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1. Introduction

The values of iterated integrals in the sense of K. T. Chen,

(1.1) Lr, (dlogx) (dlog(1 x)) r, s >_ 1,

are equal to

(1.2) Lr’s= r!s!
r+s It(l+ a)r(l+ B)

g/x 0/3 F(1 + a +/3) .--o

By using these formulae, one can prove that Lr, (r,s > 1) are linearly
dependent over

Q(Ly, x, 1 _<j _< r + s 1),

where Ly, are also the values at z 1 of the polylogarithms

Ly+(z) (d log x) y d log(1 x).

In this sense from transcendental point of view, Lr, do not give any
essentially new features than the values Ly, themselves. Due to R. Ree (see
[24]), it is known that the dimension Nr, of basic Lie elements of degree r and
s of a free Lie algebra of two generators is generally greater than 1. Hence
more complicated iterated integrals of type (rx, rz, r3,..., r,) of degree r,
r r1 + rz + r3 + + G, hyperlogarithms in the sense of Poincar6, Lappo-
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Danilevskii,

foX( d log x) * ( d log(1 x) ) " ( d log x)(1.3) Lri, r2, r,,...--"

for rx, r2, r3, > 1 are expected to be linearly independent over Q(Lj, 1,

1 < j < r- 1). Here the integrals must take their regular parts when they
diverge (see the text for details). A few special cases of Lrl r2, r3

in particular
Lr,, r2, have been investigated by J. L. Dupont from an algebraic view point
(see [11]).
The purpose of this note is to generalize the above formulae (1.2) to the

cases Lrt, r,_,r i.e., to obtain equalities between these and coefficients of
Taylor expansions of certain analytic functions F,*(zx, z2, z3,... Ix, y) at the
origin z z2 z3 0 and at (x, y) (1, 0).

rt + r2 + r +

az , [’.* (o, o, o,... o)

for 0 d log x and o9_ d log(1 x), where F,*(zx, z2, z3,... I1, 0) is
meromorphic in (zl, z9_, z3,... ) C and satisfies integrable (i.e., holonomic)
linear difference equations in z, z2, z3,.., which characterize it uniquely.
F*(zx, z2, z3,... Ix, y) belong to one of wider classes of functions which are
defined by integrals of certain multiplicative functions (multiplicative func-
tions are defined generally on Kihler varieties but here we consider only
product of powers of linear functions on affine spaces). For this see [1] and [3].

Recently I. M. Gelfand and his collabolators have presented this kind of
integrals called "hypergeometric integrals" in the framework of Grassmannian
geometry ([12] and [13]). We consider separately the following four types of
iterated integrals:

(1.5) L,, r2 r2. folOxO OJ--’’

(1.6) Lrl,,_ r2,-1 reglx 2m-1,

(1.7) L’ reg1[t 2"r r2m

(1.8) L’ =reg
ri r2 rxm_

for rt, r, r3, > 1, where reg denotes the regularization of divergent inte-
grals, since (1.4) is generally divergent. An iterated integral in the sense of
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K. T. Chen,

(1.9) 0102 0n 01(Xl, dx1) ( X2, dx2) On( Xn, dxn),

is defined in a standard way along a suitable path in a space where 1-forms
01, 02,..., 0. are defined. To avoid confusion, the product 0102 0. in the
Chen algebra (reduced bar construction) will also be denoted by 01102[ [0,.
The regularization of integrals is the same thing as finite parts in the sense of
Hadamard-Leray (see [14], [20] or [23]).
We want to raise the following interesting question:

QUESTION. Are L,1 ,. (or L’
,1 ,) for rl,..., r, > 1 linearly independent

over rational numbers?

2. Basic relation in twisted de Rham cohomology

Let ;,,a C, l<r<n, l_<a<m and X’r,,+l, l<r<n-- 1, be arbi-
trarily given such that Re h,,a > 0 and Re h’r,,+l > 0. We denote by X,, each
m-dimensional vector

and by Cran+n-1 the vector whose components are kr, and tr, r+ 1.

Suppose further that a sequence of complex numbers { a,, 1 < a < m } are
given such that a = aa for a = ft.

Let m(h[al,..., am) m(kl,..., hn; h,2 h’_,lax,..., am) be the
multiplicative function

(2.1) m I-I (Xr da) ’r’a 1--[ (Xr Xr.l) r’r+l
r==l a=l r----1

and d log ,. be the associated logarithmic 1-form on the space X Xn,

where X denotes the n-dimensional affine variety:

(2.2) X, C"- L.J (x, a) J (Xr=Xr+l).
l<_r<_n l<r<n--1
l<a<m

We denote by H"(X, V,,,) the twisted de Rham n-cohomology on X associated
with the covariant differentiation V, defined by
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Notation. In the sequel, for simplicity, we let

(j, k) aj- ak for 1 < j, k < m and j k,

(m +j,k) -(k,m +j) xj- ak forl <j < n andl < k < m,

(m +j,m +j+ 1) -(m+j+ 1, m+j) =xj-xj+ for1 <j<n- 1.

We define the analytic function

X’ X: lax am),,(Xla,.. a,,) ,(Xx,...,X, x,2,.--, ,-x,

by

(2.3)

The integral is done over a suitable twisted cycle defined in the affine variety
X. This is meromorphic in , but generally many valued in ax,..., a,. It
satisfies holonomic differential equations in a and holonomic difference
equations (sometimes called ,contiguity relations) in ,. First we want to write
them down. For this we define the difference operators T+/- e, and T+/- e,r+ for
meromorphic functions on a complex affine space as follow:

DEFINITION 1. We denote by e, (or e’r,r+ X) the unit vector with elements
’s,O 0, k’s, + 0 except for the )r,, (or 2’, +x)-component which is equal
to 1 respectively. These span the (ran / n- 1)-dimensional linear space
Cm’+’-x. Then

(2.4) T+ ,,.f()k) f( )k + e,,,) T+/- ,,,/lf(X) f( h + e’ x)r, r+

For a sequence I of n arguments i, 1 < r < n, such that 1 < ir < m or
r 1 + m, we shall denote by (I) (ix,..., i,) the logarithmic n-form

d log(m + 1, ix) A A d log(m + n, in).

Remark that i < r + m. Then obviously we have

(2.6) ex,,, e,,.lax,..., am).

The left hand side will also be denoted by 1).

LEMMA 2.1. The twisted de Rham cohomology Hn( x, gTo) is isomorphic to
the space of logarithmic n-forms fog(X) generated by

dlog(m+r,a), 1 <r<n,1 < a<m
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and

as follows:

dlog(m+r,m+r+l), l<r<n-1

(2.7) on( X, Vo) og( X)/o /k --1(X)
where f’lo-gX( X) denotes the space of logarithmic (n 1)-forms generated by

dlog(m+r,a) and dlog(m +r,m + r+ 1).

The dimension of H"(X, V,o) coincides with the absolute value of the Euler
number of X which is equal to (m 1)m"-x.

Proof See [1] and also [3].
Let V,, m be the space spanned by exterior products of degree n generated

by d log(m + r, a), 1 < r < n and 1 < a < m, i.e., spanned by.(1) such that
all i, < m. We shall call these (I) and also their integrals (I) "admissible
ones". H"(X,.Vo,) is spanned by V,, m, i.e., the following exact sequence holds:

(2.8) =-> Vn m "+ Hn( X, Vo) "=> O,

for a subspace W,, ,,, of V., m"

TO see the structure of H"(X, Vo,) in more details, we want to present two
kinds of basic relations among the logarithmic forms I). For that purpose it
is useful to define two kinds of endomorphisms pr and Qr on Vn m"S,

DEFINITION 2. We denote by pr 1 < r, s < n 1 < a < m, the endomor-
phisms on V,,, defined by

(2.9) Pr,,(ix, in) (i a )s, 1 s’’’, r-l, r+l’’’

forl <s<r<n,

i.e., delete the r-the element r, insert the argument a into the s-th place and
shift the arguments is,..., ir_X to the right.

Also

(2.12)

Pra(I ) (i ir_ a in) forr =sr, r-I-l

Pra(1) (ix, jr_X, jr+X, is, O, is+l, in)
for I < r < s < n,

Qr(I) (ix,..., is_l, is, is+l,..., ir_ 1, ir+l,...,
forl <s<r<n,

i.e., delete the r-th element and double the s-th element and shift the
elements between them to the right.
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Similarly

(2.13) Qr,(I) (i it_ , i,+x,..., is_, is, s, is+x,...,
for I < r < s < n.

It is obvious that both pr,,{i} and Q(1} are independent of choice of the
argument i,. In the same way we can define the endomorphisms P" and Q,r
for the integrals (I}. The first basic relations are as follows:

LEMMA 2.2. For a fixed r, 1 < r < n 1, let i n be arbitrarily gioen
such that 1 < i, < m. Then we have cohomological relations in Hn( X, 7,o):

(Rr) r,r+l(il,..., Jr, m + r, ir+2,... i.)

}r+l+
s=l a=l s=l

The right hand side does not depend on i,+ .
Proof. (R,) can be proved by induction on r for r > 0. In fact we have the

cohomological identity in H"(X, V,):

(2.14) 0 V{( 1)"-Xd log(m + 1, ix) A A d log(m + r 1, ir_l)
Adlog(m+r+ 1, r) A dlog(m+ r+ 2, ir+ 2)
A A d log(m + n,i,,)}

m

E ’r, aP;r,+al<I) + ,’r,r+lQ+<I>

+ Xr_l,r(il,..., it_t, rn + r 1, Jr, ir+2,... in)
r,r+lil,..., it_l, Jr, m + r, lr+2,... in)

since

(2.15) d log(r + m, r + m + 1) A d log(r + m + 1, ir)
d log(r + m, r) A d log(r + m + 1, r)

d log(r + m, ir) A d log(r + m + 1, r + m).

By repeating this procedure we arrive at (R,).
Hence (i,..., i,, rn + r, ir/2,..., i,} is expressed explicitly as a linear

combination of admissible { Jx,.--, J}-

LEMMA 2.3. Fix r, 1 < r < n. Then we have

s,s+
s----1 fl=l s=l s=r+l



HYPERLOGARITHMS AND LINEAR DIFFERENCE SCHEMES 197

for an arbitrary admissible (I. Hence I/V,, coincides with the image

fl=l s=l s=r+l

Proof The identity

(2.16) 0 V,{(- 1)"-ld log(m + 1, ix) A A d log(m + n 1, in_l) }
m

Phi(I) -F ,t
1, n(il in_ m + n 1)E kn,a n,

But (R,_I) shows that the right hand side is equal to

n m n-1

pn + ; 1Q(2.17) E EX,,. ,. r,r+
r----1 a----1 r=l

which implies (R’.). We get (R;) from (R,) be relabelling the arguments
like si fors<r- 1, s---)is+x for r<s<n- 1. Lemma2.3 has thus
been proved.
As a result of (Rr) and (R.) we derive the following fundamental difference

equations for the integral (I)"

l<r<n-1.

m r-1 n }s---1 /3----1 s---1 s=r+l

l<r<n.

Note that the relations (’) are all equivalent. Hence the number of linearly
independent relations is just equal to m"-x. This shows that the admissible
integrals I) with ir a are all expressed by a linear combination of (J) for
J (J,---, L) such that L 4: a:

(2.18) (ix,...,i,_l,a,i,+x,...,in)

E E <Jl""jn>Or( jl’’’’’

A Jn A*’ ix’’’"
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where

Br( jl’

Jr-l,

Br (j ir_l, Ot ir+l,’’’, in

denote rational functions in ,, whose denominators are products of linear factors
r+ r+

Xs,,+ Y’ ,’ forO<tl<r-10<t2<n-r.s,s+l
s=r--t s=r--t

This formula can be proved by induction on the numbers and 2 such
that i_t i+t2 a and that i_t_ 1 and i+2+1 are different
from a.

In fact we denote by )
such that i_t i+t2 a and ir_t_l, ir+t2+l . If 2 1,
then (R) shows that

(2.19) -h,(il,...,i_x,a,i+l,...,
m r--1

+ X’_ x,,Q, r-l,

s=r+l

0 moa 0).

"(r)Let (lt,t) be an arbitrary (il,.-., i_,, a. .a, t+t,..., i,) V,(t1, t).
Since

(2.20)

E E
s----

s=l s==r+t2+l /3=1 ")pr +s,#

r+

s--r--t

,+Q +
s----1 s=r+t

=- 0 modotitl,o6t, #n, )m( i, tz ).
+ t_ < +

Hence by induction hypotheses we have proved the lemma.
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In the same manner one can prove:

LEMMA 2.4.

(2.21)

For fixed r and a,

where J= (jl,...,,t, runoveradmissiblesequencessuchthatj,j,+l. Here,
B’ -B’ denote rational functions in whose denominators arer, r+ r, r+

products of linear factors
r+ r+

,a 8,8+1
s=r--t s=r--t

for 0 <_ < r- 1 and 1 < 2 < n.

The symmetry properties below for B, and B/, ,+ follow immediately from
the definitions:

Let o be a permutation of rn arguments 1,2,..., m. Then o entails the
transformation for each ,: h,---, oh, where (oh) h,,o{). Then:

LEMMA 2.5.

o(il) o( in)
(2.22) B,

o(j,)

(2.23)

(2.24)

(2.25)

Okl’ Okn, 1,2, n-i, n

/

( il ’in 1,. 1,2 kn_l,n)=B,
Jl,"’,J,, "’

B, Jn, Jn- J )’’ )"- ’ ) "’-’ "’ /1,2

11,,B,.
Jl,’", J,, X,...,X,,, 2,...,X,,_,,,

B’

,/ X,..., X X’ ,..., X’_
1’ ’Jrl

B
,,, ,,-1,’.., A. X X X’x 2n-,.-1, n-r ., Jn-1, Jl n,"’, n-l,n

=B’(il’inl, "X’ X, ),,,+1 Jl, Jn hn, 1,2 n-l,n
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Suppose that a, are all real and a > a2 > > am. Then the dual space
Hn(x, X7,o)* of Hn(x, V,o) has a basis of twisted cycles defined by the
following inequalities. For arbitrary eq, a2,..., a, 1 a _< m, we define the
relatively compact domains A(at,..., a) in R:

aa, > x > aa,+l,
(2.26) xr-xr+ >0or <0, 1 <r< n,

where a, > Or+ -4- 1 or a, + 1 < at+ according as x,- Xr+ > 0 or
The number of such domains is just equal to m"-l(m 1).

Proof See [11.

3. Complete systems of difference and differential equations for

The relations (R’,) are rewritten in terms of ,,,
(3.1)

i (Xs, aJm )t- et, i,-es, #-
s=l fl=l t=l t=s+l

sr+ BI tl

s=l t=l

sr+l

0.

In addition to tNs, the partial fractions

(3.2)

(3.3)

as follows"

(m + r,a)(m + r, fl)

et’it-1 t=r+l et’ it)
s-1 n )E et, it+ es, fl E et, i,
t---r t--s+l

t----s+l t----r+1

E et, it+ es, et,
t=r t----s+l

( 1
(or fl) (m+r, ot)

1
(m + r,a)(m+r+ 1, fl)(m +r+ 1, m+ r)

1 { 1
(a, fl) (m + r,a)(m + r + l,m + r)

1
+ (m+r, fl)(m+r+ 1, fl)

(m + r, fl)(m + r + 1, rn + r)

1 )(m+ r, fl)

1 }(m + r,a)(m + r+ 1, fl)
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imply the following identities:

m(X- er, a- er, a)=

forl_<r_<n,l_<afl_<m and

6m(k- er, a er+l, fl e’ 1)r, r+

(tX!) {(m(- er’ --e’r,r+l) -" m( k er,13 er+l,)

-e’--m( er, tl r,r+l ,a

We can now get explicit formulae for difference operators T_e,,,
as follows:

and T er,

PROPOSITION 1. (i) If or,

1 er(3.4) T_,...([} (ir Ol) (1 r,a

(ii) If t,

(3.5) I er
(jr, a) (1 r,a

where J moves over admissible sequences such that Jr a.

Proof (3.4) follows from (R’r’,,#). (3.5) follows from (2.18) and (3.4).

PROPOSITION 2. (i) If ir+ 1,

(3.6) (ir, ir+1)T_e:,+:) (I Qr+l~r )()
r+l m

EEx
s=l fl----1

X(1 ~r
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(ii) If Jr+ 1,

(3.7)

I r,r+l

(1- ;,( Jr, Jr+i) r+l

,0 s,O
s--1 fl=l s=l

where J moves over admissible sequences such that Jr 4= Jr+ 1"

Proof (3.6) follows from (Rr",’a,O) and (Rr). (3.7) follows from (2.21) and
(3.6). Summing up these two propositions we have the following result.

THEOREM 1. The equations (R’r), (R"r, ot, ) and (R r,a, or equivalently
(3.4)-(3.7) define holonomic linear difference equations for the meromorphic
function dP in . It is completely determined by the asymptotic behaviour for
l--> , for

k k(Or)et + (lr)ot and ’ X’() 1l + ,’(1)
r, r+l "r, r+ r, r+l

where X(0),r, "’r,)tt(O)r+l ( R+ and h(lr),, X’r!lr)+l C:

(3.8) m(X) Ore(C) (//2)-,/2 1

Hess m(C)(1+
c (Q,..., c,) R" is, by saddle point method, uniquely determined as the
solution of the equations

(3.9)

X(r),d log( m + r, a) + Y’ X’r+ld log( m + r m + r + 1) 0
r=l a=l r=l

at x c such that 0 < C 1.

Proof. The computation of asymptotic behaviours is standard. We have
only to find the critical points of the function Re log t for X x(0) andAr,
’r, r+l Ar,",(0)r+l respectively. See [1] for details.
Now let us compute integrable differential equations for (I)

m in the variables
a a for a a, tx ft. Since (I)

m iS a special case of the integral (0.1)
in [3], we can apply the formula (0.3) loc. cit. to the (I)= Pm(A- el, il
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en, i.), use the relations (Rr) and get the following differential system
(Gauss-Martin connection):

where the terms d log(ir, it+x){ } vanish for it+ in the right hand side.

4. Case where m 2

In this part we put a 0, and a 2 1 and consider a slightly modified
form of the integral (2.3) as follows:

(4.1)

+2()(,11,0) dx, / /x dxn
xt >_x2> Xn>Y

for 1 > x > y > 0 where tI)2() denotes the function (I)2 restricted to the
subspace ,’ ): 0. We abbreviate 2()(,11 0) simply by1,2 n-l, n

t2()()1,..., X,) or t}2()(X ). OrI ) denotes the deletion of the r-th element
ir: OrI ) i1, ir_ x, ir+l,..., i,). Then t}2()(, ) satisfies the difference
equations in ,1, ’ 2,..., ’. as follows.

LEMMA 4.1.

(4.2)

(4.3)

Proof Both are immediate consequences of (Rr) and (R’r) in {}2 respec-
tively, taking the limit h’ 0 for all s. The left hand side of (4.2) comess,s+l
from the residue in (Rr) along the subspace x Xr+l.

COROLLARY. We can choose as a basis of Hn(X, V,o) admissible (I) such
that 1. Hence dim Hn(x, 7)= 2n-1.
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The equations (g)become

(4.4)
n 2

d([) E E X,,,d log(i,, a)(1 -/,,,)(/r) + d log(x a,)[o(D] ,,=,,
r----1 a=l

n--1

+ E d 1og(ir, ir+l)[( 0r+l Or)([)] Xr’-Xr+
r--1

+ d log( ai. y)[O.([)] ,,._y,

where the terms d log(/,, it+l)( } vanish for

5. Iterated integrals of logarithmic 1-forms

We put again ,0 --d log(x- ar) and assume a O, a 2 --1 or ax 1,
a2=0.
We are specially interested in the following iterated integrals (hyperloga-

rithms of Gaussian type in [19]):

DEFINITION 3. For t d log x and t2 d log(x 1), we put

(5.3)

respectively.
For (zx, z2,..., z,) C" consider the following generating functions

(5.5) Fn(Zl,..., Znlal,... an; x, y)

rl r2 rn fx
21 22 2n ] l I;

rn>__O -y

(5.6) F,*(zx,..., z.lax,..., a,; x, y)

E
rn>_l
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where, we assume, x, y and at,..., a, are all different from each other. We
put Fo*= 1. The F, are meromorphic functions in zt,..., z, and many
valued analytic functions in x, y, ax,..., a on the affine variety X+2

((x, y, at,..., a) C+2; x, y, a,..., a are different from each other). In
particular we have

Fl ( Zj aj x, y) Ez f to)r

z. toyexp
j

y- a]

We abbreviate this function simply by Ej(zj).
By definition, F(zl,..., z,,lx, y) is equal to the sum

., ’. F*(zl, z,la, a "x,y)ir
r=O l<v<

To get an integral representation, of F, we first derive a recurrent system of
differential relations for F.

LEMMA 5.1.

(5.9) F,_j+l(zj,..., z.laj,..., a,; x, y)

1 + Ej(zj) fEfl(zj) dFn_j(zj+l,..., z,,laj+l,..., a,,; x, y)

Proof In fact by Chen’s formula Fn_j+ satisfies the equation

(5.10) dF. _j+ Zj den_j
dx x- a’’-f Fn-j+l + dx

with the initial condition Fn_j+ 1]x--y
(5.9).
Lemma 5.1 shows

1. This can be solved uniquely as in

(5.11) d’n_j+ dEjfyXE 1 den-j
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or equivalently

By repeating this procedure we can prove the following identity in the Chen
algebra of differential 1-forms.

LEMMA 5.2.

(5.13) dFn( zl,..., znla an; x, y)

i dE,IE dEv21’’’ IE--lVr--1 dEvr"
r----1 l<Vl< <vr<n

Hence we have:

PROPOSITION 3.

(5.14) Fn(zx,..., znlax,..., an; x, y)
n

r=l 1Nh< <rn -y

I-’ (z,,_,) d,,( ),Pr--I gVr

(5.5) , ( x,..., lax,..., a; , y )

E-ex(h)lefX(h) e()l -(-1) G()

rl

The last equality follows by partial integration or Chen’s product formula.
We denote by

,2F2,x (z,..., zzmlx, y),
F*I/, , Zl,. Z:mlX, Y),

the generating functions for the values

L(rl,..., rv.mlX, y),

L( r,. r_mlX, y),

F2*,t( z1,..., Z2m_l[x, y ),
F2,*22(z1,..., Z2m_IIX, Y),

respectively. These are special cases of Fn*(zx,..., znlx, y), where a a
0orl and a2=a4 lor0.

L( r, r:zm_llx, y),

L( r,. r2m_xlx, y),
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In this circumstance it is also convenient to give the following:

DEFINITION 4. The functions

q.,( z,..., Zv_m[X, y), q)x( Z,"’, Z2m_l[X y),
q(zx,..., ZEmlX, y) and q(z,..., zvm-xlX, Y)

will mean the integrals of the right hand side of (5.14). a a 3 0, a
a4 1 correspond to q and q], while at a 1, a

a4 0 correspond to q and q. We also denote by q4(zx,’", z,) the
values of q.(zx,..., z,]l, 0) at (x, y) (1, 0) respectively.
Then from (4.1) and Proposition 3, by means of partial integration we have:

LEMMA 5.3.

(5.16) q.,2 ( zl, Z2mlX, y)

( 1) mz1 Z2m62(0) ( Z1 1,
O,

(1 y)-’" Z (- 1) m-r+lxzz’-XZ2rZ2r+l Z2m
r=l

(20 ( Z2r- 1, Z2r+ 1,..., Z2m_

Z2r 1, Z2r, Z2m 1

--21 Z2m-1 )Z2 1 Z2m- 1
x, y

m
m (1 x) z"+E(1) -’+

Z2r+l Z2m
r=l

.(20) ( Z2r+I 1,

Z2r,

(5.17) 6(z1, Z2m_llX y)

( 1) m-1Z1 Z2m-1

Z2r+2- 1,..., Z2m- 1
x, y + 1.

.62(0) ( Z2r+l- 1,..., Z2m_ 1 1
Z2r, Z2m-2 Ix, y)} 1.
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(5.8)
/12 ( Zl, z2=[x, Y)

(-1)’zx... z_=p
2- 1,

z2 1,..., zzm- 1

--Z1, 22m_1

.(o) x, y + 1.
Z2r+ 1 1,..., Z2m_

(5.19)
==(,..., ,_lx, y)

( 1) m-1Z1 Z2m-1

o
Z 1, -zl,... Z2m_ 1 1

x, y

(1 y)-g2m-1 ( 1)’-’(1 x) z2r-1-
Z2r Z2m-1

1,...,- )--Z2r_l,. Z2m_ 1
x, y

m--1

+ E ( 1) m-rXz2rZ2r+ Z2m-1
r=l

z2,+x- 1,..., Z2m_ 1 1 x, y 1.

The following lemma is an elementary consequence of integrals
()(Xl,..., X,lx, y). So we omit a proof.

LEMMA 5.4. The functions q}(z1, Zn) are all holomorphic at Z1
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But there appear singularities of L} at (x, y) (1, 0). These are described
as simple logarithmic expansions:

LEMMA 5.5. For rx,...,r. > 1, L2x(rl,...,r2,,lx, y) is holomorphic at

(x, y) (1, 0); i.e., if we put L2(rl,..., r2,,lx, y) A(’)(x, y), then

o) fo O ’x l v’2m

The other L} have expansions at (x, y) (1, 0) as follows:

(5.21) L] A(’)(x, y) + i A(’t)(x, y)(log y)t

i A(k’t)( x, y)(1og(1 x))k(logy) t,
k=l--O

L2 i A(k’)( x, Yl(log(1 x)) k,
k---0

where the functions A(k’t) are all holomorphic at (1, 0).

In all the 4 cases A(’)((1, 0)) has definite values. These values are defined to

fotOl which is equalbe regularized ones of L} and are written as reg ,1 o2m
to

reg foll Io?--1,

reg fol.ll I?" and reg fololl ]to’--1

respectively. These are nothing else than the finite part of divergent integrals
in the sense of Hadamard-Leray.

LEMMA 5.6 The functions /. have the unique expansions in zx,..., z, and
log(1 x), log y as follows"

( 5.24) " E Y’- A(k’,l,...,’) ,( x, y )
rl, r2 r2,n > k, i=0

O<k+l<rl + +r

Xzf z,].(log(1 x)) k. (logy)’

where A(,,...,t) .(x, y) are holomorphic at (x, y) (1, 0).
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Proof. This follows from the series expansions in zl,..., zn of the integral
representations (5.16)-(5.17) by using the Taylor expansions of (1 x) and
yS in s.

Hence:

LEMMA 5.7.

(.) .(,,,..., ) E
rl rn >_

2 r (0,0)z,,A, ,(1 0).

Summing up the above, we have proved the basic formulae:

PROPOSITION 4.

(5.26) k(zl,..., zn)

(.27)
(z,,..., .)

x’)lx-’ d(1 x)’1 x-2"-’ d(1 x) 2"

d(x*a)lx-*,d(1 x)*= I(1

(.8) +( z,,..., z,)

d(1 x)*’l(1 x) -*’ a(x*=)l I(1 x) -==-’

(5.29) 4’(z,..., z,,)

d(1 x)*’l(1 x) -*’ d(x*=)l Ix -.2--= d(1 x) *=’-x

These functions are specializations of ,,, satisfying the difference equations
(3.4)-(3.7). Finally we can state the main result.

THEOREM 2. The four functions +.(zl,..., z,) are all holomorphic at the
origin. Special values of hyperlogarithms L, , , and L’, , , coincide with
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coefficients of the Taylor expansions of /. at the origin:

(5.30)

(5.31)

(5.32)

(5.33) reg

1 0 r+’’’+rm-

rl! r.!.., r2,n_lt (Oz,)r, (azm_l).,._, (0,...,0),

for n 2m, 2m- 1, 2m and 2m- 1 respectively which are exactly the
identities (1.4) stated in the introduction.

(1) Case n 2. Since

6. Examples

(6.1) (zx, z2) fo d( x’)lx-" d(1

r(1 z) r(1 + z2)
1.r(1 + )

Theorem 2 implies the formula (1.2).
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(2) Case n 3. qXx(zt, Z2, Z3) and q(zx, z2, z3) are equal to

(6.2)

z2 I, -z2

BZ2Z3fl> x{’x3-x(1 xx) -x(1 xz)-’-dxI dx2
x >_x2>O

and

(6.3) z3()
z3_

r(1 z2) r(1 + z)
r(l z2 + z3)

res.pectively.
2(1, 2; ,?) coincides with the value

in [4] which is also equal to the value at z 1 of the Goursat-Thomae-Whipple
hypergeometric function 3F2(z) apart from a F-factor; more exactly it is equal
to

(6.4) r(xx, + x,x + x, + 2) r(x + 1) r(x,, + 1) r(x, + 1)I2 2,1 2

r(x11 + Xl 2 -1- X21 + k’ -I- 3)r(x -i- k’ -[- 2)1,2 2,1 1,2

kl, + h2, i + h,2 + 2,
"3F2 hl + A2,1 + kl 2 - /.t + 31,2

The coefficients

BI( 2’1, J2)i2 and B{( jl’l, J;)
for (0) are given by

(6.5)

(6.6)

(6.7)

(6.8)
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The other coefficients

and

r= 1,2

are evaluated by the symmetry properties(...2.22)-(2.25..._.).
We can take as a basis the integrals (1,11 and (2, 11 (Corollary of Lemma

4.1).
The difference equations with respect to this basis are

(6.9)

(6.101

(6.111

(6.12)
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Finally, using (3.2) and (3.3), we have

(6.17)

(6.18) T
el,

(2) Case n 4. + and are expressed by means of )(z, z2, za)
wch is no more hypergeometric. We only give the formulae for

B 1, i,

The other B and B,+ are obtained according to (2.22)-(2.25):

(6.22)
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As for the

we have

(6.23)

(6.24)
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