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This paper is our second paper devoted to applying the ideas of rational
homotopy theory as developed by Chen, Quillen and Sullivan to deformation
problems from analytic geometry. Our first paper [GM1] studied the deforma-
tions of fiat connections and holomorphic structures on principal bundles (for
the most part over compact Kihler manifolds). In this paper we study the
deformation spaces of complex structures on compact manifolds. The "con-
trolling differential graded Lie algebra" (L, d) of Deligne, [GM1, p. 48], is
now the Kodaira-Spencer algebra

(L, d) d’q(M, Tl’),
q=0

where 0’’*(M, Tx’) denotes the space of COO exterior differential forms on
M of type (0, q) with values in the holomorphic tangent bundle.

In [Kul] and [Ku2], Kuranishi constructed the versal deformation of a
compact complex manifold M (see the appendix of this paper for definitions
and terminology). The parameter (base) space of this deformation is an
analytic germ in HX(L) with base point 0 HX(L) which we will denote
(X’, 0) or X" and will call the Kuranishi Space. Although over twenty five
years have passed since [Kul] appeared many basic questions concerning
remain unanswered. In this paper we prove that X" is a "homotopy invariant"
of L and use this principle to compute X" in the examples detailed below. We
now explain precisely what we mean by the "homotopy invariance" of

Let (L, d) be a differential graded Lie algebra over a field k (either C or R
in what follows). Choose a complement C(L) to the 1-coboundaries B(L)
L. We define a functor A Y(A) on the category of Artin local k-algebras
by

Yz(A) {r/ CI(L) (R) m" dr/+ i[r/, r/] 0)
Here rrt is the maximal ideal of the Artin local k-algebra A. It is proved in 1
that the functor Yz satisfies the hypotheses of Theorem 2.11 of [Sc] and is

Received February 28, 1989.

(C) 1990 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

337



338 WILLIAM M. GOLDMAN AND JOHN J. MILLSON

consequently pro-representable by a complete local k-algebra RL (we will see
later as a consequence of our main theorem that the isomorphism class of RL
does not depend on the complement CI(L)). In 2 we further assume that L
has a suitable topological structure i.e. the graded pieces are Banach, the
complement CI(L) is closed etc. so that we can apply the method of
Kuranishi [Kul], [Ku2] to construct an analytic germ /’. In 3 we prove that
the analytic local ring dgar,, also represents Yz. Hence the completion of (,0xr

L
is

isomorphic to R. It is this isomorphism which is the link between the
homotopy theory of differential graded Lie algebras and analytic geometry.
We call a differential graded Lie algebra with the above topological structure
an analytic differential graded Lie algebra and we call ,gg’z the Kuranishi
space of L.

In case L has zero differential the space og’L is the quadratic cone:

The germ d is always Banach analytically isomorphic to the germ at 0 of

L1" dl + [rl, r/] 0 and

lies in a fixed closed complement to B(L) in Lx }.

Thus in case L is finite dimensional we may replace g’z by Y.
In 4 we state and prove our main theorem, Theorem 4.1. Before stating it

we recall that two differential graded Lie algebras L and L are quasi-isomor-
phic if there is a chain of homomorphisms

L Lo - L1 <- L2 --> ---> L L

all of which induce isomorphisms of cohomology. Our main theorem is then
the following.

THEOREM. If L1 and L2 are quasi-isomorphic then Rz.1 and Rz,_
isomorphic.

are

We will apply this theorem in 5 and 6 as follows. Let L be the
Kodaira-Spencer algebra of a compact complex manifold M and L a differ-
ential graded Lie algebra with , finite dimensional. Suppose we have a
quasi-isomorphism of differential graded Lie algebras

L Lo L L2 -- --> L,, L.

Choosing complements CX(Li) for 0 < < n and applying the main theorem
repeatedly we obtain an isomorphism from RL to Rz and consequently by [A]
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an isomorphism of analytic germs from ,gf"L to ,9"Z. The latter germ is
described by explicit algebraic equations in a finite dimensional vector space.
We emphasize the fact that the intermediate Li’s need not have an analytic
structure and the arrows do not have to preserve the splittings.

If L is quasi-isomorphic to a differential graded Lie algebra with zero
differential (one says L is formal) then it follows that

Thus if the Kodaira-Spencer algebra is formal and the cup-product on
Hi(M, Tl’) is zero then the Kuranishi space of M is all of Hi(M, Tl’) even
if H2(M, T1,) (0}. We use this observation in 5 to explain Bogomolov’s
Theorem that if M admits a nowhere-zero top degree holomorphic form then
the Kuranishi space of M is all of Hi(M, Tl,). The key step in verifying the
formality of the Kodaira-Spencer algebra in this case is a lemma of Tian and
Todorov. Our proof merely places their proofs in a conceptual framework. In
the light of this example it would be interesting to find other sufficient
conditions implying the formality of the Kodaira-Spencer algebra analogous
to the results of [Si] for the twisted de Rham algebra.

In 6 we apply Theorem 4.1 to determine the Kuranishi space of a compact
complex parallelizable nilmanifold. Let M I’ \ N, N a nilpotent complex
Lie group with Lie algebra rt defined over R and F a cocompact lattice. Let L
be the Kodaira-Spencer algebra and L c L the image of the left N-invariants.
The inclusion L ---, L is a quasi-isomorphism so -Y’L rZ. It is easy to see
that

d’x End(n),

the affine variety of Lie algebra endomorphisms of n. If we describe n by
generators and relations we can produce a very large number of germs that are
Kuranishi spaces of complex manifolds. For example let n be the free Lie
algebra on two generators X and Y subject to the relations

(i) all (n + 1)-fold commutators 0
(ii) ad"-lX(Y) ad"-lY(X).

Then L {(X’, Y’) n" X’, Y’ satisfy (ii)} so d is a homogeneous cone
of degree n.
We conclude the paper by showing how our ideas can be used to show that

certain properties of a complex manifold are preserved by small deformation.
For the examples just discussed above we show that any small deformation of
the locally bi-invariant complex structure is isomorp__hic to a locally left
N-invariant structure. This follows because the algebra L above is the control-
ling differential graded Lie algebra for locally left N-invariant complex struc-
tures on M.
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It is a pleasure to thank Pierre Deligne whose ideas led to this paper. In a
letter to us he outlined the construction of the functors

of [GM1] and the key Theorem 2.4 of [GM1] that a quasi-isomorphism f:
L1

---, L2 induces an equivalence of groupoids cg(L1; A) ---, (L2; A) which is
natural in A. (A very similar theorem was also proved by Schlessinger-Stasheff
[SS].) In this paper we do not use these functors nor do we use Theorem 2.4 of
[GM1]. However, Theorem 2.4 motivated Theorem 1 of this paper and implies
it if H(L) 0. We have abandoned the Deligne functors Cg(L, A) for this
paper for two reasons. The action of the diffeomorphism group on
zC’l(M, T’1) appears to be too complicated to construct groupoids analo-
gous to those of [GM1]. Second there do not exist finite dimensional augmen-
tations of the Kodaira-Spencer algebra and consequently the method used in
[GM1] to treat those L for which H(L)4: (0} is not available here. The
Kuranishi method gets around both problems. We should mention also that
there is some overlap between [NR] and 2 of this paper. We have borrowed
the term "analytic differential graded Lie algebra" from them (but changed its
meaning). We have profited from conversations with a large number of
mathematicians while working on this project. They are listed in [GM1] and
we take this opportunity to thank them again. We wish to thank Richard
Penney for the proof of Lemma 6.5 and Robert Steinberg and Jim Carrell for
helpful conversations concerning the material in 6. Finally, the second author
would like to thank Steve Halperin and Richard Hain for patiently explaining
many of the basic constructions of rational homotopy theory.

1. The complete local k-algebra associated to a differential graded
Lie algebra

Let L be a differential graded Lie algebra over the field k with dim H(L)
< c. Let CI(L) be a complement to the 1-coboundaries BI(L)c L. We
define a functor A YL(A) from the category s of Artin local k-algebras to
the category of sets by

Here rrt is the maximal ideal of the ring A.

1.1 THEOREM. The functor YL is pro-representable; that is, there exists a
complete local k-algebra Rt and a natural isomorphism offunctors

Yz - Homag( Rz, ")
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Proofi We verify the axioms of [Sc]. Theorem 2.11. The tangent space,
Yz(k[e]), to the functor YL is clearly given by the space of solutions to d 0
with rl CI(L) (R) m where m is the maximal ideal in k[e]. Clearly, this vector
space is isomorphic to HX(L).

Schlessinger’s other axioms all follow from the observation that the natural
map

YL ( A’ X, A") Y(A’) X,,.(,) YL(A")

is a bijection for any triple of Artin local k-algebras, A’, A", A and homomor-
phisms A’ ---> A and A" ---> A.

1.2 Remark. We will see later in (4.1) that the isomorphism class of RL
does not depend on the choice of complement.

1.3 Remark. R. Hain has shown that another description of the complete,
local, k-algebra Rz can be obtained using the chain functor L CO(L) of [Q]
from the category of connected cochain Lie algebras to the category of
cocommutative differential graded coalgebras. We must modify c slightly
because L (0} for the differential graded Lie algebras of interest to us here.
We define the reduced cochain functor fired as follows. Let L be a differential
graded Lie a__lgebra. Let CI(L) be a complement to the 1-coboundaries BI(L)
and define L CI(L) 2 Li. We then define

We let Crd(L) denote the completion of the algebra red(L) with respect to
its augmentation ideal. It can then be shown that the complete local k-algebra
H0(CCrCd(L)) also represents YL whence

2. The Kuranishi space associated to an analytic differential graded
Lie algebra

In this section we show that if L has further topological structure then we
can construct an analytic germ (’, 0), the Kuranishi space of L. The point is
that in case L is the Kodaira-Spencer algebra of a compact complex manifold
M then (:trz, 0) is the parameter space for the versal deformation of the
complex structure of M constructed by Kuranishi. In 3 we will show that the
completion of dgar

L
is the k-algebra R/. The only material in this section to be

used later is the definition of ’t. and the splitting (.) of LJ below.
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We now define a normed differential graded algebra to be a differential
graded Lie algebra equipped with a norm II I1 on each L making L into a
normed vector space such that

(i) d i: Li---, Li+t is continuous,
(ii) [i e]" L (R) Lx ---, L2 is continuous.

We let ’b the completion of L for 0’ 1, 2, The vector space L is
the analogue of the smooth/-forms and / of the Sobolev/-forms.
An analytic differential graded Lie algebra is a normed differential graded

Lie algebra with finite-dimensional cohomology in degrees 0 and 1, equipped
with continuous splittings of the short exact sequences

and

o -, zJ() -, a / -. o

We let i i be the image of the splitting Bi+x

dosed subspace such that
---> /Y so that Y is a

L)

where the projections on both summands are continuous. We let f’y c ZY(/)
be the image of the splitting HY(/.) ZY(/_,) so that dY is a closed
finite-dimensional subspace such that

Zi(/) B1(/) . 9e’1 for j 0,1,...

We assume 9’J c Ly. (In the usual Hodge decomposition Ly is the complex
of Coo differential forms, y is the subspace of coexact differential forms and
9’J is the subspace of harmonic forms.) Let fl: /_, j - BJ(/_,), a" /_, j j

and H: gj --. 9J be the corresponding projections. We assume that all three
projections carry Lj into itself and that fl(Li) dLi- 1. We put j j (3

Lj and BJ(L) B(L) c LL It is immediate that J a(LJ), BJ(L)
fl(LY) and that there is an algebraic direct sum decomposition

( * ) Ly BY(L) + .;/g’J + .sd j.

Clearly fl d maps Y isomorphically onto BY(L). Let ,: BY+I(/)---,J
denote the inverse to fl d: z#y --, BY+l([_,) and define : Ly+l ---, [_,J to be
the composition

where ,: Y Ly denotes inclusion. (In the usual Hodge theory what we are
calling 8 is actually d* G where d* is the adjoint to d and G is the Green’s
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operator.) It is clear that 8" /+1 __, / maps B+x(L) isomorphically onto
J, that 8 8 0 and that 8(L+1) c Lj.

Since 8 d a, d =/3 and a + fl I- H the following is immediate:

2.1. LEMMA (THE HODOE DECOMPOSITION).
We define Y c x by

doS+8od=I-H.

r {, 2 +. t + [, ,] o}.
We now show that there exists a neighborhood of 0 in Y which has the

structure of a finite-dimensional analytic space by using the method of
Kuranishi.
The Kuranishi map F: ,x L1 is the quadratic map defined by

r() + [,, ,1.

We observe that F(Lx) c L.
2.2. LEMMA. There exist balls B and B’ around 0 in 1 such that F is an

analytic diffeomorphism B B’.

Proof. The differential of F at the origin is the identity and /x is a Banach
space. The lemma follows from the inverse function theorem. I
We now define a k-analytic subset zgg"

L c g,1 (the Kuranishi space) by

, {n s’ n gxlIa([r-x(n), F-x(I)]) 0}.
Observe that F carries the space + o’x into itself since F() . Also

F-((A +) n ’) c ( A1 +) n .
2.3. THEOREM (KURANISHI). F induces a homeomorphism from a neighbor-

hood of 0 in Y to a neighborhood of 0 in :tz..
The proof will follow from the next two lemmas.

2.4. LEMMA. F(Y) c oV[t.

Proof. Let Y. We have seen that 8 0 implies 8F() 0. Also
H([,]) 0. It remains to check that dF() 0. But

dF(t) d + dS[l, l] -1/2[l, I] + dS[l, l].

By the Hodge decomposition we have

d/J[, ] [, ] Jd [, ] l-I([, ])
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and

,[, ] :[a, ] -[[, ], ] o.

Hence dis [j, ] [, ] and the lemma is proved.

2.5. LEMMA. There exists a ball B’ around 0 in oWL such that F-t(B’) c Y.

Proof. We claim that there exists a ball B around 0 in /t such that if
B and

then

a [,] =0.

Indeed if we put q iSd [, j] then the above equation becomes

Since iS and
that

are continuous there exists C independent of tp and such

IIkll -< CIlkll I111.

Thus if I111 < 1/c then IIPll < IIqll so p 0. This establishes the claim.
We now claim that B’ B C3 L satisfies the conclusions of the lemma.
Let /t with F() / B’. Then 8 0. Moreover, since l is closed

we have

dj + d8 [, j] O.

The lemma is proved if we can establish

aa [, ] [, ]

which follows (using the Hodge decomposition) once we establish that
8d [j, j] O. But

a [, 1 2[a, 1
and using the facts that dr/= 0 and [[j, 1, 1 0, we obtain

aa [, 1 -a[aa [, 1, 1
from which it follows iSd [, ] 0 as desired. This concludes the proof of
Lemma 2.10. m
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We have obtained the required k-analytic structure on a neighborhood of 0
in Y.
The following theorem is obvious but important.

2.6. THEOREM. If L is finite dimensional then (UL, O) is analytically
equivalent to the analytic germ (Y, O) where

Y= {LI" d+ i[,] =0andS=0}.

2.7. RMARK. This result remains true in infinite dimensions but the
analytic structure on Y induced by the embedding Y c ,x is no longer useful.

3. Formal Kuranishi theory

In this section we show that the functors YL of {}1 and Hom((OL. ) of 2 are
naturally isomorphic. We abuse notation and define a functor g’L: ’ Sets
by

X’(A) Hom(Oa,.,., A)

We now digress in order to recall the main construction (due to Deligne) from
[GM1]. We do this in order to relate the functors L and Yz of this paper
with the functor Iso (L,- ) of [GM1].

In [}2 of [GM1] we associated to a differential graded Lie algebra L a
functor A ---, Cg(L, A) from the category of Artin local k-algebras (A, rrt)
to the category of transformation groupoids. We recall that a transformation
groupoid is given by a small category cg with a set of objects X and a group
acting on X such that for any two a, fl X, morphisms Hom(a,/3) corre-
spond to g f such that ga ft. Two groupoids determine the same
deformation theory if they are equivalent as categories. The groupoid (L, A)
is then determined by the formulas

f= G(A) exp(L (R) m)

(the multiplication is the Baker-Campbell-Hausdorff multiplication) and

X= X( A) (to L1 (R) m" dto + i[to, to] 0).
acts on X according to the gauge transformation law 0 given by

0 (exp , ) to exp(ad , ) to +
1 exp(ad h)

ad X (d,).

Then the elements of X(A) are the objects and the dements of G(A) the
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morphisms of the category cr’(L, A). We let Iso Cg(L, A) denote the isomor-
phism classes of objects in if(L, A). We obtain an induced functor ---} Sets
given by A Iso cr’(L, A). The invariance of these functors under quasi-iso-
morphism is stated and proved in [GM1], Theorem 2.4. A quasi-isomorphism
f: Lx L2 induces on equivalence of categories (Lx, A) --, (L2, A) which
is natural in A.
The isomorphism between ,rL and YL will now be established by formal

Kuranishi theory. If A is an Artin local k-algebra with maximal ideal m c A,
then G(A) is the nilpotent Lie group exp(; (R) m). For any ideal ’c rrt we
denote by r" A --, A/r the quotient projection. We will also denote by r the
projection associated to any base change by the map A A/7". We choose a
splitting of k-vector spaces o" A/’-, A. Since it is a polynomial map, the
Kuranishi map F: L -, L induces a map L (R) m --, L (R) rrt which we also
denote by F. If " is as above we have a commutative diagram

FLX(R)m LX(R)m

L (R) m/--e-, L (R) m/.

3.1. LEMMA. F: L (R) m L (R) m is bijective.

Proof. Artinian induction on the ring A. If A k then m 0 and there is
nothing to prove. Suppose that ’ A is an ideal such that ’. rrt 0 and that

F: L (R) m/’ L (R) m/q"

is bijective. Let o: L (R) m/q’ L (R) m be the linear map induced by o:
m/’-,-m.
F is injectioe. Suppose that x, J2 Lx (R) rrt satisfy F(I) F(2). Then

F(rjx) F(r2) and the induction hypothesis implies rx r2, i.e.,
L (R) . But ’. m 0 so that [x 2, x 2] x 2, 2] 0 whence

F(x) F(2) (x- 2) + 8[x- 2, 21 + 1/28[- 2, x-

Thus x 2 is desired.
F is surjectioe. Let / L (R) m. By the induction hypothesis there exists
Lx (R) m/" such that F() r(/). Let /’ /- F(o()). Then r(rl’) 0

so rl’ Lx (R) ’. Let j o() + r/’. It follows that

F(li,) F(o()) + rf + 8[o(), ,/’] + 8[1’, *1’1 F(o()) + rf rl

since [o(), /’1 + 8[rl’, /’] L (R) (m. Y’) 0.
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3.2. Remark. The inverse F-t of the formal Kuranishi map F: L (R) m
Lt (R) m carries Lt (R) m into itself and is a polynomial map, due to the
nilpotence of m. Indeed F-t is given by a power series, which truncates to a
polynomial of degree n 1, if mn 0.
We now set up infinitesimal product decompositions which we will need in

this section and the next one. We do not use the "diffeomorphism action" of f
but the much simpler action O. This is permissible because we are only using it
to set up coordinates and not to define an equivalence relation on Obj W(L, A).
We observe that the product decompositions below do not depend on the

fact that L is analytic but only on Hodge decompositions of L, L and L2.

3.3. LEMMA. Let b c be an inclusion of Lie algebras and a linear
complement to in . Let S(A) exp(g (R) m). Then the natural map

is a bijection which is natural in A.

Proof. Artinian induction. If A k there is nothing to prove. Suppose that
,-c A is an ideal with 37-. m 0 and inductively assume that the assertion
that v is surjective has been proved for the k-algebra A/-. Let r, o be as
above. Let g G(A) be given. By induction there exist h H(A/q’) and
s S(A/’) such that

Hence o(s)o(h) gt with exp( (R) 37"). But exp( (R) ’) is abelian and
isomorphic to (R) ,,q’. Consequently, we may write

his with s

We obtain

o(s)s{to(h)h{X= g.

Now o(s) and si-t commute; consequently log(o(s)s{ t) log o(s)- log st
g and o(s)s{ 1 S(A).
We now prove v is injective. Suppose there exist h H(A), st, s2 S(A)

with

Slh s2.

Applying ,r we find ,r(st)rr(h)= r(s2)and by induction ,r(h)= e and
h exp (R) -. Hence h and st commute and

log h + log st log s2.

Consequently, log h 0. m
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3.4. REMARK. In our application of the lemma, we take --L and
n(L). We take , e’(L).

3.5. LEMMA. Let V c L be a subspace such that

L V1 dL.

Then the action of exp(L (R) rrt) on Lt (R) m by p induces a bijection

t: S( A) x V (R) m--, L (R) m, (, o) p()o.

Proof. Artinian induction. If A k there is nothing to prove. Suppose that
’c A is an ideal with ’m 0 and inductively assume that the assertion has
been proved for the k-algebra A/-. We first show that # is surjective.

Let to Lt (R) m. By induction there exist g S(A/q-) and
such that

() ().

We write g exp , with (L) (R) m/7" and define

o’ o p(exp oh)o().

Then r(to’) 0 whence 0’ L (R) ’. Hence, there exist v’ V (R) 37- and
2’ zC’(L) (R) " such that to’= v’ + d,’.
We obtain

o p(exp o)k) o() + v’ + d,’.

But we have

p(exp oX)( o( b) + v’) p(exp o,)o( b) exp(ad o))v’ v’.

We obtain

o(,xp ox)(o(v) + o’) +

Finally, applying Lemma 2.8 of [GM1] we have

0 p(exp(o)k- ,’))(o() + v’).

Now o, X’ (L) (R) m whence exp(o, )k’) S(A) and o() + v’
Vt (R) m. We have established that # is surjective.
We now prove that # is injective. Suppose (st, vt) and (s2, v2) are elements

of S(A) Vt (R) rrt such that

p() vx p(:)
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Applying ,r we obtain

and by induction

r(sx) =r(s2) and r(uz) =r(u2).

Consequently, there exists (L) (R) Y" such that

s2=exp(Xz+e) =szexpe

02 #(s2)-zp(sz) z p(expt)-zv v + de

whence

V V2 -de.

But v v2 I(L) (R) m and de dL (R) ’c dL (R) m. Hence v2
de=0and vl=v2.But eC(L)(R)q’sode=0impliese=0ands

V

3.6. Remark. In our application of this lemma we will take Vz= t"z +

3.7. COROLLARY. The map tt induces a bijection (natural in A)

I: S( A) YL( A) Obj (L, A).

Proof. Suppose Obj Cg(L, A). Then we may write 0 p(s)v as above.
But then v p(s)-l so v Obj CO(L, A) V (R) rrt YL(A).

We are now ready to carry over the Kuranishi map to the infinitesimal case,
with infinitesimal parameters taken from an Artin local k-algebra A. Let
Y’(A) be the subset of x (R) m defined by

Y’(A) { r/ S’z (R) m" H(F-Zr/, F-z,/) 0}.
The following theorem is the infinitesimal analogue of Theorem 3 and has a

similar proof. The main point is that the statement of Lemma 2.5 can be
replaced by

F-I(Y’(A)) YL(A).

3.8. THEOREM. F maps YL(A) bijectively onto Y’(A).
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Now Let dgar,, be the analytic local ring of the Kuranishi space at 0. We may
realize dgar,, concretely as follows. Choose a basis (h,..., t } for y,x and let
{ xx, x } be the dual basis. Then dgel, the analytic local ring of the linear
subspace s’x at 0, is the ring

R( xx,..., xt)

of convergent power series in xx,...,xn and (Par,. is the quotient of
R{ xx,..., x } by the ideal generated by the components (relative to a basis of
d’2) of the ’2-valued analytic equation

Since dgar,, is a quotient of d91 there is an embedding
where ’X(A) denotes the set of k-algebra homomorphisms (991 A and
[r(A) denotes the set of k-algebra homomorphisms tPar,. A. Since a k-alge-
bra homomorphism (91 ---)A is determined by its values on the generators
xx,..., xt, which can be arbitrary dements of m, it follows that there is a
canonical isomorphism

The composition e maps (’(A) isomorphically onto Y’(A) c ,jl (R) m.
There is a commutative diagram

,j,l(a ) 1 (R) 1It

d’(A) ---* Y’(A)

in which the horizontal arrows are isomorphisms of functors.
We obtain the following theorems since the germ (,V,rL, 0) clearly represents

o(’(A).

3.9. THEOREM.
(X’,, 0).

The functor A YL(A) is represented by the analytic germ

3.10. COROLLARY. RL is the completion of the analytic local ring

3.11. THEOREM. If H(L) 0, the functor A ---) Iso C(L, A) is represented
by the analytic germ ( [rt,, 0).
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Proof In this case Corollary 3.7 states that

p," G(A) YL( A) Obj cg( L, A)

is a natural bijection. Thus Y(A) is a cross-section to the orbits of G(A) and
the theorem follows.

3.12. COROLLARY. If H(Lt) 0 and f: L L2 is a quasi-isomorphism
then the analytic germs (t"z1, O) and (z2, O) are analytically isomorphic.

Proof.
[GMll.

The corollary follows immediately from Theorems 2.4 and 3.1 of

4. The invariance of the Kuranishi space under quasi-isomorphism

We now assume we are given two differential graded Lie algebras (L1, dt)
and (L2, d2) with finite-dimensional first cohomology and that we have chosen
complements CI(Li), 1, 2, as in 1. We choose (non-topological) splittings

i= 1,2,

and then further splittings of L, L and L, to get (non-topological) Hodge
decompositions analogous to those of 2. We then obtain product decomposi-
tions of Obj (Li, A) as in [}3.
Now assume we are given a homomorphsm f: L - L2 such that the

induced maps on cohomology Hi(f): Hi(Lx) Hi(L2) satisfy:
(i) H(f) is an isomorphism;
(ii) HE(f) is an injection.

Our goal in this section is to prove the following theorem relating the complete
local k-algebras RL1 and RL,_. We abbreviate the functors YL and YL2 of [}1 to

Yx and Y2-

4.1. THEOREM.
isomorphic.

If f: L L2 satisfies ( ) and ( ii ) then R and R are

Proof. By Corollary 3.7 we have a diagram

S(A) Yx(A) Obj Cg(Lx, A)

x -% obj

We let j: Yx(A) Sx(A) Yx(A) be the map

j(y) (e, y)
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and p: S2(A) x Y2(A) Y2(A)be the map

p(s,y) =y for i=1,2.

We define a map : YI(A) - Yg_(A) by

q,(Y) =P(f(j(Y))).

Our theorem will follow if we can prove is a bijection. This we accomplish
in the next two lemmas.

4.2. LEMMA. dp is injective.

Proof. Artinian induction. Suppose Yx, Y satisfy (Yl) (Y[) Y2-
Then there exist s, s’ S2(A) such that

f(Yl) P(s)Y2, f(Y;) O(s’)Y2.

Now ,(ryt)= (ry[) whence by induction try ry and consequently
f(ryx) f(rry[) rl. Applying r to the equations above we obtain

whence s’ s exp with h L2 (R) q’. Also y Yl + with
We obtain

whence

and

f(Yl + t) p(s)#(exp,)y2

f(Yl) + f(t) p(s)y2 + dh

f(t) -dX.

But t o,’1 and HX(f) is injective. Hence f(t) exact implies t= 0. We
obtain Y Yl. m

4.3. Remark. In the case that Lx and L2 are analytic this lemma may be
proved in a more conceptual fashion as follows. Let A be the dual numbers
and observe that in this case we have

gVd’zx(A) Y(A) old’l(L) (R) m

v (a) (R) m

q d2 Hi(f) 9f’-i
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Thus is an isomorphism in this case. Now we have the general result that a
map of analytic germs f: (X, Xo) - (Y, Y0) that is injective on Zariski tangent
spaces induces an injective map f: X(A) Y(A) for all Artin local k-alge-
bras A. Indeed, suppose f(al)= f(a2). We may assume that X and Y are
embedded in their Zariski tangent spaces and f extends to these ambient
Zariski tangent spaces. By Artinian induction we have a 2 a / with

T,o(X) (R) ,’. We obtain

f(at) =f(ag_) =f(a +t) =f(at) + df(

whence

df ( at) O.

But df (al) df (0)" whence t= 0 and ax a 2.

We conclude the proof of the theorem by the following lemma.

4.4. LEMMA. dp is surjective.

Proofi Artinian induction. Let Y2 Y2(A). By induction there exists Yt
Yt(A/’) and s2 S2(A/") such that

f(Yt) P(Sz)" r(

We claim there exists )71 Yt(A) with rr()Tt) Yr. Let o2(Yl) be the obstruc-
tion to lifting Yt [GM1, {}2.7]. We have

H-f(oz(yx)) oz(f(yt) ) o_(p(sz)r(yz) ) HZ(sz)oz(r(yz)) 0

and since H2(f) is injective we have o2(Yl)= 0. Hence there exists to

Obj C(Lt, A) with r(tot)= Yt- By Lemma 3.5 there exists tol Yt(A) and
st St(A) such that

Applying r we find Yt P(r(st))Y[ where r(to)=y[ Yt(A/,Y’)and
r(Sx) SI(A/,-). Hence by Lemma 3.3 we have p(r(st)) e and Yt Y[.
Hence r(to) Yr. We put fit to and the claim is proved.
We now consider rl =f()7t) -p(o(s2))Y2. Here if s2 expX2 then

o(s2) exp o(22) whence o(s2) S2(A ). Then r(,/) f(Yx) p(s2)r(y2)
0 whence 1 L (R) q’. But f()Tt) and p(o(s2))y2 are objects so drl 0.

We may then write

1 h + dh
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with h ,1(L2) (R) ..if- and 1 0’(L2) (R) oq’. We obtain

f(fil) P(o(s2))Y2 + h + d,1.

Since f is surjective on first cohomology there exist t 6tal(L1)(R) ." and
h2 .0(L2) (R) - such that

We obtain

f(t) h + d, 2.

f()71 -t) p(o(s2))y2 + d(h

We now observe that )7 )71 YI(A). Also if we put s exp(, 2

o(s2) then by Lemma 2.8 of [GM1],

p(s)y2 #(exp(h 2 kl))io(o(s2))y2 p(o(s2))y2 + d(X1

Also logs ’2- tl + log o(s2) since exp(k 2 kl) and tI(S2) commute.
Hence log s ’(L2) (R) m and s S2(A ). We obtain f(fi) la(s)y2 and
consequently ()7) Y2. m

4.5. Remark. The surjectivity of for general A does not follow from the
surjectivity of for the case A k[e] as is easily seen from the example of the
inclusion map of the coordinate axes into the plane. The extra input here is
that one can lift points from A/" to A provided one can lift the image
points. As we have seen this follows from the obstruction theory of [GM1]. In
order to make this precise we make the following definition.

4.6. DEFINITION.
the natural map

A map of germs f: (X, Xo) -, (Y, Yo) is smooth at xo if

X(A) --* X(A/q’) Y(,/a3 Y(A)

is a surjection for any A and " as above.
We have just seen that is smooth. Then in the case that L1 and L2 are

analytic, Lemma 4.4 follows from the next elementary lemma.

4.7. LEMMA. Suppose f: (X, Xo) (Y, Yo) is smooth at Xo. Then f: X(A)
---> Y(A) is surjective for all A.

Proof. Artinian induction. Putting A k[e] and ’= (e) we see that
df (Xo) is surjective. Let y Y(A) be given. Then by induction we can find

X(A/’) such that f() r(y). Since rr(y) lifts to y we can find x in
X(A) lifting . Consequently f(x) y + 2 with 2 Tyo(Y) (R) 7". We choose
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tl such that df (Xo). 2. Then

f(x + q’) =f(x) + df (x)q =f(x) + df (xo) q y.

Theorem 4.1 has the following immediate consequence.

4.8. THEOREM. Suppose (L1, da) and (L2, d2) are analytic differential
graded Lie algebras which are quasi-isomorphic as differential graded Lie alge-
bras. Then the analytic germs (L1, O) and (z,2, O) are analytically isomorphic.

Proof. By Corollary 3.11 and Theorem 4.1 0 and
completions RI and Rz2. By [A] they are isomo’phic. "’- have isomorphic

5. Formality and quadratic cones

5.1. DEFINITION. Two analytic differential graded Lie algebras (L, d) and
(L, d) are quasi-isomorphic if there exists a sequence of homomorphisms of
differential graded Lie algebras

such that each homomorphism induces an isomorphism on cohomology.
It follows from Theorem 4.8 that quasi-isomorphic analytic differential

graded Lie algebras have isomorphic Kuranishi spaces.

5.2. DEFINITION. An analytic differential graded Lie algebra is formal if it
is quasi-isomorphic to its cohomology (with zero differential).

The Kuranishi space of an analytic differential graded Lie algebra L with
zero differential is the quadratic cone

o)
and we obtain"

5.3. THEORIM. Suppose (L, d) is a formal analytic differential graded Lie
algebra. Then the Kuranishi space of L is isomorphic to the quadratic cone. c Ha(L) given by

=o}.
5.4. COROLLARY. Suppose that L is formal and the cup-product on Ha(L) is

zero. Then g’ =- Ha(L).

Remark. This corollary will allow us to prove certain deformation spaces
are smooth manifolds even though H2(L) 0.
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In order to apply the above theorem and its corollary we need to be able to
prove that certain differential graded Lie algebras are formal. We give two
examples.

Flat bundles over Kihler manifolds.
Let P M be a principal G-bundle with a fiat connection too where G is a

compact Lie group. Let ad P P G g denote the g-bundle associated to P
by the adjoint representation. Its complexification ad P (R) C is a fiat complex
vector bundle with a parallel Riemannian metric (since G is compact). Let
P(M; ad P) denote the vector space of ad P-valued exterior p-forms on M.
Let

D: /V(M; ad P) /v+(M; ad P)

denote the covariant exterior differential operator corresponding to the fiat
connection on ad P. Then

9 /’(M; ad P), D)
p>O

is a differential graded Lie algebra and is the versal deformation space for
isomorphism classes of fiat connections on P near too. We obtain"

THEOREM.
is formal.

Let M be a compact Kiihler manifold. Then (*(M; ad P), D)

COROLLARY. o)g" is isomorphic to a quadratic cone.

Remark. With a little more work, we deduce that the algebraic variety
Hom(q(M), G) has quadratic singularities. The hypothesis that G be com-
pact can be considerably weakened: using Corlette’s existence theorem for
harmonic metrics, Simpson [Si] has proved formality of .’*(M; ad P), D)
under the hypothesis that the monodromy representation of P is reductive.

Deformations of complex structures.
Let M be a complex manifold of complex dimension n. Then the Kuranishi

space of the differential graded Lie algebra

M’q(M, T,M), -)q>_O

is the versal deformation space for deformations of complex structures on M.
Suppose that M is a compact Kihler manifold which admits a nowhere

vanishing holomorphic (n, 0)-form to.
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THEOREM. (1) (qOO’’q(M, Tt’M), ) is formal.
(2) The cup-product in H is zero.

All the work involved here was done by Tian [Ti] and Todorov [To]. We are
merely paraphrasing their proofs, which we now sketch. There is a vector
bundle isomorphism

dp" TI’M An-iT1’0

given by

,(x)

where *x denotes interior multiplication by X. There is thus an induced
structure of a differential graded Lie algebra on

) n-l’q( M), " ).q>O

The induced bracket is rather mysterious, but Tian and Todorov showed the
following:

TIAN-TODOROV LEMMA. The bracket of a O-closed element of /,-1, q’ and
a O-closed element of ,1n- 1, q is O-exact.
The theorem follows immediately from this lemma. Indeed let be the

subspace of qO "’n-l’q(M) consisting of 0-closed forms. By the Tian-
Todorov lemma, is a sub-algebra and its inclusion is a quasi-isomorphism.
Let 3 c be the subspace of 0-exact forms. Again by the Tian-Todorov
lemma, 3 is an ideal in and the projection /3 is a quasi-isomor-
phism. Thus there is a quasi-isomorphism (where and 3/3 are given the
induced differential 0)

LEMMA.

"n-l’q(M) ’- 3 "-’> 3/.
q>O

The differential on /3 induced by 0 is zero.

Proof Let and 0= 0z with z . Then 0 is 0-closed and
0-exact. By the principle of two types [DGMS], there exists r/with

0 00r/.

But then 0 has zero class in / and the lemma is proved, m
Thus the differential graded Lie algebra q o ,-1, q(M) is formal.
To establish the vanishing of the cup product on H we need only observe

that if o Hi is harmonic, then 0 is 0-closed and consequently the bracket
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[w, w] is 0-exact by the Tian-Todorov lemma. Since [w, w] is 0-closed, the
principle of two types implies that there exists such that [w, w] OOr and
the class of [w, w] is.zero in H. The proof of the theorem is complete.

6. The Kuranishi space of a compact complex parailelizable niimanifoid

Let N be a simply-connected complex nilpotent Lie group of complex
dimension n with Lie algebra rt (we will regard rt as the Lie algebra of
left-invariant vector fields on N). Suppose N admits a cocompact lattice F. In
this section we will apply our general theory, to determine the Kuranishi space
X" parametrizing the versal family of deformations of the complex structure
on M F \ N inherited from that of N. We will also describe the versal
family. Let fi denote the algebra obtained by replacing the complex structure
on rt by its conjugate. We recall that rt is said to have a real structure if rt and
fi are isomorphic as complex Lie algebras. The existence of such an isomor-
phism is equivalent to the existence of a basis for rt relative to which all
structure constants are real. We now state the main theorem of this section.

6.1. THEOREM. The analytic germ (OU, O) is isomorphic to the germ
(Homag(, rt), 0), the germ at 0 of the affine variety of complex Lie algebra
homomorphisms from to ft. If rt has a real structure this latter variety is
isomorphic to the variety Endalg(rt) of Lie algebra endomorphisms of ft.

We now prove the theorem.
Let L2 .0,q(M, T1’) and let L1 be the subalgebra consisting of

the projections to M of the left-invariant elements of --0 .0, q(N, T’). We
have vector space isomorphisms

L= Homc(Aq,rt), q=0,1,...,n.

We will henceforth regard rt as the space of left-invariant complex vector
fields on N of type (_1, 0) and fi as the left-invariant fields of type (0,1). We
define a differential D on Lx for w Homc(AV, n) and Xx,..., Xv+ n’
by

w(Xx,.-., Xv+x) E (-1)’Jw([X, X1l, Xx ,..., .j,...,
i<j

and a bracket ]’: L (R) L t+q by

1[w, r]’= p!q! Ee(o)[w(Xo(), Xo(v) ), ’l](X(p+l) Xo(p+q))].
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6.2. LEMMA. The differential D and the bracket ]’ are the ones in-
duced on Lx_by the inclusion j: Lt - L2. Consequently j: ( Lt, ]’, D) -+

(L2, ], 0 ) is a homomorphism of differential graded Lie algebras.

Proof. We first prove the statement for the differential. Let P" T(M) (R) C
-+ Tx’(M) be the projection given by

e=

We then have the well-known formula for Oto with to L:

But if to LI and X1,..., Xq+ are in then to(Xt,...,-i,-.., Xq+l) 1l

and the terms in the first summand are all zero since the elements of n and the
elements of fi commute. We obtain the required formula for the differential.
To compute the induced bracket we use the following formula [Ni] for the

bracket of two elements to L’ and r/ L evaluated on arbitrary smooth
vector fields of type (0,1):

If the Xi’s are now assumed to be left-invariant and to and r/ are in Lt then
the second and third terms contain brackets of elements of fi (namely Xo(t))
with elements of rt (the values of to or r/) and consequently are zero. m

We now establish that j is a quasi-isomorphism.
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6.3. THEOREM.
mology.

The inclusion j" L induces an isomorphism of coho-

We begin by reducing the theorem to a result about the usual Dolbeault
cohomology groups. The natural map a: d’’q(M)(R) rt -- L given (on
decomposables) by

R(0 (R) X)(ol,... Oq) o( Ol,... oq) X

is an isomorphism of vector spaces (but not_ of Lie algebras). We see that
under the isomorphism a the differential (R) 1 goes to . We obtain a
commutative diagram of complexes"

(n )I jt0, q(M) (R) n (R) 1 (L2, O)
q=O

(A’q()* (R) 1l, (R) 1) id (L1, --D).

The vertical arrows are the inclusions of the projections to M of left-invariant
forms on N.
We see then that the theorem will follow from the corresponding result for

the Dolbeault algebra of scalar-valued differential forms of type (0, q) for
0 < q < n. This result is proved in Lemma 6.5 and is based on an unpublished
version proved by Richard Penney. Our proof is a modification of his more
analytical one. We will use the term "complex torus" to denote a compact
connected complex Lie group--necessarily the quotient of C’ by a cocompact
lattice. Jim Carrell has pointed out that there are holomorphic vector fields on
compact complex manifolds M (e.g., the Iwasawa manifold) acting non-triv-
ially on H(M, fl). Thus some extra "compactness" condition on G is
necessary.

6.4. LEMMA. Let M be a compact complex manifold and G a connected
complex Lie group acting on M. Assume that the action G M M is

holomorphic in both variables and that G acts by isometries of a hermitian metric
h on M. Then G acts trivially on all the sheaf cohomology groups H’(M, fq).

Proof. It suffices to prove the Lie algebra g__ of G acts triviall_y. We first
observe that any anti-holomorphic vector field Z acts trivially on 0-cohomol-
ogy. This follows immediately from the formula

o(z)=,(Z)oO+Oo,(Z)
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which follows in turn by a comparison of types in the usual Cartan formula

o(z) =,(Z)od+do,(Z).

It remains to check that the holomorphic vector fields tangent to G act
trivially on the above cohomology groups. But since G preserves the metric
h, G acts by unitary transformations on .’P’q(M), the space of harmonic (for
the 0-Laplacian associated to h) forms on M of type (p, q). Hence the Lie
algebra acts by skew-hermitian transformations on P’q(M) and extends
to a Lie algebra homomorphism 0: (R) C End(" q(M)). If X we let
X denote the corresponding vector field on M. Since the action is holomorphi._..c
in the first variable we have J. J’. Now consider Z . -/J iJX.
Then o(Z) o(X) io(JX) and the adjoint 0(Z)* of 0(Z) is given by

p( Z)* p( ))* + ip(ff’)*
-p()-ip(’)
-p(Z)

where " +/J.. But we have seen that p() 0 and the lemma follows.

COROLLARY. Let M be a compact complex manifold and G a complex torus
acting on M such that the action map G M--, M is holomorphic in both
variables. Then G acts trivially on all the cohomology groups H’(M, fq).

n dd’q(M) be the Dolbeault algebra and let6.5. LEMMA. Let A2 -o
A1 $=oA where A is the subspace of projections to M of the left-invariant
(0, q)-forms on N. Then the inclusion

j" (A,,-) + (A2,- )

induces an isomorphism of cohomology.

Proof By Matsushima [M], the center Z(N) of N is connected and

’x Z(N)N ’ is cocompact in Z(M). Thus T= I’ \ Z(N) is a complex
torus which acts freely on M. We obtain a holomorphic principal fibration
T M M/T with base a compact nilmanifold of dimension strictly less
than that of M.

In order to adapt the inductive argument of Nomizu [No] to our context it
suffices to show that the inclusion

i" AT2 oA2
of the T-invariant elements A2r in A2 induces an isomorphism of cohomology.
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But this follows from the previous lemma. Nomizu’s argument now applies.

By Theorem 4.1 there is an analytic equivalence from (L1, 0) to (,)FL,_, 0). It
remains to determine ,r1. We have seen that

(L1)x= (fi)* (R) rt Homc(fi, rt).

Since (Lx)x is finite dimensional we can replace ,Y,r by Yx. Now we have
(Lx) H(Lx) so there are no 1-boundaries. Hence the linear complement
AX(Lx) is all of (Lx) and we have

Yz {w Homc(H, n)" w + i[w, ] 0}.

6.6. LEMMA. Y is complex analytically isomorphic to Homag(, rt), the
affine variety of Lie algebra homomorphisms from Ft to ft.

Proof. We have 0 Y if and only if

Dw + i[w, w] O.

But X, Y we have

Do(X,Y) -([X, YI),
[, to]( X, Y) 2[(X), (Y)].

Thus the above equations hold if and only if for all X, Y H we have

,([x, Y]) [o(x), (Y)]

We complete the proof of Theorem 6.1 by observing that a real structure o:
rt - induces an analytic equivalence

o*" Homtag( H, It) Homms( n, n)

given by

o*T T o.

We now consider some examples of analytic germs that can be obtained in
this way.
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Quadratic cones.
Let rt be the (Heisenberg) Lie algebra generated by XI,..., X,,, Y1,..., Yn

subject to these relations:

(i)
(ii)
(iii)
(iv)
(v)

all three-fold brackets are zero;
X,, Y] Xj, Yjl all i, j;

tX,, YjI 0, ij;
IX,, =0;
[Y,, o.

Then Hom,as(rt, n) is clearly the homogeneous quadratic cone consisting of
all elements Xx’,..., X’, Y{,..., Y’ in rt 2n satisfying (ii), (iii), (iv) and (v). We
thank Robert Steinberg for pointing out this example.

Cones of degree n.
Let n be the Lie algebra generated by X, Y satisfying the relations:
(i) all (n + 1)-fold brackets are zero;
(ii) ad-X(Y) ad"- XY(X).

Then Homls(n, rt) is the cone of degree n consisting of X’, Y’ n 2 satisfy-
ing (ii).

It is clear that by prescribing rt by generators and relations as above one
can write down a very large number of germs that are Kuranishi spaces of
complex manifolds. In particular the above examples show that the Kodaira-
Spencer algebra is not always formal.

We conclude this section by describing the versal deformation (X2, ,rE, t2) of
M (see the appendix for the definition). We first form the versal deformation
of M in the space of complex structures on M coming from left-invariant
complex structures on N. We will call such structures locally left-invariant. We
obtain the latter deformation (X1, ,q, q) by forming the product HOmal(, rt)

M. We then use id: Homa(, rt)- Homa(fi, rt) to twist the product
complex structure (see the appendix). Intuitively one changes the product
almost complex structure at (A, m) for A Homag(, rt) and m M by
using A to change the almost complex structure on the tangent vectors to M
at m. Clearly we have a morphism of deformations

But we have just seen that induces an isomorphism on the base. By Lemma
7.6 of the appendix we find that is an isomorphism. As a consequence we
obtain the following theorem.

6.7. THEOREM. Any complex structure on M sufficiently close to the locally
bi-invariant one is isomorphic to a locally left-invariant complex structure.
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Appendix: The versal deformation of a compact complex manifold

The basic reference for this appendix is [Ku2].

7.1. DEFINITION. Let M be a compact manifold. Let (S, So) be the germ of
a complex analytic space. A deformation of M over (S, So) is a triple (X, r, t)
where X is a complex analytic space, ,r: X S is a proper smooth holomor-
phic mapping and 1;: M X is an embedding which induces an isomorphism
from M onto ,r-l(so).

The hypothesis that ,r is smooth means that every point x X has a local
product neighborhood in X with respect to r.

7.2. DEFINITION. Let (Xx, q, q) and (X2, ,rE, 1;2) be two deformations of
M over (S, So). Then a morphism (f f) from (Xx, q, q) to (X2, ,rE, 1;2) is
a diagram

x;

(s;, So) So)

such that f’o 1;1 1;2 where Si’ is a neighborhood of so in Si and Xi’ ri-X(Si’)
for i= 1,2.

If f: (S, So) --, (T, to) is a morphism and (X, r, 1;) is a deformation of M
over (T, to) then we may define a deformation (f’X, f*r, f*1;) in the usual
way as the fiber product of f and

7.3. DEFINITION. A deformation (X, ,r, 1;) of M over (T, to) is complete if
given any deformation (X’, r’, 1;’) of M over (S, So) there exists a neighbor-
hood S’ of s0, a morphism f: (S’, So)- (T, to) and an isomorphism from
(X’, r’, 1;’) to (f’X, f*r, f*1;).
We call f a classifying map for the deformation (X’, r’, 1;’). We do not

require f to be unique.

7.4. DEFINITION. A complete deformation (X, r, 1;) of M over T is versal
if any two classifying maps for a deformation (X’, ,r’, 1;’) of M over (S, So)
have the same derivative at so

Remark. In what follows we will frequently use the result that an endo-
morphism of an analytic local k-algebra inducing an automorphism of the
Zariski tangent space is an automorphism.
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7.5. LEMMA. Any two versal deformations ofM are isomorphic.

Proof Let (X, ,r, t) and (X’, r’, t’) be two versal deformations of M. Then
we have classifying maps f and g for X and X’ respectively and diagrams

s  _L,s,, s,

It suffices to prove that f maps a neighborhood of r
cally onto a neighborhood of (r’)-X(s;) in X’.
We have a diagram (with h f and h f g)

-l(s0) in X isomorphi-

Since ot we have lr-l(s0)= id and dh(so)= id. Thus if x
(,r’)-l(s) the map leaves x fixed and induces a map of the analytic local
ring (.0x,,x which induces the identity on the Zariski tangent space. By the
remark above there exists a neighborhood U’ of x in X’ which is mapped
isomorphic.ally onto itself. We obtain a neighborhood U’ of ,r-l(s0) in X’
such that h carries U’ onto itself and is a local isomorphism. By shrinking U’
we may assume is injective (since is injective on r-l(s0)). Finally we may
assume U’ is the inverse image of a neighborhood of s in S’.
Now consider the morphism f: X---, X’. We replace X’ by U’ and X by

f- I(U’). Then

fogo- id

so f" has a right inverse g -1. Hence f" is onto. But an argument
analogous to that of the paragraph above produces a neighborhood U of
r-l(s0) such that ( f’)l U is invertible. Hence flU is injective. But clearly
f[U surjects onto -I(u). We replace X’ by c-I(U).

COROLLARY. The parametrizing germs (S, so) and (S’,s) for any two
versal deformations of M are isomorphic.

We observe that the method of proof of the previous lemma can be used to
prove the following.
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7.6. LEMMA. Suppose k (f, f) is a morphism of deformations with f an
isomorphism ofparametrizing germs. Then is an isomorphism.

Proof Clearly the induced deformation f*X’ is isomorphic to X’ and it
suffices to compare X and f*X’; that is, we may assume S’ S and f= id.
We have a diagram

x

Let x ,r-l(So) and so f’(x) r-l(s0). The analytic local tings (.0x, x and
dx,,(x are isomorphic and df" induces an isomorp.hism of Zariski tangent
spaces. Thus by shrinking X and X’ we may assume f is a local isomorphism,
in particular it is an open map. But there exists a neighborhood U of ,r-(s0)
such that f[ U is injective. We replace X by U and X’ by f(U). m

In 1962, Kuranishi [Kul] proved the existence of a versal deformation of
any compact complex manifold. We will explain the idea of the proof of
Kuranishi’s theorem in order to make the connection with differential graded
Lie algebras and the material of 2 of this paper.

Let L be the Kodaira-Spencer algebra and - be the subset of L given by

+

7.7. DEFINITION. Let (S, So) be an analytic germ. An analytic family of
elements of " parametrized by (S, So) is a map /: S L such that / is a
real analytic section of the pull-back of T’I(M)* (R) TI’(M) to M S
which is complex analytic in S.

We now describe briefly how an analytic family of elements of "parametrized by (S, So) induces a deformation of M with parametrizing germ
(S, So). Form the product analytic space M S. Let r/be an analytic family
as above. Twist the product structure on M S using r/ via the complex
Frobenius theorem with parameters as explained in [Ku2], Chapter VII. We
obtain the required deformation of M which we denote M n S. Now let F-l:
:dL YL be the Kuranishi family described in 2. Then F- is an analytic
family [Ku2, p. 82]. We put X M r-1 3r:, let ,r be the projection onto the
second factor and t: M ---, X be the inclusion t(x) (x, 0).

7.8. THEOREM (KURANISHI). ( X, r, ) is a oersal deformation of M.
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