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I. Introduction

We shall be concerned in this paper with finite sets of equations over a
group G. Such a set, S, is

S" W1-- W2 w,,= l,

where w, 1,..., n, is an element of the free product G, F of G and the
free group F freely generated by the variables Zl,..., z, entering into the
equations. If H is a group containing G, the equations S can be solved in H if
the inclusion map from G to H extends to a homomorphism from G F to H
with w in the kernel, 1,..., n. The equations S can be solved over G if
they can be solved in some group H containing G. It is clear from the theory
of free products with a single amalgamated subgroup that any group G is
contained in a group H such that every finite set of equations over G which is
soluble over G is soluble in H. The case is altered, however, if we seek to find
such an H which is in some sense small. The main theorem of this paper is
about such a situation.

If N is the normal subgroup of G, F normally generated by the dements
wi, i=l,...,n, it is clear that S is soluble over G if and only if the
intersection G n N is trivial. Whether or not this is the case, we shall write
(G; S) for the factor group (G, F)/N. Thus there is always a natural map
from G to (G; S), which is an embedding if and only if S is soluble over G. A
group H containing G is said to be finitely presented over G if it is isomorphic
over G to (G; S) for some finite set S of equations over G which is soluble
over G. Then our main theorem is:

THEOREM 1.1. If the finitely generated group G is non-trivial there does not
exists a group H, finitely presented over G, such that every finite set of equations
over G which is soluble over G is soluble in H.
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We shall use this theorem to put in a more general setting the result of K.
Hickin and Angus Macintyre [2], that if finitely generated groups G, H and an
existentially closed group M satisfy G < M < H, then G and H cannot be
isomorphic. If the nontriviality condition is removed, the theorem becomes
false, because every set of equations over a trivial group is soluble in the group
itself. However, the existence of universal finitely presented groups shows that
it fails for G 1 in a more radical way. It could not be saved, for instance, by
considering inequalities as well as equations.
The proof of Theorem 1.1 is recursion theoretic; it could, indeed, be said to

arise from a consideration of the role of enumeration reducibility in combina-
torial group theory. We recall some definitions. If X, Y are subsets of the set N
of natural numbers we say that Y is enumeration reducible to X, and write
Y <e X, if there exists a recursively enumerable set U of pairs (m, A), m N,
A a finite subset of N, such that n Y if and only if (n, A) U for some A
contained in X. (For this and all other recursion theoretic ideas, see Rogers
[4].) Evidently, if 0, o are recursive permutations of N, Yo <e X) if and only
if Y ’<e X. Thus if X, Y are subsets of effectively enumerated infinite sets E, F
we can give an unambiguous meaning to the statement Y <e X: it means that
Y e X0, where O, are recursive bijections from E, F to N.
Let G be a finitely generated group, generated by al,..., a r. Let Wr be the

set of words in the symbols Xl,..., x, Xi-1,..., x-l. Any element of W has a
value at al,..., a, obtained by replacing each occurence of each letter x by a
and evaluating the result as a product in G. Then Rel(al,..., a) is the set of
words in W whose value at ax,..., a is 1. If b,..., b also generate G, it is
easy to see that each of Rel(al,..., at) and Rel(b,..., bs) is (1 1)-reducible
to the other. It follows (e.g., see Rogers [4]) that there is a recursive bijection
from W to W carrying Rel(al,..., a) to Rel(b,..., b,). We define Rel(G) to
be the image of Rel(al,..., a) under a recursive bijection from W to N. Thus
Rel(G) is a subset of N, determined only up to a recursive permutation of N,
but, subject to that ambiguity, independent of the generating set used to define
it. Notice that the ambiguity implies that we cannot sensibly say, for instance,
Rel(G) c Rel(H); but that the limitation on the ambiguity implies that we
can sensibly say, for instance, Rel(G) <e Rel(H).

Recall finally that though the elements of a finitely generated group G are
not usually effectively enumerated, the words denoting them, in a fixed set of
generators, are. We can therefore, properly apply recursion theoretic expres-
sions, for instance, to sets of finite sets of equations over G. We are now ready
to state the technical result on which the proof of Theorem 1.1 depends.

THEOREM 1.2. Let (Si, N} be a sequence offinite sets of equations over
the finitely generated group G, and suppose that S depends recursively on i. Then
the following statements are equivalent:

(i) There exists a group H, finitely presented over G, such that whenever S is
soluble over G it is soluble in H.

(ii) If J (i NIS is soluble over G) then J <e Rel(G).
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It is possible that this theorem has independent interest, if only as a further
example of the natural way in which recursion-theoretic ideas arise in group
theory.

2. Use of the relative subgroup theorem

The first steps in the exploration of the role of enumeration reducibility in
group theory were taken by C. F. Miller III (unpublished) and M. Ziegler [5],
who obtained independently the following result.

THEOREM 2.1 (RELATIVE SUBGROUP THEOREM). If G and H are finitely
generated groups then a necessary and sufficient condition for H to be isomorphic
to a subgroup of a group finitely presented oter G is that Rel(H) <e Rel(G).

Of course, this theorem relativises the subgroup theorem for finitely pre-
sented groups, the statement, that is, that a finitely generated group G is a
subgroup of a finitely presented group if and only if Rel(G) is recursive!y
enumerable. Like the theorem it relativises, Theorem 2.1 implies the existence
of a certain kind of universal group.

COROLLARY 2.2. Given any finitely generated group G, there exists a group
H, finitely presented ooer G, such that every group finitely presented over G is
isomorphic to a subgroup of H.

It is worth-while dwelling for a moment on the relationship between
Corollary 2.2 and Theorem 1.1. By definition, the group H of the corollary
contains G, that is, we have an inclusion map t: G ---) H. If S is a finite set of
equations over G which is soluble over G then there is a natural embedding of
G in (G, S), and, by the corollary, an embedding of (G, S in H. The
composite is an embedding a(S): G---) H. There is no reason whatever to
suppose that a(S) t; and, indeed, what Theorem 1.1 says is precisely that it
cannot be true for every soluble set S that a(S) t. For a single set S, the
situation is easily rectified. For it is sufficient to make the embeddings and
a(S) conjugate, and we can do this in an HNN-extension (H, t), which will
be finitely presented over H, and hence over G, because G is finitely generated.
An almost identical argument works for a finite set of sets S, and a rather
similar one, using the subgroup theorem for finitely presented groups, works
for an infinite set, provided that it is recursively enumerable. What Theorem
1.2 tells us is how far we can relax the condition that the set be recursively
enumerable, and still make the argument work. Lemmas 3.1 and 3.2 below tell
us that this relaxation is insufficient to include all soluble sets.
We turn next to the proof of Theorem 1.2, beginning with the relatively

trivial implication (i) --) (ii).
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LEMMA 2.3. Let (S N) be a sequence offinite sets of equations over the
finitely generated group G, and suppose that S depends recursively on i. If
Jo ( i] S is soluble in G ) then Jo < Rel(G).

Suppose that G is generated by a1,..., a,, and consider first a single finite
set S of equations over G. We may take S to be the set w wn 1,
where each w is a word in the generators ax,..., at, the variables zl,..., zm,
and their inverses. Let U(S) be the set of sets of words in
x,..., x, xi-,.., x- obtained from { w,..., w,} by substituting uniformly
x,..., x for ax,..., a and ux,..., um for z,..., Zm, where ul,..., um are
arbitrary words in Xl,..., x, xi-X,.., x;-x. Evidently U(S) is a recursively
enumerable set, depending recursively on S, and S is soluble in G if and only
if A c Rel(a,..., a) for some S in A. Thus if

V= {(i, A)IA - U(Si) },

V is recursively enumerable and Jo if and only if (i, A) V for some A
with A c Rel(at,. ar). Thus Jo < Rel(ax,..., a,) e Rel(G) as required.

COROLLARY 2.4. With the hypotheses of Theorem 1.2, (i) implies (ii).

If (i) holds, Lemma 2.3 gives that J <e Rel(H). But H is finitely presented
over G, so that, by Theorem 2.1, Rel(H) =e Rel(G), giving (ii).

Turning now to the reverse implication, we carry out the necessary construc-
tion in a slightly more general situation than the theorem requires.

LEMMA 2.5. Let G be a finitely generated group, and let (Si, N) be a
recursively enumerable sequence of sets of equations over G. Let J be a subset of
N such that (a) S is soluble over G for all in J and (b) J <eRel(G). Then there
exists a group H which is finitely presented over G such that S is soluble in Hfor
all in J.

Form first the free product Ho of G and of all the groups (G, Si), N.
There are natural maps ,,/x of G into H0, such that G, is the extraneous
factor G and Gg is contained in (G,S), i N. Notice that , is an
embedding, and so is if S is soluble over G, in particular if J, and that
the map #,. extends to a map of (G, Si) into H0. We shall embed H0 in an
increasing sequence of groups, and, by a systematic abuse of notation, we shall
use A,/ also for the corresponding maps into the larger groups; the proper-
ties of , and i that we have just noticed will be unaffected by this ambiguity
in their denotation. We first embed H0 in H1, which is generated by H0 and
generators t, N, with relations

t- tgti g#i for all g G, whenever J.
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Since , and/z i, J, are both embeddings, Hi.is an HNN-extension of H0,

and so does indeed embed it. (The generators i, N \ J are included solely
to make it easier to keep track of the recursive properties of relations).

Next, we embed H in a two-generator group H2, using the standard
method of [3]. Because we need to keep track of relations, it is simplest to
follow Ziegler [5], who extracted the essentials of the result in [3], and added a
little extra precision, to give it the form’

There exists a recursive sequence { w, N} of words in x, y, x- y- such
that, for any sequence { gi, N} of elements in any group G, the equations
w gi, N, can be solved over G.
For our purposes, we rewrite the sequence {w} as a double sequence
{ w, j, i, j N} with wi, j recursive in (i, j). We also need an explicit listing of
a set of generators of H. Let G= (ao, a,...,ar_), and denote by
Xo), --() both the variables in the equations S;, and also the correspond-"k(i)
ing elements of G, S). Then H1 is generated by the elements a,
O,...,r 1, aiftj, O,...,r-- 1, j N, xi), j= O,...,k(i), N, and
t, N. We embed H in the two-generator group H x, y), by solving
freely over H the equations

Wo, jfts, jN,

wx,j= ajk, j= O,...,r-1,

Wi+2, j ajlJ, i, j 0,..., r- 1, N,

wi+2,+j= x)i), j= O,...,k(i), N.

There are then three blocks of relations between x and y which can be
taken as defining relations for H2. First, there are the relations which guaran-
tee that the homomorphisms ,,/ of G into H2 really are homomorphisms.
These are

R u(wi, o,... Wi, r_l) 1 for all words u such that u(a0,..., a
for N except 0.

r--l) 1 and

Evidently R --<e Rel(G), since a0,..., ar_ are generators of G. Second, there
are relations which express the fact that the additional generators of the
(G, S) are solutions of the equations Si. These are

R 2 U(Wi+2,0,... Wi+2, r+k(r) 1 whenever the equation

u(ao,... ar_,, xg),..., x(iOr)) 1

belongs to S, N.
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Then R 2 is recursively enumerable; this is practically what we mean when we
say that the sequence (Si, N} is recursively enumerable. Finally, we need
relations to ensure that the elements perform the conjugations they are
supposed to. These are

WO, rWI, jWo, Wi+2, j, J, j 0,..., r 1.

Evidently R 3 e J; and since by assumption J _< Rel(G), we have R 3

-< Rel(G). Thus the set R t3 R E L) R3, which is a set of defining relations
for HE, satisfies R1 t3 R E t3 R < Rel(G). It follows that Rel(H2) < e Rel(G).
By Theorem 2.1, HE can be embedded in a group H which is finitely

presented over G. Finally, we set H4 (H3, z; z-gtz gh, g G), where
is the inclusion map G- Ha, so that H4 is an HNN-extension of Ha. We
show that H H4 satisfies the requirements of the lemma. First, H4 is finitely
presented over H3 because G is finitely generated, and hence it is finitely
presented over G. Second, if J, , and/i are conjugate even as maps into
H, and and are conjugate as maps into H4. Thus fnd/ are conjugate as
maps into H4. But the map/i’G -, H4 extends to a map (G, S) -, H4, and
hence so does the conjugate map t. This implies that S is soluble in H4.

This concludes the proof of Lemma 2.5. Obviously, this lemma includes as a
special case the implication (ii) (i) in Theorem 1.2; so taken with Corollary
2.4 it completes the proof of that theorem.

3. Conclusion

To derive Theorem 1.1 from Theorem 1.2 requires two more lemmas. Both
are probably well known, but we give proofs for completeness.

LEMMA 3.1. Let G, H be finitely generated groups with G 1 and Rel(H)
< e Rel(G). Then there exists a sequence (Si, N} offinite sets of equations
over G such that S depends recursively on i, and ifJ (ilS is soluble over G )
then J =- N \ Rel(H).

This depends on the fact that if g :# 1, h are elements of a group G, then
the equation g y-hy, z-Xhz is soluble over G for y and z if and only if
h 1. We can suppose, by Theorem 2.1, that H is a subgroup of a group
(G, S), where S is a finite set of equations over G which is soluble over G.
Since G is nontrivial, we can find g in G, g 1.. If bl,..., b generate H, we
can find a recursive map 0 from Wr (the set of words in
x,..., Xr, X-,..., X-) to the set of words in the generators of G and the
variables of S, such that wO w(b,..., br). If we write Sw for the union of S
and the single equation g y-(wO)yz-X(wO)z, then the set Sw depends
recursively on w, and is soluble over G if and only if
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w Wr\ Rel(bl,... br).

Reindexing the set (Sw, w W } by a recursive bijection from Wr to N gives
the result.

LEMMA 3.2. If G is a finitely generated group, there exists a finitely gener-
ated group H such that Rel(H) < Rel(G) but N \ Rel(H) e Rel(G).

The corresponding set theoretic result, that there exists a subset X of N such
that X <e Rel(G) but N \ X e Rel(G), can be found in Rogers [4]. Given X,
it is sufficient to take H (a, b, c, d; a + lbi + ci/ d i+ 1, X).
Now let G be any nontrivial finitely generated group. Construct H as in

Lemma 3.2, and then the sequence { S;, N} as in Lemma 3.1. Then the set
J (ilS is soluble over G} satisfies J e Rel(G). By Theorem 1.2, there is
no group finitely presented over G in which every set S soluble over G can be
solved. This proves Theorem 1.1.
We have the following corollaries.

COROLLARY 3.3. If G, H are finitely generated groups and M is existentially
closed, and G < M < H, then H is not finitely presented over G.

We can clearly assume G 1, and then this follows from Theorem 1.1 and
the fact that every finite set of equations soluble over G is soluble in M.

COROLLARY 3.4.
presented group.

No existentially closed group is embeddable in a finitely

This is immediate from Corollary 3.3. There are, however, many other roads
to it. For instance, one can use the theorem of [1], since an existentially closed
group is simple, and has finitely generated subgroups with insoluble word
problem.

COROLLARY 3.5.
to H.

Under the hypotheses of Corollary 3.3, G is not isomorphic

This is the result of Hickin and Macintyre [2] referred to earlier. To prove it,
note that if G < M < H with G and H isomorphic, then G < M < H < K,
where K is an HNN-extension making G and H conjugate. Because G is
finitely generated, K is finitely presented over H. But H and G are conjugate
in K, so K is finitely presented over G. This contradicts Corollary 3.3.
We mention, lastly, that the twist in the derivation of Corollary 3.5 is

necessary.
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FACT 3.6. There exist finitely generated groups G, H with G < H, G isomor-
phic to H, but H not finitely presented over G.

The construction is left to the reader.
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