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I. Introduction

In 1955 A. Fr61icher [Fr] defined a spectral sequence {E,} for any complex
manifold M. We call it the Frlicher spectral sequence, but it is sometimes
known as the Hodge-deRham spectral sequence. Nowadays the construction
of this spectral sequence is standard, once one notes that the complex
differential forms on M form a differential graded C-module.
For a compact manifold with positive definite K/ihler metric Fr61icher

observed that E -= Eoo; Kodaira [Kod] proved that the same conclusion holds
for any compact complex surface. The Iwasawa manifold 13 (defined as the
quotient of the complex Heisenberg group by the Gaussian integers) has a
nonclosed holomorphic 1-form, and so E’(13) E21,0(13). Nevertheless
E2(I3) Eoo(I3); more generally it follows from a result of Sakane (see
Theorem 9 for a proof) that E2(M))-= E(M) for a compact complex
parallelizable nilmanifold M. (A well-known result of Wang [Wa] asserts that
any compact complex parallelizable manifold is the quotient of a complex Lie
group by a discrete subgroup.)

In spite of the fact that Fr61icher’s paper has been in existence for more
than 30 years, until recently no examples of complex manifolds for which

E2 Eoo seem to have been known (see [GH, page 444]). In our note [CFG]
we found compact complex manifolds of complex dimension at least 4 for
which E2 E3 -= Eoo. Since our examples are compact nilmanifolds, they are
never simply connected. H. Pittie [Pi] has found some compact simply
connected examples, the simplest of which is Spin(9). All of Pittie’s complex
manifolds must have much larger dimensions than ours.
The principal fact that led us to our examples is the observation that there

are many compact nilmanifolds which possess complex structures but are not
complex parallelizable. Such a manifold M is real parallelizable, however,
and moreover both the deRham operator d and the Dolbeault operator c9
have explicit descriptions in terms of a canonical parallelization. Although
the calculations become complicated when the dimension of M is large, it is
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possible in principle to compute the deRham cohomology, the Dolbeault
cohomology and as we show below, the Fr6licher spectral sequence of M.
The problem we begin to tackle in the present paper is to find for any r a

compact complex manifold for which E Eo. In [CFG] we did it for r 2
and in the present paper we do it for r 3.
The Fr6licher spectral sequence of a compact complex manifold can be a

very complicated object. In Section 2 we write down some useful properties
of the Fr6licher spectral sequence; some of these are well known general
properties of spectral sequences that are especially simple for the Frflicher
spectral sequence, but others are peculiar to compact complex manifolds.
Fortunately to produce our examples we need only to calculate the terms
Erv’. It turns out that for any compact complex manifold M of complex
dimension n one has

(1) E["(M) Eoon’(M)

(see Section 2 for a proof). On the other hand for r 4: s frequently Erp’ 4:

Ep’ when 1 _< p _< n 1. Since the proof of (1) makes use of the assump-
tion that M is compact, it is a special feature of the Fr61icher spectral
sequence.
A fact from the general theory of spectral sequences is that Erp’’ E’q

whenever r > max(p, q + 1). So for an example with Ef’ E’ we must
haven >p>r.
We wish to thank P. Gilkey for some useful discussions.

2. The Fr61icher spectral sequence

Let us recall briefly the definition of the Fr61icher spectral sequence
associated to a complex manifold M of complex dimension n. Denote by Ar’

the complex differential forms of type (r, s), and let d O + O be the usual
decomposition of the exterior differential. We put

FPA {q _, r,s A[tPr, 0 for r < p},

where A EAr’s and r,s denotes the component of q in Ar’s. Then {FVA}
is a decreasing filtration of the complex forms on M such that d(FVA) c FPA.
The condition "r,s 0 for r < p" can be read as " has dz-degree > p".
Thus (A, d) is a filtered differential graded module over C. The Fr61icher

spectral sequence of M is then the spectral sequence associated with (A, d)
in the standard way (see [McC, page 33-36] or Fr61icher’s original paper).
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More precisely let

Thus we have

-c BP’ qr-1 c Bf q C c Boop’ q c ZPoo q c c Zrp’ q (= Zp’ -c

for all r. The terms E:’ in the Fr61icher spectral sequence are then defined
by

Zf,q

(2) Ef’ ’r-TP+11’q-1 "t- Bf_’

also we put

(3) E’q
Zp,q

Zg+l,q-1 -!- Sg’q

Insight into the meaning of the Fr61icher spectral sequence for a general
complex manifold can be gained by doing the case q O. It turns out that
some forms of type (p,O) are more exact than others; we can use the
Fr61icher spectral sequence to measure this exactness. Let us compare the
E’ 0 with the El’ o.
LEMMA 1. We have

(4)

(5) er’
Ef

, {a AP’lga 0},

{a Ap’Olda O}
{ A"la d(p-l,O + p-2,1 "" "’[p--r+l,r--2)}

for r > 2, and

(6) El,
{a M"lda O}

{a e AP’la dr for some tr e A}

forr >p + 1.
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Proof. The proof of Lemma 1 is an easy consequence of the definitions.
For example for r > 2 we have

and so

Zr’0 FPAp N d-I(Fp+rAp+I)
FPAp t d-l(0) Z’,

Zp+I, -1 _Fp+r--1 C lAp {0},

Brp’ FPAp 0 d( Fp-rAp-I),

Ep,
Zp, 0

FPAp d( Fp-rAp- 1)

which is another way of writing (5). Equations (4) and (6) are proved
similarly.

COROLLARY 2. There is a sequence of epimorphisms

Corollary 2 is a well-known fact about spectral sequences; because of
Lemma 1 the proof of Corollary 2 using the Fr61icher spectral sequence is
particularly transparent.
The Fr61icher spectral sequence is a first quadrant spectral sequence;

Lemma 1 and Corollary 2 give special information about its lower edge.
There is corresponding information about the vertical edge.

LEMMA 3. For r >_ 1 we have

(7)
iq o d-l(FrAq+l)

FIAq d-l(FrAq+l) + d(Aq-1)

Proof We have

ZOr q

1,q-1 0,qZr_ + Br_

FAq q d- ( FrAq + )
FIAq d ( FrAq + ) + FAq d( F rAq-l)

iq 0 d-l(FrAq+l)
FIAg 0 d- I( FrAq+ ) + FAq N d(Aq-1)
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COROLLARY 4. There is a sequence of injective homomorphisms

o,q O,q E,q E,qE + E "--) ")’ ")

In the next lemma we make essential use of the assumption that M is a
compact complex manifold.

LEMMA 5.
Then for all r,

Let M be a compact complex manifold of complex dimension n.

(8) Er’(M) = E2’(M) {a An’lda 0}.

Proof
product (

We use the fact that there is a positive definite Hermitian inner
) on An’ defined by

(9) (’tg,) (/’-)n2fM / .
Let r > 2. In view of Lemma 1 it suffices to prove that any exact form in An’ 0

vanishes. In fact if/3 A is such that d[3 A’ then

0 (d, d) (’ff)n2fM ^ ^ 0

by Stokes’ theorem. Since ( ) is positive definite, we get d/3 0 in the
case that r > 2. On the other hand any holomorphic n-form is closed so that
(8) also holds when r 1.

3. Lie groups with left invariant complex structures

Our examples are all constructed using real nilpotent Lie algebras with
complex structures. Let G be a real Lie group. Instead of describing the Lie
algebra of G in terms of its bracket we use the exterior differential on the
dual space *. The two are equivalent because of the formula

da(X,Y) -a([X,Y]),

where a is any 1-form on g (R) C and X, Y g (R) C.
Now suppose that G has an almost complex structure J. We choose

a C basis {tOl,..., ton for the complex forms on g (R) C; then
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{601,’’’, tOn, 1,’’’, n} is a real basis of 9*. The structure equations (equiv-
alent to the bracket) have the form

(10) dtoi E AijktOj A tOk "4- E BijktOj A k + E Cijkj A k,
j<k j,k j<k

for 1 _< _< n. In general such an almost complex structure on G will not be
integrable because of the presence of (0, 2)-forms on the right hand side of
(10). However there is a simple criterion for a Lie group to have a left
invariant complex structure:

THEOREM 6. Let G be a Lie group with a left invariant almost complex
structure. Then the structu.re equations for the Lie algebra t of G have the form

(11) dtO E a k tO / (’Ok -[- E B ktO /k k (1 _< _< n).
j<k j,k

Conversely the structure equations (11) define a Lie group G with left invariant
complex structure. Hence quotients of G have complex structures.

Proof. Defining an almost complex structure J on G is equivalent to
saying that {tO1,..., tOn} form a basis for the (1, 0) forms on G. Since on a
complex manifold the differential of a (1, 0)-form must be the sum of forms of
types (2,0) and (1, 1), we see that a necessary condition for an almost
complex structure J be integrable is that all the coefficients Cijk in (10)
vanish. Moreover this condition is also sufficient. (See for example [KN,
volume 2, Theorem 2.8].)

COROLLARY 7. The structure equations for the Lie algebra of a nilpotent
Lie group G with a left invariant almost complex structure have the form

(12) dtO E A k tO / tOk + E a k tO / k (1 .< < n).
j<k<i j,k<i

Conversely the structure equations (12) define a nilpotent Lie group G with left
invariant complex structure.

Proofi The condition that G be nilpotent is equivalent to the condition
that each dtO is a linear combination of wedge products of the tOj’s and their
conjugates with j < i. Combining this fact with Corollary 7 we get the
required result.

COROLLARY 8. Let G be a nilpotent Lie group for which the coefficients
Aiyk and Bijk in structure equations (12) are integers. Then there is a discrete
subgroup F of G such that the quotient G/F is a compact complex manifold
that is real parallelizable.
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Proof. A well-known result of Mal’ev [Ma] implies that a nilpotent Lie
group G has compact quotients provided there exists a basis of the 1-forms
such that the coefficients in the structure equations are integers. It is easy to
see that the left invariant forms descend to the quotient, and consequently
give rise to a real parallelization.

If G has a left invariant almost complex structure f, it also descends to an
almost c.omplex structure J on the quotient. Moreover J is integrable if and
only if J is.

The complex parallelizable manifolds of Wang [Wa] are the quotients of
Lie groups for which in (11)the Bijk’S vanish and the Aijk’S are holomorphic.
However there are many other complex manifolds that are real parallelizable
but not complex parallelizable. The simplest such eample (see [FGG]) is the
Kodaira-Thurston manifold. It is a quotient of the nilpotent Lie group of real
dimension 4 with left invariant complex structure whose structure equations
are

dq=O, dq=qA.

Our examples of complex manifolds for which E2 E3 can be viewed as
simultaneous generalizations of the complex parallelizable manifolds and the
Kodaira-Thurston manifold.

4. The lwasawa manifold and complex parallelizable manifolds

In order to make subsequent examples clearer we first compute that
portion of Fr61icher spectral sequence for the Iwasawa manifold 13 that we
need. Explicitly 13 G/F where G is the group of complex matrices of the
form

(13)
1 z Z3

0 1 z2

0 0 1

and F is the subgroup of G consisting of those matrices whose entries are
Gaussian integers. The functions z 1, z2, z3 in (13) are natural complex
coordinates on G; moreover it is easy to check that to 1, to 2, to 3, 1, U2, U3
form a basis for the left invariant 1-forms on G where

02 dz1, 092 dz2, 0)3 dz3 z dz2.

We have

dto O, dto2 O, dto3 -to A 0)2;
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thus to3 0 but (.0 3 is not -exact. It follows that

Ell, __- {0)i, 0)2

E21, 0
__

{0)i,0)2} E,0

These calculations are a special case of a much more general result.

THEOREM 9.
for all p and q

(14)

Let M be a compact complex parallelizable nilmanifold. Then

Ef’q( M) --- E’q( M).
Proof Let M G/F where G is a simply connected complex nilpotent

Lie group and F is a uniform subgroup. Let g denote the Lie algebra and J
the canonical complex structure of G. Then

(R)C=+

where

,+/-: {X IJX + x/- 1X}.

Sakane [Sa] has shown that

(15) u’q(M) --Hq(g-) (R) AP(R+) *,

where Hq(g-) denotes the Lie algebra cohomology of g- From (15) we have

E,q Hq(6-) (R) H(6+).

On the other hand it follows from Nomizu’s theorem [No] that

(16) Hr(M) Hr(g (R) C).

Since M is complex parallelizable, we have

(17) [g+, g-] =0.

From (15), (16) and (17)we get (14).

5. A nilmanifold with E2 E3 - Eoo

Since E2 ---Eoo for any compact complex parallelizable nilmanifold, we
must search for more complicated nilmanifolds to achieve E2 E3. We give
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an example in complex dimension 4 simpler than that of [CFG]; it will be a
starting point for constructing examples with En En + for n > 3.

Let be a nilpotent Lie algebra of complex dimension 4 with left invariant
complex structure given by the equations

dto 0,
dto2 0,

(18)
dtPl to A (to 2 + 2),
dq2 1 /k tO2

By Corollary 7 these structure equations determine a nilpotent Lie group G
with a left invariant complex structure, and by Corollary 8 we get a compact
nilmanifold with a complex structure.

It will be convenient to introduce an abbreviated notation for wedge
products. We write

O)ij O) A tOj, O)i] tO A j, tO- i A j, tOijk tO A tOj A (.Ok,

and so forth.
To show that E2 E3 we consider the differential form y o)12 of type

(2, 0). Then y is closed, hence cLclosed, so that it represents a nontrivial class
in E2’. Moreover by Lemma 1 we see that y also defines a nontrivial class in

E’ 0 because

’’ d(A1’0) {0)12 d" tOl 012}.

However using Lemma 1 again, we see that y defines the zero class in E32’
because

3 d(ql 2) d( AI’ A’I)

Thus E’o E’.
It is also possible to compute the E’ using Lemma 3. We find that

The equations (18) can be integrated explicitly, and thus determine com-
plex coordinates {Zl, z2, z3, z4} on G"

(19)



THE FR6LICHER SPECTRAL SEQUENCE 65

Hence G can be realized as the nilpotent group of complex matrices of the
form

1
a4 a2 + 2 a3
a2 0 0
1 0 0

1 a

1

Then G/F is a compact nilmanifold that is complex with E E2 E3 goo.

6. A nilmanifold with E3 E4 --- Eoo

This case is only slightly more complicated than the preceding example.
Let g be the nilpotent Lie algebra of complex dimension 6 defined by the
structure equations

(20)

do) O,
do)2 O,
d0)3 O,

diP1 0) A (0)2 + 2),
dcp2 1 / 0)2,

d3 0)1 A (1 + 3).

To prove that the Fr61icher spectral sequence of M satisfies E3 E4 we
consider the differential form 3, 0)1 A 0)2 A 1 of type (3, 0). We have

d(0)2 A t#3 ) 3, + 0)12 and 0)12 d(ql 2)"

Furthermore

0)12 d(q91 A 3 2 A 3) d( A1’1 A’2) c d(A2, (3 A1’1 A’2),

but a direct computation shows 0)12 d(A2, A1’1). Consequently

3’ d(0)2 A q3) -0)12

d(0)2 A 3 1 A 3 + 2 / 3)
d(A2, AI, A’2).

Therefore by Lemma 1, 3, defines a nonzero class in E’, but 3, defines the
zero class in E43’.
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An explicit realization of the compact complex manifold M corresponding
to (20) can be obtained in the same way as we obtained the compact manifold
corresponding to (18). In fact, integrating the equations (20) we determine
complex coordinates {z 1, z2, z3, z4, zs, z6} on .G such that

(2)

091 dZl
0)2 dz2
0)3 dz3

1 dz4 ( z2 4;- 2) dz1,

2 dz5 d- 1 dz2,

3 dz6 ( z4 -b ’3) dz1.

Hence G can be realized as the nilpotent group of complex matrices of the
form

1
as a2 -b 2 a4 3 a6
a2 0 0 0 0
1 0 0 0 0

21 a 0 a
1 0 a

1 a

1
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