suffice to assume that all
terms of w involve the same set of generators and, since all statements are
made modulo some term of the lower central series of F, that all entries in the
commutators are generators. Also, by [2], since far

___
fa, we may further

assume that w F", and, since F" < 3,a(F), that w F".-/5(F). In par-
ticular, if w 5(F), then, using these assumptions,

(W0)4 al(Xl, x2; x3, xa) + a2(x1, x3; x2, Xa) + a3(x1, X4; X2, X3)

or

(wO)4 al(Xl, x2; Xl, x3) + a2(x1, x2; x2, x3) + a3(x1, x3; x3, x2),

but in either case it follows by directly expanding that (w#)a 0 only if all
a 0, that is, w 3’5(F). This proves (i).
For the proofs of (ii) and (iii) we proceed by induction. Since K6(F) c

,,(F), the case c-- 5 for (ii) follows immediately from Lemma 2.3 (vii). By
induction, suppose (ii) and (iii) hold for c < k, k > 6. If k is even, then (ii)
holds for c k 1 and w Tk_I(F) K6(F) IF", F] ),(F). Thus, mod-
ulo K6(F) [F", F], w w1w2, w . Tk_I(F), W2 - F" "tk(F). By Lemma
2.3 (iii), (wO)k_ (WO)k 0 SO (WEO)k 0. Thus, by Lemma 2.4 (v),

w2 . Uk(F) modulo K6(F ) IF", F]. "k+(F),

whence D(k) has the desired form. Finally, if k is odd, k > 7, then (iii) holds
for c k- 1. Hence,

w WlWEW3, w Tk_2(F ), wE Uk_x(F ), W . F" /k(F),
modulo K6(F ) If", F]. V+x(f).

Since terms in Tk_2(F) involve k- 2 generators while those in Uk_(F)
involve at most k 3 generators, we may write w wxw3w2w where w3
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ww’ and the terms in wlw involve k- 2 generators, while those in w2w’involve at most k- 3 generators. By Lemma 2.3 (iv), (wwO) 4 O, so
wlw 1 since (wO)k 0. Similarly, by Lemma 2.4 (iv), we may assume that
w_ 1 and, hence, (w’O)k 0. Hence, by Lemma 2.4 (vii),

w’ Tk(F)moduloK6(F ) IF", F] "y,+I(F),

which completes the proof.

Remark. By [2],

F O (1 + fa + fc+l) F". Yc+l(F) (F O (1 + |a)). (F ( (1 + c+1)).

A similar result does not, however, hold true for tat. In other words,

F (1 + ff + |+1) (F O (1 + fa|)). (F (1 + 1+1))

for any c > 5.

4. Free center-by-metabelian groups

In this section we shall complete the proof of our principal result that

F (1 + r + f+) R. ),+I(F),

where R F", F] and r ZF(R 1). Since

R. "yc+l(F)
_
F (1 + r +

to complete the proof the reverse inclusion must be verified. Since r
Theorem A is directly applicable, and to complete the proof it will be
necessary to eliminate the "unwanted" factors K6(F ), T(F) and Uc(F ). For
this purpose we shall need to consider the ideal t 2a|, which contains Ir but not
r itself, and the following power series representation of ZF/t 2al.

Let C be the ideal of Z[[yx, Y2,... ]], the free associative power series ring,
generated by all YiYj(Yk, Yt)Ym" The map f 1 + zi, where z =y +
extends by linearity to a representation tp of

ZF/f 2af in Z[[y1, Y2,... ]]/C1.

In particular; the elements of F N (1 + f2af + fc+l) are characterized by
w F tq (1 + f 2af + f+ x) if and only if w) 0, < c.
The restriction of tp to [F", F] can be thought of as being the composition

of two maps, the map 0 defined in Section 2 and the map k of f to
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1 + y + A, where A is the ideal generated by all (y, y.), where, with the
obvious interpretation,

([/, v]qg) fp. v0 for f F and v F". (4.1)

The fact that the above definition is unambiguous comes again from the
identity

Jr, s] 1 + (1 + r)-l(1 + s)-l(r,s)

for unit elements. With this interpretation the following lemma follows di-
rectly from Lemmas 2.3 and 2.4.

* be as defined in Section 2. Then for any fi,LEMMA 4.1. (i) Let v

(Joe*, 0 oaa, >_ 5.

(ii) For any u Uc, c even, ([u, f/lp)+l 0.

The following lemma lists some further extensions of Lemmas 2.3 and 2.4.

LEMMA 4.2. (i) If ([V*c, filvq)c+2 0 for any o Yc+2(F), then
([v*, fi]vq)+3 =/= 0 (cf. Lemma 2.3 (iv)).

(ii) If u U(F), c even, but u q [F", F]. "lc+ I(F), then ([u, f]vw)+2
for any v c+2(F) (cf. Lemma 2.4 (iv)).

The following result is essential to eliminate the factors T(F).

LEMMA 4.3. For any c odd, c > 5, w* q 1 + r + f c+ 1. In particular, if

w (1 + r + fc+l) (- Tc(F),

then

Proof. If w*-lr+fC+l, then w*-I can be expressed as a sum
s5 + s6 + +sc, modulo fc+l, where s is a sum of terms of the form
g(r 1), where g F and r R n i(F), r ,/i+l(F). However, by Lemma
2.1, for any < c, (riq0)c will involve repetitions of generators. Since the terms
of w* are linear in each generator, we may assume that (Wc*W)c (s)c.
Moreover, since f2af contains fr, (sq)c (rq),, for some r Z(R 1). In
particular, the terms in (w*,p) with left factor Zc, the "z-component" of
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(w*Cp)c, must be equal to the Zc-COmponent of (rq)c. This leads to an
equation

c{(, z,) z_(, z_)
"-(Z4, Z2)Z5 Zc_I(Z1, Z3) " (Z2, Z3)Z Zc_I(Z1, Z4)}

ZcEai(zi,1, zi,9_; zi,3, zi,4,..., Zi, c_X),

where a Z, {i, 1,..., i, c- 1} is a permutation of (1,..., c- 1}. For
c 5, (4.2) reduces to

Z5((Z3, Z4)(Z1, Z2) -" (Z4, Z2)(Z1, Z3) "- (Z2, Z3)(Z1, Z4))
Z5 ( ai(zx, Z2; z3, z4) + a2(z, z3; z2, g4) d- aa(zl, z4; z2, z3) }.

This equation can have no integral solution, which can be observed by an easy
comparison of terms. For c > 7, (4.2) remained valid if we replace each of
z5,..., Zc_ by z4. Using the Jacobi identity, (4.2) reduces to

+ a2(z4, z1; z4, z3 z2 ._z4’’-’,
C-6

4-a3(z4, zg_; z4 z3 z1, ._z4’..., z4_.) )
Comparing the z-components ZcZ1Z3Z-4Z2 and ZcZ1Z2Z-4Z3 shows that
a 1 ag_ 0. Now comparing the z-components ZcZ3Zlz-az2 and
z z2ZlZ-4z3 gives 1 a 3 and 1 a 3 respectively, which is meaningless.
This completes the proof of the lemma.
The elimination of U6(F) and, in particular, of K6(/7), hinges on the

following lemma.

LEMMA 4.4.
terms

Let u U6(F) and suppose that u is a nontrivial product of

with f,3 4= f/,4, each term occuring at most once. Then u q 1 + r + f 7. Ill
particular, K6(F) 1 + r + | 7.
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Proof. Suppose u 1 + r + f 7. Then, as in Lemma 4.3, we may write
u- 1 s5 + s6, modulo fT. Since u ),6(F) it follows that (s5q)5 0,
which, using (4.1), further implies that there is a non-trivial element of
F" C3 4(F) with zero 4-weight component under the 0-map. However, this
has been shown in the proof of Theorem A (i) to be impossible. Hence, we
may assume that (up)6 (rp)6 for some r R Y6(F). Any two commuta-
tors of length 6 of the type exhibited in the lemma have either different entries
or, if the sets of entries are the same, the number of occurrences of the
generators will be different. Hence the existence of a solution for (up)6 (rp)6
will imply a solution factor-wise, and, in particular, there will be a solution to
an equation of the form

(z,,, z,,,_; z,,, z,,,_, z,,3, z,,,)
Eaj(zi,x, z.i,2; zj, 3, zj,,, zj,5; Zj,6). (4.3)

Also, we may assume i, 3 < i, 4, so the substitution of z for both z, and
z,3,z: for both z,2 and z,, will lead to an equation (4.3) with left side

(z,z;z,z,z,z)
and right side

a(z, z9_; z, z:, z; z9_) / a(z, z9.; z, z:, zz; z)

which, modulo C, is equal to

-azz(z, z; zx, zz, z) az(z, z9.; z, zz, zz),
and a straightforward comparison of the z-components of each side, that is,
z:(z, z:)z(z, z_) with -az(z, z:; z, z, z), shows that there is no in-
tegral solution for a1.

COROLLARY 4.5. (i) F N (1 + r + fc+l)
_

Uc(F ) [F", F]. c+I(F) if
c is eoen, c > 8.

(ii) F (3 (1 + r + fc+l) [F", F] c+l(F) if c 6 or if c isodd, c > 5.

Proof. Suppose w F C3 (1 + r + fc+l). By Theorem A,
(a) w T(F). K6(F). [F", F]. -/+x(F), c odd, and
(b) w Tc_I(F) Uc(F) K6(F) [F", F] +I(F), c even.

Thus, let w wlw2, with w2 [F", F] 3’c+ I(F) and w in the remaining
factors, accordingly as c is odd or even. Since w F (3 (1 + r + fc+l),

w1= 1 +Eaigi(ri-1) +s whereaiz,gi F,ri. [F"Fl, sf+l.

If c 5, then w Ts(F) and, (wlq0)5 (Y’.ai(r 1))5. By Lemma 4.3, it
follows that w [F", F] ,6(F), and, hence w [F", F]. -/6(F). If c 6,
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then w Ts(F) U6(F), and by the argument for c 5, we may assume that
w U6(F ). Thus, by Lemma 4.4, w and, hence, w is in [F", F]. "YT(F).
Finally, if c > 7, then w ww’, where w K6(F) and w’ YT(F).
Hence,

(w;cp)6 (,ai(r 1)}6

and, by Lemma 4.4, w [F", F]. "Y7(F). Since K6(F) y7(F) __. [F", F],
and it follows that w T(F), c odd, or w Tc_x(F) Uc(F), c even. The
corollary now follows directly from Lemma 4.3.

Thus, by Corollary 4.5, we are left with the factor U(F), c even, c > 8, to
resolve. This was relatively easy for c 6 since the number of generators of
U6(F) is small. Modulo [F", F]. 3,c+x(F), U(F) is an elementary abelian
2-group, and a basis for this group has been determined in N.D. Gupta,
Hurley and Levin [3]. Before quoting this basis, in Lemma 4.6, below, we need
a definition.

Let u [f, f.; f/, f, f/,5,..., fi, ] Uc(F), and suppose that u involves the
generators fl,..., f, for n < c. Then u will be abbreviated by

[i, J; Pt, P2,..., P,],

where pk is the number of occurrences of fk in the sequence f,5, f, c.

L.MMA 4.6 [3]. Let F be free of rank < c- 3. A basis for Uc(F) modulo
[F", F]. y+ x(F) is given by the set of elements of the form

[i, j; vl,..., pn], <j,

such that Pk < 1 for k < and the first non-zero integer reading left to right in
the sequence pn, p,_ 1,..., P is odd. If the rank ofF is c 2, then we must also
include the commutators, less any one factor, occuring in u c, as defined in
Lemma 2.4 (vi), to complete a basis.

(In the above notation u is the product of all commutators

[i,j;px,...,Pc_2]

withl <i<j<c-2, Pi=Pj=0andpk=lfork4:i,J.)
Before applying Lemma 4.6, for our forthcoming Lemma 4.8, we need a

further result from [4].

LML 4.7 [4, LmaA 3.2 (i)]. For c even, c > 8,

c-3

k=3

is in iF", F] "+ I(F).
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LEMMA 4.8. If there exists an element w U(F) (1 + r + re+x), c even,
c > 8, with w q [F", F].-/c+l(F), then there exists an element with these
properties involving at most c 4 distinct generators.

Proof. Suppose an element w exists as described above. Without loss of
generality we may assume that w involves at most c 2 generators f,..., f_ 2.

By Lemma 4.6, if w involves precisely c- 2 generators, then w is a proper
factor of u c, modulo [F", F] y+ t(F). Thus, either for some fixed i, w does
not contain all factors [i, j; pt,... ], j > i, or for some fixed j, w does not
contain all factors [i, j; p,... ], < j. In either case, after a suitable change of
subscripts, we may assume that w has the factor

but not

Let w’ be the word obtained from w by identifying f3 with f2. Then

w’ Uc(F ) N (1 + r + f+l)

and involves c 3 generators. To see that w’ [F", F] 3%+ (F), we use the
basis given in Lemma 4.6 as follows. First we observe that the factors of the
form [fx, f; f, f,... in w’ are basis elements since c > 8. In fact, the only
terms that are not basic will have the form

fi, fj; fi, fj, f, f2, f:,.. with i>4.

However, by using the Jacobi identity (cf. [1]) modulo [F", F] Yc+ (F), such
a term is equal to the product

the left factor in (4.4) is basic unless j c- 2 and the fight factor unless
c 3 and j c 2. If j c 2, the left factor of (4.4) has the form

[f2, L; f2, L, f, f4,..., L-2, fc-2],

which, by Lemma 4.7, is congruent to

/2, f,; /2, /,, /t, fi, /4,’", ,’", /c-3, fc-2l
c-3

1-I [f2, f,;fz, f,,fl, f,,’’’,Z,’’’,fk, fk,’’’,fc-3, fc-2] (4.5/
k--4

modulo[ F", F]. Yc+1(F).
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Each term in the product in (4.5) is basic, and again by [1],

is congruent to

[fx, f,,..., L, L,..., L; fl, L, f=,

which is a product of basis elements. The fight factor in (4.4) can be
represented analogously as a product of basis elements if c 3, j c 2.
However, in all these reductions the basis term

does not occur. Hence, by Lemma 4.6, w’ [F", F]. yc/l(F).
Finally, suppose w involves precisely the c- 3 generators fl,..., f-3.

After a possible change of subscripts, we may assume basis elements of the
form [f, f2; f, f2,... occur as factors of w. There are three possible forms
for such elements, based on Lemma 4.6:

(i) [f, f_; fx, f, f, f3, f,.--, fc-3]
(ii) [fl, f2; fl, f2, f2, f3, f4,..., fc-3]
(iii) [f, f2; fl, f2, f3,..., fi, fi,..., fc-3] for 3 < < c 4.

Further, we may assume that basis elements of the form (iii) occur and at least
one, say [fl, f2; fl, f2, f3, f4, f4, fs,-.-, fc-3] does not occur in w. Let w’ be
obtained from w by identifying f4 with f3- After identifying f4 with f3, the
factors of w of the form If1, f2; fl, f2--. will still be in the basis and remain
independent modulo [F", F]- 3’c+ t(F). As in the above case, the non-basic
factors of w’ will come from those in w which after replacing f4 by f3 have
the form [fi, f; fi, fy, fl f2, f3, f3,... with > 5. As in the (c 2)-case, such
terms may be expressed as products of basis dements. However, in the present
case the resulting basis elements of the form

will appear with k { i, j, 3 ) only, and it follows that w’ F", F] y+ I(F).
If either (i) or (ii) is the case, then identifying f4 with f3 will, as in the case for
c 2 generators, yield an dement w’ in c- 4 generators having the desired
properties.
We shall now establish our main result.

THEOREM B. For any c > 5,

F t (1 + r + fc+) [F", F].

where r ZF([F", F]- 1).
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Proof Suppose w F N (1 + r + fc+l), w [F", F]. Yc+l(F). By
corollary 4.5, we may assume that w Uc(F), c > 8, and, by Lemma 4.8, that
w involves at most c 4 distinct generators, modulo [F", F] ,c+ I(F). Thus,

w ww, wx U(F), w: [F", FI" Vc+(F),

and it follows as before that

Wl) 1 + Ea,(r, 1)p + sop, r [F", F], s - fc+l, ai Z. (4.6)

Since w ),c(F),

( Eai(ri-1))=O fork<c.

Thus, by Lemma 4.2, we may assume that all r c-2(F) and, in particular,
that the summand of those r- 1 with r c_2(F)\ Yc_l(F) is a linear
combination of r- 1 with r [Tc_3(F), F]. Since w involves less than
c 3 distinct generators, it follows, by Lemma 2.3 (v), that these r are in

[F", F, F /c_(F).

However, [F", F, F] is in the kernel of , so for the purpose of finding a
solution to (4.6) we may in fact, assume that all r "/c-t(F). In particular, by
Lemma 2.4, we may further assume that the summand with r c_l(F)\
),(F) is a linear combination of terms r- 1 with r [Uc__(F), F]. Let w
be .expressed as a product of basis elements as given by Lemma 4.6, and,
without loss of generality, suppose that terms of the form

[1,2; p,..., p]

occur in this product, where n is the number of generators involved in
w1, n < c 4. For any such term [1, 2; Pl,-.., Pn],

(tp) pz(z, z2)z’ z-k--1
z. (zl, z_). (4.7)

By Lemma 4.6, pn will be odd for this factor of w1. If all r in (4.6) are in
,(F), the terms in the summand which will have left factor z, will be those
terms coming from [F", f], and, in particular, those with left factor z,zl and
fight factor z will come from products of terms of the form

However, (z1, zi; Z1, Zj,..., Zn) --gn(Z1, Zi; Z1, Zj,... ) 2 z,zl z



272 CHANDER KANTA GUPTA AND FRANK LEVIN

+ so if there is a solution to (4.6), then not all r will be in ,(F). Hence,
in (4.6) we may assume that some of the r are in [U_2(F), F l, and, in
particular, the terms of the form

" [f, fs; fl, fj, qfl,..., qmfm; fk] E "Yc_l(F)

occur. Further, modulo [F", F, F], we may assume that qm is odd, m n,
using the basis given in Lemma 4.6. However, if fk 4: f,, one summand of
{vqo),. is zkqn(z1, zj).., zq.+ ..(zx, zj), and since qn + 1 is even, we observe
from (4.7) that this term will not compare with one from {wxp)c. Further,
since qm is odd, there will be not term from

((ri- 1)qo>, r "tc(F),

to compare with this term. Since, as observed above, such terms occur with a
coefficient 2 or a multiple of 2. Hence, it follows that fk f. However, c is
even and p, is odd, so in each term of wx of the form (4.7) there must be a p,
< n, with p odd. Thus, there will be a term in the expansion (4.7) of this

element with an odd coefficient p. By the remarks following (4.7) this term
with odd pi cannot be compared with a term from an r- 1, r /c(F).
Hence, if equation (4.6) is to be possible, there must be terms in

[U-2, F] /-(F)

of the form

Since 4: n, this is a contradiction, which shows that (4.6) has a solution for
a Z only if wl [F", F]. ,c/x(F), which completes the proof of the
theorem.

Finally, we wish to acknowledge useful discussions with N.D. Gupta while
preparing this paper and to the referee for his critical reading of our original
manuscript which has lead to this revision.
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