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1. Introduction

The values of iterated integrals in the sense of K. T. Chen,
(1.1) Lm=fl(dlogx)'- (dlog(1 - x))°, r,s>1,
0

are equal to

(=17 9 [T +a)T(1+B)

(1.2) L= 715l 3 GB‘[ FQl+a+B) |amp-o

By using these formulae, one can prove that L, (r,s = 1) are linearly
dependent over

QL ,1<j<sr+s-1),

where L; ; are also the values at z = 1 of the polylogarithms

L, (2) = '/:(dlogx)j’ d log(1 — x).

In this sense from transcendental point of view, L,  do not give any
essentially new features than the values L;; themselves. Due to R. Ree (see
[24]), it is known that the dimension N, , of basic Lie elements of degree r and
s of a free Lie algebra of two generators is generally greater than 1. Hence
more complicated iterated integrals of type (ry, 7, 73,...,r,) of degree r,
r=r +r,+r+ --- +r, hyperlogarithms in the sense of Poincaré, Lappo-
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Danilevskii,

1 n r, r:
(1'3) Lrprz,ra,"' =£)(d10gx) s (dIOg(l _x)) ‘- (dlogx) SRR

for r, ry, 1, --+ =1 are expected to be linearly independent over Q(Lj,l,
1 <j < r—1). Here the integrals must take their regular parts when they
diverge (see the text for details). A few special casesof L, , .., in particular
L, i, have been investigated by J. L. Dupont from an algebraic view point
(see [11)).

The purpose of this note is to generalize the above formulae (1.2) to the
cases L, , , ., ie, to obtain equalities between these and coefficients of
Taylor expansions of certain analytic functions F,*(z,, z,, z3,... |X, y) at the
origin z;, = z, = z; = --- =0 and at (x, y) = (1,0).

1

1
(1 4) / w’lw'2w’3 fre = ———
. 112%™ . e
o rlntn!

arl+r2+r3+

X
0z 9z 9z3 - -

—~F,*(0,0,0, - - [1,0)

for w, =dlogx and w,=dlog(l — x), where F*(z, z,, z3,...|1,0) is
meromorphic in (z;, z,, z3,...) € C” and satisfies integrable (i.e., holonomic)
linear difference equations in zy, z,, z5,... which characterize it uniquely.
EX(zy, 2,, 25,... |, y) belong to one of wider classes of functions which are
defined by integrals of certain multiplicative functions (multiplicative func-
tions are defined generally on Kihler varieties but here we consider only
product of powers of linear functions on affine spaces). For this see [1] and [3].

Recently I. M. Gelfand and his collabolators have presented this kind of
integrals called “hypergeometric integrals” in the framework of Grassmannian
geometry ([12] and [13]). We consider separately the following four types of
iterated integrals:

1
= n T PN,

(15) Lrl,rz,...,rz,,, - ‘/(‘)(“’11""22 o w22m’
(1 6) L = T ! g2 o oo l2m-1

. Py Taseees Pame1 cg o Wy w3 Wy ’
(1 7) L’ = 1 N o oo i2m

. Ns 7255 T2m - reg 0 wzwl wl ’
(1 8) L’ = ! N2 o oo l2m-1

: Mo P2sees Pamet reg o Wy 0y et ’
for ry, ry, r;, - -+ = 1, where reg denotes the regularization of divergent inte-

grals, since (1.4) is generally divergent. An iterated integral in the sense of
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K. T. Chen,
(19) [0 -+ 6,= [ 6(x, ) [ 0oz, dxa) o [0, ),
y y y y

is defined in a standard way along a suitable path in a space where 1-forms
0,,0,,...,0, are defined. To avoid confusion, the product 6,6, --- 8, in the
Chen algebra (reduced bar construction) will also be denoted by 6,16,| - - - |6,.
The regularization of integrals is the same thing as finite parts in the sense of
Hadamard-Leray (see [14], [20] or [23]).

We want to raise the following interesting question:

QUESTION.  Are L,

») for ry, ..., r, > 1linearly independent
over rational numbers?

..........

2. Basic relation in twisted de Rham cohomology

Let A, ,€C l<r<nl<a<mand X,,,;,1 <r<n-—1, be arbi-
trarily given such that ReA, , > 0 and Re X, ,,; > 0. We denote by A, each
m-dimensional vector

()\r,l’ }\r,2" M Ar,m) € Cm’

and by A € C™"*"~1 the vector whose components are A, , and X, , ;.
Suppose further that a sequence of complex numbers {a,, 1 < a < m} are
given such that a, # ag for a # B.
Let ®,(Alay,...,a,,) =@,(A;,..., A Mooty Nyoy nlays ..., a,) be the
multiplicative function

n m

n—1
(2’1) (I)m = H ]._I (X, - aa) Are l:[l (xr - xr+1)xr"+1

r=1a=1

and w = d log ®,, be the associated logarithmic 1-form on the space X = X,
where X, denotes the n-dimensional affine variety:

(2:2) X,=C- U (x=0) U (x=x.).

l<r<n l<r<n-1
l<a<m

We denote by H"( X, v,,) the twisted de Rham n-cohomology on X associated
with the covariant differentiation v, defined by «.
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Notation. In the sequel, for simplicity, we let

(j,k)=a;—a, forl<j,k<mandj+k,
(m+j,k)=-(k,m+j)=x;—a, forl<j<nandl <k <m,
(m+jm+j+1l)=-(m+j+1l,m+j)=x-x;,, forl<j<n-—1.

We define the analytic function

®,(Nag,...,a,) =B, (Ao s Ny Mogyee oy Nu_y nlag, -0 a,)
by

(2.3) <i>m=[d>mdxlA---Adx

ne

The integral is done over a suitable twisted cycle defined in the affine variety
X. This is meromorphic in A but generally many valued in a,,...,a,,. It
satisfies holonomic differential equations in a, and holonomic difference
equations (sometimes called contiguity relations) in A. First we want to write
them down. For this we define the difference operators Ty, and T,,, . for
meromorphic functions on a complex affine space as follows:

DErINITION 1. We denote by e, , (or e/ , ;) the unit vector with elements
A p =0, N, ;1 = 0except for the A, , (or X, ,,;)-component which is equal
to 1 respectively. These span the (mn + n — 1)-dimensional linear space
Cmntn=1 Then

(24) Tie,,af(x) =f(>‘_—|-er,a)’ Tj:e;‘,.“f(}\) =f(>\i e:,r+1)'

For a sequence I of n arguments i,, 1 <r < n, such that 1 <i, <m or
i, =r — 1+ m, we shall denote by (I) = (iy,..., i,) the logarithmic n-form

(2.5) dlog(m+1,i)) A --- Adlog(m+n,i,).

Remark that i, < r + m. Then obviously we have
(2.6) JOlD) =8, (A —er = — ey lan, s @)

The left hand side will also be denoted by (7).

LEMMA 2.1. The twisted de Rham cohomology H"( X,V ) is isomorphic to
the space of logarithmic n-forms Q3 (X) generated by

dlog(m+r,a), 1<sr<n,1<a<m
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and

dloglm+r,m+r+1), 1<r<n-1
as follows:
(2.7) H"(X,v,) = @y (X) /e A Q' (X)

where Sllog (X)) denotes the space of logarithmic (n — 1)-forms generated by
dlog(m+r,a) and dlog(m+r,m+r+1).

The dimension of H"(X,V,) coincides with the absolute value of the Euler
number of X which is equal to (m — 1)m" ™!

Proof. See [1] and also [3].

Let V, ,, be the space spanned by exterior products of degree n generated
bydlog(m +r,a),1<r<nandl <a<m,ie,spanned by (I) such that
all i, < m. We shall call these () and also their integrals (1) “admissible
ones”. H"(X,Vv,) is spanned by V, ,, i.e., the following exact sequence holds:

(2.8) 0= W= Vom—= H(X,V,) =0,

for a subspace W, , of V, ,,

To see the structure of H*( X, v,) in more details, we want to present two
kinds of basic relations among the logarithmic forms (7). For that purpose it
is useful to define two kinds of endomorphisms P/, and Q; on ¥, ,,

DEFINITION 2. We denote by P/, 1 <r, s <n,1 < a < m, the endomor-
phisms on ¥, ,, defined by

(2'9) Ps':a<il""’in> <ll’ o lso1 @ ls’ ’ir—l’ir+17"-’in>
forl<s<r<n,

i.e., delete the r-the element i,, insert the argument « into the s-th place and
shift the arguments i,,..., i,_, to the right.

Also
(2.10) Pl Iy ={iy,eooyip g, 0 0pq,...,0,) forr=s.
(2.11) Pl Iy = (igyeeey by gydpygseeey gy @i gy, iy)

forl<r<s<n,
(2'12) Q:<I> <ll’ cslg—15 l ls’ is+1’ e ir—l’ r+loccc> ln>
for l1<s<r<n,

i.e., delete the r-th element i and double the s-th element i; and shift the
elements between them to the right.
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Similarly
(2'13) Q;<I> = <i1’ LR ir—la i,+1, cee is—l’ is’ is’ is+1’ R i”>
forl<r<s<n.

It is obvious that both P] (I) and QI are independent of choice of the
argument i,. In the same way we can define the endomorphisms P, and Q¢
for the integrals (I). The first basic relations are as follows:

LEMMA 2.2. Fora fixedr,1 <r<n-1, leti,...,i, be arbitrarily given
such that 1 < i, < m. Then we have cohomological relations in H"( X,V ,):

(Rr) A,r, r+1<i17‘ te ir’ m+r, ir+2’ s in>
r m r
- { E )\s,apsctl + E >\’s,s+1 ;+1}<I>
s=1a=1 s=1

The right hand side does not depend on i, ,.

Proof. (R,) can be proved by induction on r for r = 0. In fact we have the
cohomological identity in H"(X,v,):
(214)  0~v,{(-1)""dlog(m+1,i)) A --- Adlog(m+r—1,i,_,)
Adlog(m+r+1,i,) Adlog(m+r+2,i,.,)
A -+ Adlog(m + n,i,,)}
m
= L AP + N, QKT

a=1
+ N Ky eesdpe,mtr— 1,00, 0,0, 0,)
- }"r,r+1<i1’”" pipym i, .. i,)
since
(215) dlog(r+m,r+m+1) Adlog(r+m+1,i,)
=dlog(r +m,i,) Adlog(r+m+1,i,)
—dlog(r+m,i,) Adlog(r+m+1,r+m).

By repeating this procedure we arrive at (R,).
Hence (iy,...,i,,m+r,i, ,,...,i,) is expressed explicitly as a linear
combination of admissible { jj, ..., j,)-

LeMMA 2.3. Fixr,1 < r < n. Then we have

n m r—1 n
(R:) 0~ { Z Z }\s,ﬂps';ﬂ + E }"s,s+1Q.‘r~ + E A,.s-—l,sQ.:}<I>’
s=1

s=1B=1 s=r+1
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for an arbitrary admissible (I). Hence W, ,, coincides with the image

{Z ZASB B+szs+1Q+ Z >‘s 1.9 s}Vn,m'

s=1B=1 s=1 s=r+1

Proof. The identity
(216) 0~ v, {(-1)"'dlog(m+1,i) A --- Adlog(m+n—1,i,,)}

m
= ZAna na<1>+>‘n 1n<119 ain—lym+n—1>-

But (R, _,) shows that the right hand side is equal to

n m n—1
(217) { Z E )\r,aPr':a + Z >\’r, r+1Q:}<I>’
r=1

r=1a=1

which implies (R’). We get (R’) from (R/) be relabelling the arguments i
like i, > i fors<r—-1,i,— i, for r <s <n—1 Lemma 2.3 has thus
been proved.

As a result of (R,) and (R}) we derive the following fundamental difference
equations for the integral (I'):

= ’ . . - . .
(R,) Nopitlis s bpymbr iy g, o, iy)

={Z Exsapsrtl-k sts+l ;+1}<I~>’ 1Sr—<—n—1'

s=1 a=1
. m . r—1 . n . N
(R;) 0= { Z Z A.\r,BPsr,[i + Z }\,s,s+lQ.: + Z >‘;,.:+1Q;}<I>9
s=18=1 s=1 s=r+1

l<r<n.

Note that the relations (ﬁ;) are all equivalent. Hence the number of linearly
independent relations is just equal to m"~!. This shows that the admissible
integrals (I') with i, = « are all expressed by a linear combination of (J) for
J = (ji---» J,) such that j, # a:

(2.18) (iyyenyip_y 0, dr1,. ., 0,)

.], . a""jn
= Z )IREATIAY A

Jireeor Ju it peeesdpmts O dpgqseens iy,



198 KAZUHIKO AOMOTO
where
B, j:l,...,. seers Jn
Hoeeesdpyy O Iiqyeeeyiy,
jl""’ PRI Jn

fyeees  dpqs O dpyq,..a,dy,

gl

denote rational functions in N, whose denominators are products of linear factors

r+i, r+i—1
Y Aat X Ny fr0<t,<r-1,0<t,<n-r.
S=r—t1 S‘r_tl

This formula can be proved by induction on the numbers ¢; and ¢, such
that j,_, = -+ =i, =a and that /_,_, and i, ., are different
from a. .

In fact we denote by I;',,(,’,Z,(tl, t,) the linear space spanned by admissible (1)
such that i,_, = =i ,=aand i,_, 1,0, #Falf H=0=1
then (R’) shows that

(219) =N, inyeeesipg, @ ir+l,ens, i)

= EZAS B+Zxrﬁ B+2}\ss+lQ;

3t fre
+ Z AS 1, st <11, .y ,-_1,11 lr+1 ln)
s=r+1

Il

0 mod¥,"),(0,0).

Let (I, L) be an arbitrary (iy,..., 0, 0 @ 0 ipyp.ensin) € VOt 1),
Since

(2.20)
r+i, r+t—1
- E >\ o™t Z >\.v s+1 < 4 ‘t2>
s=r—n s=r—t
r—t n m r+ity
= { Z + Z ( Z >‘.s',l9Ps’,l9) + E Z As,BPs':B
s=1 s=r+5+1]\B=1 s=r—t B+a

r—n
+ Z}‘s s+1Qr+ E As ls s}<tl,t2

s=1 s=r+t,

= F(r) (41 41
=0 mOdOSt{st,,Ostistz Vn,m(th t2)-
H+th<ty+t,

Hence by induction hypotheses we have proved the lemma.
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In the same manner one can prove:

LeEmMMA 2.4. For fixed r and a,
(221)  (iyy...y iy g, aya, irt2, ..., 0,

E Jl? o jr—l’ jr’ jr+1? jr+2» < Jn <J>
+1 ~ :
o’ ""’lr—l’ a, a, lpyase- ’l
where J = { ji,..., j,} run over admissible sequences such that j, # j,,,. Here,
1 =B/l |)\) denote rational functions in N whose denominators are

products of linear factors

r+t, r+e,-1
’
Z As,a + Z As,s+l
s=r—1 s=r—g

forO<ty<r—1landl<t,<n.

The symmetry properties below for B, and B/, ; follow immediately from
the definitions:

Let ¢ be a permutation of m arguments 1,2,. . Then o entails the
transformation for each A,: A, —» oA, where (ox),, = A, o(a)- Then:
LEMMA 2.5.

(2.22) B(o(il),...,o(i,,)

"\o(A)s--0(i)
I1yenesd

=8| g
Jiseos Jn

Lyy Iy qseeesi
(223) B| ™ ! !
Jn> In-1>-- ’.]1

ig,..
=B, 1
Jio--

’ o(iy),...,o(i,)
(224) B/ r+1(o(j1),,..,0(jn)

oA, OA N s, Xn_l,n)

WD WD VN 'H,,,)

’

A An 1,...,A1;}\'n_l’n,...,>\/12)

)\1, . >\ >\1 29 Nn—l,n)

2, ST 2\ W YR 'n—l,n)

il"
]1’ A .]n

r r+1

Y ’
)\1, ) An’Al,2""’}\n—l,n)

i i vl
225) B/_,_ vl
( ) Ln- r(.]n’ Jn-15---5 1

>\n’ >‘1’ >\n 1,no°> )\’1,2)

1>

— R’ Y ’

- Br,r+l >\1’ ’ }\n’ Al,2’ LR An—l,n
]l’ ° ]n
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Suppose that a, are all real and a; > a, > --- > a,. Then the dual space
H"(X,v,)* of H"(X,v,) has a basis of twisted cycles defined by the
following inequalities. For arbitrary oy, a5, ..., @,, 1 < a, < m, we define the
relatively compact domains A(a, ..., «,) in R®

(226) G 7T S
) x,—Xx,,1>00r <0, 1<r<n,
r r+1

where o, > a,,; +1o0r a,+ 1 <a,,; according as x, — x,,; >0 or <O.
The number of such domains is just equal to m"~}(m — 1).

Proof. See [1].

3. Complete systems of difference and differential equations for @m

The relations (R)) are rewritten in terms of i)m as follows:

(3.1)
r m s—1 r n
Z E As,ﬂ(bm(}\— zet,i,—es,ﬂ— Z €ri_y ~ Z et,i,)
t=r+1

s=1B=1 t=1 t=s5s+1
n m r—1 s—1 n

+ Z Z }\S,Bq)m A - Z et,i, - Z el,i,ﬂ — €8 Z €, i
s=r+1 B=1 t=1 t=r t=s+1
r—1 s—1 r n

’ —_— — p— —

+ A.9,.9-6-lq)m >\ Z et,i, es,t’, Z et,it—l E et, iy

s=1 t=1 t=s+1 t=r+1

s=r+1 t=1 t=s+1

= 0.

In addition to this, the partial fractions

n . r—1 s—1 n
+ Z }\,s-l,sq)m(A - Z €, E €t i Cs,i, T > et,i,)
t=r

1 1 1 1
“”(m+n@m+nm=(mm{m+n@‘xm+nm}

1
(3.3) (m+r,a)(m+r+1,B)(m+r+1,m+r)

1 1
- (a,B){(m+r,a)(m+r+l,m+r)
1
T . B m+r+1,8)

1 1
T (m+r,B)Y(m+r+1,m+r) (m+r,a)(m+r+1,,8)}



HYPERLOGARITHMS AND LINEAR DIFFERENCE SCHEMES 201
imply the following identities:

~ 1 - ~
(RVap) ®u(A—e,.—ep)= ) (Bn(A =€) — B (A =e, )},

forl<r<n,1<a#B<mand

(R/%,p)
(I)m(k € a T €y, er,,r+l)

= (a,B8) {&)'”(A ~era= € 1) T O (A —e, 5,1 p)
_(.ISM(A — e g er’,r+1) - (i)m(x ~€a” er+1,ﬂ)}'

We can now get explicit formulae for difference operators T_, , and T_,,
as follows: '

ProrosiTION 1. (i) Ifi, # a,
. 1 . -
(34 T ., ()= m(l = P )(I),
(i) Ifi,= a,

N
(3.5) T_, (D)= ;ﬂ{—lj——;;—)(l = PL ()

where J moves over admissible sequences such that j, # a.
Proof. (3.4) follows from (R}, g). (3.5) follows from (2.18) and (3.4).
ProOPOSITION 2. (1) Ifi, #i,.q,
(36) (ir’ ir+1)T—e;’,H<I~> = (1 - ~:+1)<I~>
r+1 m . r -
- Z Z As,BPs’;;I + Z A,s,s+1Q.:+1
s=1 ﬁ=1 s=1

x(1 = Q7 (D).
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) Ifi,=i,.q

(3.7)

ToD) =% (f‘;:l)) {(1 3%, )

r+1 m
( Z Z A.v ﬁPr+1 + Z >\s s+1Qr+1)(1 - Q~:+1)<J~>}
s=1p8=1 s=1

where J moves over admissible sequences such that j, # j, ;.

Proof.  (3.6) follows from (R,”, ) and (ﬁ,). (3.7) follows from (2.21) and
(3.6). Summing up these two propositions we have the following result.

THEOREM 1. The equations (R}), (R}, g) and (R]% g) or equivalently
(3.4)—(3.7) define holonomic linear dzﬁ“erence equations for the meromorphic
function ®,, in N. It is completely determined by the asymptotic behaviour for
| — oo, for

Ar,a = A(?,)al + A(r'l,)ot and A,r,r+1 = A,r(,o?'+ll + Alr(,lt)'+1

where NO,, N, € R* and NP, XM, , € C:

: s vo(d)
3.8 ® (AN~ —=— {14+ 0|7 )}.
( ) m( ) m(c) Hess (I)m(C) !

= (¢p,...,¢,) € R* is, by saddle point method, uniquely determined as the
solution of the equations

(3.9)
n m n—1
Y Y N0 dlog(m+r,a) + Y N9, dlog(m+r,m+r+1)=0
r=1a=1 r=1

at x = ¢ such that 0 < c, < 1.

Proof. 'The computation of asymptotic behaviours is standard. We have
only to find the critical points of the function Relog &, for A, , = A®, and
N, ,e1 = N9, respectively. See [1] for details.

Now let us compute integrable differential equations for <I> in the variables
ag,--os Ay, for a, # ag, a # B. Since <I> is a special case of the integral (0.1)
in [3], we can apply the formula (0. 3) loc. cit. to the (I Y =0, (A —ey
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— -+ — e, ), use the relations (R,) and get the following differential system
(Gauss-Manin connection):

(&) d(Iy =Y L A, .dlog(i,,a)(1 - B )(T)
g
n—1

+ Z dlog(lr’ lr+1){ r, r+1(Q Qr+1)

r=1

+ Y S (B P,au>}<f>

s=1a=1

where the terms d log(i,, i,.,){ - - } vanish for i, = i, in the right hand side.

4. Case where m = 2

In this part we put a, = 0, and a, =1 and consider a slightly modified
form of the integral (2.3) as follows:

(4.1) OO(N,..., A\, lx, »)

=f OO(A[1,0) dxy A -+ A dx

XX 2 Xp2 1 2 Xp2Y

n

for 1> x> y> > 0 where @9 denotes the function ®, restricted to the
subspace Aj,= --:- =NX,_;,=0. We abbreviate ®O(A|1,0) simply by
O, .. >\ ) or (D‘O)()\) 3 {I) denotes the deletion of the r-th element
i: 0 (I} (igsevvripgsipers-ne»iy). Then ®O(XN) satisfies the difference
equations in Aj, A,,..., A, as follows.

LEMMA 4.1.
r+1
(42) [( 1) ar+1<1>] X=X, 41 = Zl Zlks aPsr+1<I>
n 2
(4.3) Y YA GPIIy=0.

s=1B8=1

Proof. Both are immediate consequences of (R,) and (R}) in §2 respec-
tively, taking the limit X, ,,, = O for all 5. The left hand side of (4.2) comes
from the residue in (R,) along the subspace x, = x, ;.

COROLLARY. We can choose as a basis of H"(X,V,) admissible (I such
that i, = 1. Hence dim H"(X,v,) = 2" L
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The equations (&) become

(4.4)
d(ly = > f A, od log(i,, a)(1 = BI Iy + dlog(x — a;) [ 9:(T)]  =x
r=1a=1

n—1
+ Z d IOg( ir’ ir+1) [( ar+1 - ar)<1>] X, =X,

r=1
+ dlog(a, = )[04 D)] ,=ys
where the terms d log(i,, i,,,){ - - - } vanish for i, =i ;.
5. Iterated integrals of logarithmic 1-forms
We put again w, = d log(x — a,) and assume a, =0, a,=1 or a;, =1,
az\;eo‘are specially interested in the following iterated integrals (hyperloga-
rithms of Gaussian type in [19]):

DEeFINITION 3. For w; = d log x and w, = d log(x — 1), we put

2 * PR r.
(5.1) L3(ry,eoos tylx, y) = [ 6Blwp] - o,
y
(5.2) L(rseos rameglo ) = [ @] - Jufms,
y
1 * n r;
(53) Ly(ryeeos ryl, y) = [ @3l67] -+ o,
y
2 X r r
(54) Li(r s Pl X, p) = f wF|wp] - |wpmt,
y
respectively.
For (z,, z,,..., z,) € C" consider the following generating functions
(5.5) F(z1,...,2z,|a1,..., a,; X, y)
X
= E 2{1252 oo Z;"/ wil‘ “ee |w;n’
Foeees n=0 y
(5.6) FX*(zyy. .y 2,0a05..0s ay; X, )

= E zllz oo f w wnn,
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where, we assume, x, y and aq,,..., a, are all different from each other. We
put Fy* = 1. The F, are meromorphic functions in z,,...,z, and many
valued analytic functions in x, y, a;,..., a, on the affine variety X, ,, =
{(x,y,a4,...,a,) € C"*?, x, y, a,..., a, are different from each other}. In
particular we have

X
(5.7) F(zjla; x,y) = Zzl'j; o]

_ exp(z, f"w,)

y
(x—aj 4
=\5=%,) -

We abbreviate this function simply by E;(z;).
By definition, F,(z,,..., z,|x, y) is equal to the sum

oo}
(5.8) Yy Y F*(z,,...,2,la,,...,4a,; X, y)
r=0

To get an integral representation of F,, we first derive a recurrent system of
differential relations for F,.

LeMMma 5.1.
(5.9 F,_julzjn-.s 20,0 a5 x, p)

X
=1+ Ej(zj)f E7Nz) dF,_(zj415-- 248501005 G5 X, )
v

Proof. In fact by Chen’s formula F,_;,, satisfies the equation

dE,_. z; dF,_.
n—j+1 Jj n—j
(5.10) dx — x- ajF”‘l'“ * Tdx

with the initial condition [F,_;, );~, = 1. This can be solved uniquely as in
5.9).
Lemma 5.1 shows

(5.11) dFy ;o = dEjfy E;'dF,_, + dF,

n—j»
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or equivalently
(5.12) dF,_j.1 = dEj|Ej‘1 dF,_; + dF,_,.

By repeating this procedure we can prove the following identity in the Chen
algebra of differential 1-forms.

LEMMA 5.2.
(513)  dFE,(zy,.--52,0a1,...5a,; %, )
-S T aEran- B,

r=11<y<:.- <p<n

Hence we have:

PROPOSITION 3.
(514) E,(zy,..., zpla1,---r ap; X, )

S14 LT [ )IE ) (2

r=11<n<-.--<ys=<n Vv

|-+ 1E; (2, ) dE,(2,),
(5.15) F*(zyyeeey 2y|Qseees @ys X, p)

- fy TdE(2)|E7N(2,) dEy(2)] -+ 1By (2,-1) dE,(2,)
-2

1(—1)"1E,(z,> fy "E;N(z,) dE,o(2,00)] -

|E-2y(24m1) dE,(2,) + (1)

The last equality follows by partial integration or Chen’s product formula.
We denote by

F2T12(zl’ (AR szlx, y)’ F2’,*11(Zl’ ey sz—llx’ J/),
Fz','zl(zvm’ 22m|x9 )’)9 FZ’,*ZZ(ZI""’ sz—llx’ y)’
the generating functions for the values
L%(rl"“’erlx’y)’ L]i(rl""’r2m—1|x’y)’
le(rl""’r?.mlx’y)’ L%(rlv"’rzm—l'x,y)’

respectively. These are special cases of F*(zy,..., z,|x, y), where a; = a; =
- =0orland a,=a,= --- =1or0.
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In this circumstance it is also convenient to give the following:

DEFINITION 4. The functions

‘P%(zl""’ 22m|x9 )"), ‘Pll(zl""’ Z2m_1|x, y)’
¢12(z1,..., Zyml|X, y) and ‘P%(le--a Zym-11%, y)

will mean the integrals of the right hand side of (5.14). a; = a; = --- =0, a,
=a,= --+- =1 correspond to Y2 and ¢}, while a; =a;= --- =1, a, =
a,= -+ =0 correspond to ¥, and y3. We also denote by y/(zy,..., z,) the

values of Y%(z,,..., 2,|1,0) at (x, y) = (1,0) respectively.
Then from (4.1) and Proposition 3, by means of partial integration we have:

LemMma 5.3.

(516) l’/%(Zl,...,szlx, y)

~ Zl - 1, ""Zl,..., - Z2m_1
=(—-1 mz ooz (D(o)
(=17 2m=2 0, - 1,..., 25, — 1

m
=(1-y) sz{ Y ()" ez e 2,

r=1

‘&750) ~Zye1 Zzea1— Lo, T Zm
2'._1, _22’,...,22'”_1

m
+ X (-1 m_rH(l = x) %2500 Zo

r=1
(I)(O) Zpa1— L Tz T Zym x|} o+
T Zars Zyeaz — Lo 29 — 1
(517) ¥i(z,---5 Zamo1lX, )
-1
=(-1)""z - 25,
T z;—-1, —zy,..., 29, 17— 1 .y
0, 22_1,...,—22’”_2

m
= y_)‘2m—l{ Z (—1) m_rxz2r—lz2r “e sz_l

r=1
X, y)

Z x)22’22r+1 T Zam-1
r=1

. y)} 1

'(‘I")g)) TZop—1s-cs Zom—1 T 1
Z,— 1,00, = 2y s

o Z2re1 — Lo s 29y — 1
T 2250000 T Z2m—2




208 KAZUHIKO AOMOTO
(5.18)
¥5( 215+ Zaml X, ¥)

m - 0 z2,— 1,000,245, — 1
=(-1)7"z --- 22m®§0)(z 2 ;i
1

1, —21,...,—22m_1

m
=y_z2m{ Z (-l)m_r(l - x)zzr_lz2r Tt Zom
r=1
)

m
+ Z (_1)"‘_’xz2,z2r+l T Zom
r=1

)1

.650) 22'.—1,...,22’"_1
TZyp—1s+c0s T Z2m-2

.550) _22'.,...,22"._1
Zar+1 — 1,'“, ~ Zym-1

(5.19)

‘I‘%(zl""’ Zym—11%, y)
= (_l)m—lzl Tt Zam—-1

O, 22‘1,...,_22",_2
Zl - 1, _zl,..., sz_l - 1

i (1’)50)(

o)

=(1- y)"’”‘”‘{ 3 (-1 (1= %)y - 1

r=1
X, y)
m—1

+ X (1) Xz, e 2y

r=1
X, y)} - 1.

_ The following lemma is an elementary consequence of integrals
OO(A,..., A,lx, ). So we omit a proof.

.650) 22’.—1,...,_22"'_2
2215005 Zame1 — 1

FI0 T2 T Zam-2
Zyi— Lo zgg — 1

LEMMA 5.4. The functions ¢;(z1, ..., z,) are all holomorphicat z; = --- =
z,=0.
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But there appear singularities of Lj. at (x, y) = (1,0). These are described
as simple logarithmic expansions:

LEMMA 5.5. For ry...,r,=1, L¥(r,..., r,lx, ) is holomorphic at
(x, y) = (1,0); i.e., if we put L3(ry, ..., ry,|x, y) = A®O(x, y), then

(5.20) 409(1,0) = [1op] -+ g
0

The other Lj. have expansions at (x, y) = (1,0) as follows:

(5.21) L = A%9(x, y) + ¥ A%D(x, y)(log y)’,
k=0
(5.22) Ly= Y A%D(x,y)(log(l - x))“(log y)',
k=1=0
(5.23) L= Y A%9(x, y)(log(1 - x))*,
k=0

where the functions A*" are all holomorphic at (1,0).

In all the 4 cases A@9((1, 0)) has definite values. These values are defined to
be regularized ones of L) and are written as reg fgw?| - - - |wpn which is equal
to

1 1
f wil‘ . e |w’2'2m’ regf w’l'll ces lw?m—l’
0 0
1 1
regf w;ll e lw?m and regf w;ll .o 'w?m—l
0 0

respectively. These are nothing else than the finite part of divergent integrals
in the sense of Hadamard-Leray.

LEMMA 5.6 . The functions \1»;'. have the unique expansions in z,, ..., z, and
log(1 — x), log y as follows:
(5.24) vi= X ) AED (x,y)
oy, Pym=1 k,l=0

O<k+i<n+ - +r,

xap -+ 27 (log(1 - x))* - (logy)’

where A%:D
s

» (X, y) are holomorphic at (x, y) = (1,0).
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Proof. This follows from the series expansions in zj,..., z, of the integral
representations (5.16)—(5.17) by using the Taylor expansions of (1 — x)* and
y®in s.

Hence:

LeEMMA 5.7.

(5.25) Vilzoonz) = Xz - 22400, (1,0).

Summing up the above, we have proved the basic formulae:

PROPOSITION 4.

(526) 2(zp,....2.)
= [a(e)xad(1 - x) 4 - o d(1 - x) ™,
0

(5.27)
Yilzy-es 2,)

= [[aGemixd( = ) (1= ) T (),
(5.28) ¥A(z4,...52,)
= /O‘d(l = x) (1= x) 7 d(x)] e (1= x) T (),
(5.29) Y3(z4,..-»2,)

= fld(l — x)z'|(1 — _x)-—zl d(xzz)l coe | xTme2 d(l _ x)22m—1.
0

These functions are specializations of ®,, satisfying the difference equations
(3.4)-(3.7). Finally we can state the main result.

THEOREM 2. The four functions t[/j-(zl,..., z,) are all holomorphic at the

origin. Special values of hyperlogarithms L .. and L! ... coincide with
& n, 7, 13, n, s,
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coefficients of the Taylor expansions of nlaj. at the origin:

(5.30)
[lopteg - g
0
1 ar1+ o+, )
= - 0,...,0
nnl ne! (9z)" - (9z,,) YA )
(5.31) reg [ o] - lupm
1 37’1 LI o T
= n r 0
e B! (32)" - (9zg,_1) ™ H ,0),
1
(5.32) reg [ aflofl - lafe
1 gnt - +rm X
- ; =4 (0,...,0),
ntnlny! (92)" - (9z,,) ¥ )
(5.33) reg [ wlof] - Jugn

1 ar1+ L P YY

= 7 —v5(0,...,0),
Wl ! (8z))™ -+ (9z,_,) ™ ¥5( )

for n=2m, 2m — 1, 2m and 2m — 1 respectively which are exactly the
identities (1.4) stated in the introduction.

6. Examples

(1) Case n = 2. Since

(61) Wz z) = [[dGexmd(1 - x)"

T'(1-2)T(1 + z,)
T(1 -z + z,)

- 1.

Theorem 2 implies the formula (1.2).
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(2) Case n = 3. Yi(zy, 2,, 2;) and Y3(z,, z,, 2;) are equal to

(6.2)
= -z, z3—1
- 2223¢§0)( z )

2— 1 2z
= _Zzzsf x7Axp N1 = x,) 2T (1 = x,) TP dxydx,
12x2x,20
and
. -2, T'(1—-2,)T(1+ z5)
- ©) = 2 37 _
respectively.

O, (A, Ny A},2) coincides with the value
Al A
gr( 1,1 ,2,1 )
A Mo Ag,
in [4] which is also equal to the value at z = 1 of the Goursat-Thomae-Whipple

hypergeometric function yF,(z) apart from a I'-factor; more exactly it is equal
to

T( A1+ A+ N, +2)T(A; + T(A , + DT(N , + 1)
T(Ap g+ A2+ A+ N, + 3)T(Ay + N, +2)

MatA +N,+2, Ayt 1, —Ay2
AL A A N3 Ay H N, 2

(6.4)

The coefficients
2, (s h
Bl(l, iz) and Bl( 11 )
for & are given by
(6.5) Api(Ay;+ Ay + 20 ,)(LL1)
= (A2 = A 2) (2,1 + Ag (A0 + Ay + A1 5)(2,2),

(6.6) - >\1,1<ﬁ> = >‘2,1<ﬁ> + (A2 + A+ )\'1,2)<5:§>’
(6-7) - ("1,1 + >‘2,1 + 7\'1,2)<1’1> = >‘1,2<2,1> + >‘2,2<1»2>,

(6.8) K13 = (A + M) T) + 4,2, T),
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The other coefficients

and

Bo(% )

K

are evaluated by the symmetry properties (2.22)—(2.25).

We can take as a basis the integrals (f-f) and (ﬁ) (Corollary of Lemma
4.1).

The difference equations with respect to this basis are

(6.9) T_ (D=2 - 34D,
(610) (Mg = DA+ A+ X, - DT, (AT)
= (A2 = A + )\1,2)(<ﬁ> - <ﬁ>)
A0+ A0+ M) (<ﬁ> - <f§>),
(6.11) T, D =20 - 34D,

(6.12)
= (M- DT_, 2T

= (A1 + A0 + X)) (R D) - (LD)) +4,,(2.2) - (1,2)),
(613) Ay — DAy + Ay + M, - DT, (1T
=AM+ A5+ 0,) (2.2 - (2 T))
+ (A2 = Aaahas + A5, ((12) - ALD)),
(614) —(A,, - 1T_, (2.1
=Aa(@2) = CD) + (A + Aa + X2) (22 - Q1))
(6.15) T_, L1y = (1,2 - (L),

(6.16) T_, 2.1y = (2,2) - (2,1),
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Finally, using (3.2) and (3.3), we have
(6.17) = (A + Ay + N, = DT (LT
=A,(GT) - (LT - (2.3) + (1,3))
+0,,.(L2) - 2.2 - (13) + (2,3)),
(6.18) T_, 2,1y =(2,1) = (1,1) = (2,3) = (1,3).

(2) Case n=4. Y? and Y} are expressed by means of ®{(z,, z,, z;)
which is no more hypergeometric. We only give the formulae for

B I g
The other B, and B/,,, are obtained according to (2.22)—(2.25):
(6.19) - M,Kfﬁ) = )\2,1<m> + A3,1<§:2~,1’>

. (A2 + A+ As,zﬁz + Nz,s)@%
(620) — A, (1,2,1) = (Ayq + A5+ X53)(2,1,1) + X3 (2,1,2)

+ (A2 + Ay, + 0 ,)(1L,1,2),
(6.21)

Ma(Ans + A+ X,) (A T2)
= )\3,10\2,1 + A3+ }\'2,3)<m>
+ A3 = ApAs + A (Ag, + Ag, + )\'2,3)]<m>
+A30(A 2+ 20+ Ag + N, }"2,3)<m>
(Aot A3+ N a) (Ao + A+ A5, + N, + >\'23)<5',7,7>,
(6.22)
= Aa(A s F A FN (A A A H N, + Nz,s)(ﬁ)
= A A2 (A + Ag 1 + X5)
=AM+ A1 F M) (A + A5+ Ny 3)
FA5032( A0 + Ay + >\'2,3)]<m>
- >‘3,2[>\2,2(>\1,1 + A0+ ML)
AL — A dg e — Aga(Ag o + A + 7\'2,3)]<m>
+ [")\2,20\1,1 + 7\2,1 + }‘/1,2)(}‘1,2 + )\2,2 + >"1,2)
FA3052(A 0+ 20+ A5 + N, + >\’2,3)]<m>
+ A3+ A5+ Ny 5)
X(A2+ A+ A5+ N+ >"2,3)<m>-
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As for the
’ jla j2’ j3
Bu( 1, 1, i3)’
we have
(6.23) —(>\'1,2 + }\1’1 + }\2’1)(1,1,2)
= A3’1<1,2, 1> + A1’2<2, 1, 2> + (Az’z + A3’2 + A’2,3)<1,2,2>,
(6-24) "(7\1,1 + }‘1,2 + >\'1,2)(7\1,1 + )\2,1 + 7\3,1 + }"1,2 + Nz,a)<1a1a1>

= [}\2,2(}\1,1 + N1+ N2) = A ahs (12,1
= Ao (2, 1,2) = A p(Xgn + As 0 + N, 5)(1,2,2)
+ A (A A+ ,)2,1,1).
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