A SIMPLE PROOF OF BOGOMOLOV'S THEOREM ON CLASS ∇II_0 SURFACES WITH $b_2 = 0^1$

by¹ J. Li, S.T. Yau and F. Zheng

In memory of Kuo-Tsai Chen

1. Introduction

In his famous paper [B₁] and [B₂], Bogomolov proved that all the class ∇II_0 surfaces with $b_2 = 0$ are those in the Kodaira-Inoue's list. His argument is by studying the representation

$$\rho \colon \pi_1(S) \to GL(2, \mathbb{C})$$

induced by the holomorphic affine structure (see §3), and case by case eliminate all the possibilities besides the Kodaira-Inoue list. The proof is extremely complicated and in many cases, difficult to follow. In this article, we use the existence result of Li-Yau [L-Y] to give a short proof of Bogomolov's theorem.

2. Preliminary on ∇II_0 surfaces and the statement of Bogomolov's theorem

In the classification of compact complex surfaces, ∇II_0 is the only class which has not been completed:

$$\nabla H_0 = \{ \text{ minimal surfaces with } b_1 = 1 \}.$$

If the algebraic dimension a(S) is equal to one, then S is an elliptic surface. On the other hand, if a(S) is equal to zero, $b_2(S) = 0$ and S contains curves, then S is a Hopf surface (i.e., surfaces with universal covering $C^2 \setminus \{(0,0)\}$), as was observed by Kodaira many years ago. Hence one need only consider

Received December 21, 1988.

¹Research supported by the Department of Energy.

the following two subsets of ∇II_0 , in the notation of M. Inoue $[I_1]$:

$$(A) = \{ S \in \nabla II_0 | b_2(S) = 0, S \text{ does not contain any curve} \}$$

$$(B) = \{ S \in \nabla II_0 | b_2(S) > 0 \}.$$

Set (B) is still not completely classified yet, though many examples have been found; see Nakamura [N] for details.

For set (A), Inoue constructed three types of examples: S_M , $S_t^{(+)}$, $S^{(-)}$, parametrized by some matrices and integers and $t \in \mathbb{C}$. They all have the form $\mathbf{H} \times \mathbf{C}/G$, where \mathbf{H} stands for the upper half plane, and G is some discrete subgroup of the affine group acting freely and properly discontinuously on $\mathbf{H} \times \mathbf{C}$. He also proved the following $[I_2]$:

THEOREM 1 (INOUE). Let $S \in (A)$. Assume that there is a line bundle L on S such that

$$H^0(T_S \otimes L) \neq 0$$

where T_S is the tangent bundle. Then S must be one of the examples $S_m, S_t^{(+)}, S^{(-)}$.

Hence the remaining surfaces in set (A) must belong to

$$(A_0) = \left\{ S \in (A) \middle| H^0(T_S \otimes L) \equiv 0 \text{ for any } L \in Pic(S) \right\}.$$

Now we can state the Bogomolov's theorem.

Theorem 2 (Bogomolov). $(A_0) = \emptyset$.

3. Affine structures on a surface in (A_0)

Let $S \in (A_0)$ be a possible surface, and T_S , Ω_S denote its tangent, cotangent bundle. Recall that a type (1,0) connection on T_S is called holomorphically affine if, with respect to a holomorphic frame, the connection forms are holomorphic one forms. The obstruction to the existence of such a connection comes from a class in $H^1(S, \Omega_S \otimes \Omega_S \otimes T_S)$ and the difference of two such connections is an element in $H^0(S, \Omega_S \otimes \Omega_S \otimes T_S)$.

The next result was proved in [5].

Theorem 3 [I-K-O]. If
$$S \in (A_0)$$
, then $H^i(S, \Omega_S \otimes \Omega_S \otimes T_S) = 0$ $(i = 0, 1, 2)$.

Hence there exists a unique holomorphic affine connection ∇_0 on the tangent bundle T_S of S.

In fact, the curvature and torsion of ∇_0 vanish, and so ∇_0 is integrable and gives a complex affine structure on S. This complex affine structure gives a

representation

$$\rho\colon \pi_1(S)\to GL(n,C).$$

Bogolomov's argument is based on a delicate analysis of all the topological possibilities induced from this representation, and eliminate them case by case. In the following, we are going to produce a flat hermitian connection ∇ on T_S , which will violate the uniqueness of holomorphic affine connections on S (Theorem 3), and hence prove Theorem 2.

4. Hermitian-Yang-Mills connections on stable vector bundles over non-Kähler manifold

In [L-Y], Li and Yau generalized the work of Uhlenbeck-Yau to the non-Kähler case. More precisely, let M^n be a compact hermitian manifold with metric form ω . By a conformal change of the metric, one may always assume that $\partial \bar{\partial} (\omega^{n-1}) = 0$.

So for a torsion-free coherent sheaf \mathcal{F} on M, the degree

$$\mu(\mathscr{F}) = \int_{M} c_{1}(\mathscr{F}) \wedge \omega^{n-1} / \operatorname{rank}(\mathscr{F})$$

will be well defined, and one can extend the definition of μ -stability to this case, namely \mathscr{F} is called μ -stable if $\mu(\mathscr{F}') < \mu(\mathscr{F})$ for any (torsion free) subsheaf \mathscr{F}' of \mathscr{F} with $0 < \operatorname{rank}(\mathscr{F}') < \operatorname{rank}(\mathscr{F})$. Just as in the Kähler case, one need only to examine the inequality for reflexive subsheaves \mathscr{F}' , (i.e., $\mathscr{F}' \cong \mathscr{F}'^{**}$. A rank one reflexive sheaf is necessarily locally free and is therefore a line bundle.)

In case \mathscr{F} is locally free, i.e., a vector bundle, a hermitian connection ∇ on \mathscr{F} is called hermitian-Yang-Mills (with respect to the base metric ω) if $Tr_{\omega}\Theta_{\nabla}=\mu I_{r}$. Here Θ_{∇} is the curvature matrix of ∇ , I_{r} stands for the unit matrix of rank $r=\operatorname{rank}(\mathscr{F})$, and μ is a constant.

Parallel to the Kähler case, one has:

THEOREM 4 (LI-YAU [L-Y]). Let M^n be a compact hermitian manifold with metric form ω satisfying $\partial \bar{\partial} (\omega^{n-1}) = 0$, and E be a rank r holomorphic vector bundle over M. Then E is μ -stable iff it admits a hermitian-Yang-Mills connection.

5. The proof of Bogomolov's theorem: $(A_0) = \emptyset$

Let S be a possible surface in (A_0) . Then the condition $H^0(T_S \otimes L) = 0$ for any $L \in \text{Pic}(S)$ says that there are no rank one reflexive subsheaves of T_S , hence T_S is μ -stable for any base metric ω with $\partial \bar{\partial} \omega = 0$. By Theorem 4, one

has a hermitian connection ∇ on T_S , Namely $Tr_{\omega}(\Theta) = \mu I_2$, Θ being the curvature matrix of ∇ . From the usual Chern form calculation, one proves curvature of the connection ∇ is equal to zero by the following argument.

Let $\{e_1, e_2\}$ be a holomorphic frame of T_S , and $\theta = (\theta_{ij})_{2\times 2}$ be the connection matrix of ∇ . Then the curvature matrix of ∇ is $\Theta = \overline{\partial} \theta$, since ∇ is hermitian. Now the Yang-Mills equation reads

(1)
$$\Theta_{ij} \wedge \omega = \mu \delta_{ij} \omega \wedge \omega$$

and the Chern forms are given by

(2)
$$\psi_1 = \frac{\sqrt{-1}}{2\pi} \operatorname{tr} \Theta, \quad \psi_2 = \frac{-1}{4\pi^2} \det \Theta.$$

Since the two Chern number $c_1^2(S)$ and $c_2(S)$ are both zero, the usual algebraic calculation yields $\Theta = \bar{\partial}\theta = 0$. Hence θ is a matrix of holomorphic 1-forms and ∇ is holomorphic affine. But the torsion of a holomorphic affine connection is an element in

$$H^0(S, \Omega_S \otimes \Omega_S \otimes T_S).$$

By Theorem 3, one knows that the hermitian connection ∇ has vanishing torsion and S is Kähler. This is impossible as $b_1(S) = 1$. So we get a contradiction from the existence of an $S \in (A_0)$. Hence (A_0) must be empty, and the proof is completed.

REFERENCES

- [B₁] F.A. BOGOMOLOV, Classification of Surfaces of Class ∇II_0 with $b_2=0$, Math. USSR-Izv., vol. 10 (1976), pp. 255–269.
- [B₂] _____, Surfaces of class ∇II_0 and affine geometry, Math. USSR-Izv., vol. 21 (1983), pp. 31-73.
- [I₁] M. INOUE, New surfaces without meromorphic functions, Proc. International Congress of Mathematicians Vancouver, 1974, pp. 423-426.
- $[I_2]$ _____, On surfaces of class ∇II_0 , Invent. Math., vol. 24 (1974), pp. 269–310.
- [I-K-O] M. INOUE, S. KOBAYASHI and T. OCHIAI, Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo, vol. 27 (1980), pp. 247–264.
- [L-Y] J. LI and S.T. YAU, "Hermitian Yang-Mills connections on non-Kähler manifolds" in Mathematical aspects of string theory (S.T. Yau, editor), World Scientific Publ., London, 1987, pp. 560-573.
- [N] I. NAKAMURA, On surfaces of Class ∇II₀ with curves, Invent. Math., vol. 78 (1984), pp. 393–443.

HARVARD UNIVERSITY

CAMBRIDGE, MASSACHUSETTS