ADDITIVE DERIVATIONS OF SOME OPERATOR ALGEBRAS

by Peter Šemrl¹

1. Introduction

All algebras and vector spaces in this note will be over \mathbf{F} where \mathbf{F} is either the real field or the complex field. Let \mathscr{A} be an algebra and \mathscr{A}_1 any subalgebra of \mathscr{A} . An additive (linear) mapping $D: \mathscr{A}_1 \to \mathscr{A}$ is called an additive (linear) derivation if

$$(1) D(ab) = aD(b) + D(a)b$$

holds for all pairs $a, b \in \mathcal{A}_1$. Let X be a normed linear space. By $\mathcal{B}(X)$ we mean algebra of bounded linear operators on X. We denote by $\mathcal{F}(X)$ the subalgebra of bounded finite rank operators. We shall call a subalgebra \mathcal{A} of $\mathcal{B}(X)$ standard provided \mathcal{A} contains $\mathcal{F}(X)$.

This research is motivated by the well-known results in [2], [3].

THEOREM 1.1. Let X be a normed space and let \mathscr{A} be a standard operator algebra on X. Then every linear derivation D: $\mathscr{A} \to \mathscr{B}(X)$ is of the form

$$D(A) = AT - TA$$

for some $T \in \mathcal{B}(X)$.

THEOREM 1.2. Let \mathscr{A} be a semi-simple Banach algebra. Let $D: \mathscr{A} \to \mathscr{A}$ be an additive derivation. Then \mathscr{A} contains a central idempotent e such that $e\mathscr{A}$ and $(1-e)\mathscr{A}$ are closed under $D, D|_{(1-e)\mathscr{A}}$ is continuous and $e\mathscr{A}$ is finite dimensional.

Using these two results one can easily see that every additive derivation D: $\mathscr{B}(X) \to \mathscr{B}(X)$, where X is an infinite dimensional Banach space, is inner. In this note we shall give a complete description of all additive derivations on

Received February 9, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47B47; Secondary 47D25.

¹This work was supported by the Research Council of Slovenia.

 $\mathscr{B}(X)$ in the case that X is finite dimensional. In particular we shall see that in this case there exists an additive derivation $D: \mathscr{B}(X) \to \mathscr{B}(X)$ which is not inner. Assuming that X is an infinite dimensional Hilbert space we will succeed to prove an analogue of Theorem 1.1 for additive derivations.

We shall need some facts about additive derivations $f \colon \mathbf{F} \to \mathbf{F}$ where \mathbf{F} is either \mathbf{R} or \mathbf{C} . Every such derivation vanishes at every algebraic number. On the other hand, if $t \in \mathbf{F}$ is transcendental then there is an additive derivation $f \colon \mathbf{F} \to \mathbf{F}$ which does not vanish at t [4]. It follows that a non-trivial additive derivation $f \colon \mathbf{F} \to \mathbf{F}$ is not continuous. It is well known that a noncontinuous additive function $f \colon \mathbf{F} \to \mathbf{F}$ is unbounded on an arbitrary neighborhood of zero [1].

2. Additive Derivations of Standard Operator Algebras

We shall begin this section by proving a lemma which will be needed in the sequel.

LEMMA 2.1. Let X be a normed space and let D: $\mathcal{B}(X) \to \mathcal{B}(X)$ be an additive derivation. Then there exists an additive derivation $f: \mathbf{F} \to \mathbf{F}$ such that

$$(2) D(tI) = f(t)I$$

holds for all $t \in \mathbf{F}$.

Proof. For an arbitrary operator $A \in \mathcal{B}(X)$ and for an arbitrary number t we have

$$D(tA) = D((tI)A) = tD(A) + D(tI)A.$$

On the other hand,

$$D(tA) = D(A(tI)) = AD(tI) + tD(A).$$

Comparing the two expressions, so obtained, for D(tA) we arrive at

$$D(tI)A = AD(tI).$$

Thus, the operator D(tI) commutes with an arbitrary operator $A \in \mathcal{B}(X)$. It follows that $D(tI) \in \mathbf{F}I$. It is easy to see that the mapping $f: \mathbf{F} \to \mathbf{F}$ defined by (2) is an additive derivation.

The proof of this lemma implies that an additive derivation $D: \mathcal{B}(X) \to \mathcal{B}(X)$ is linear derivation if and only if f is a trivial derivation.

Suppose now that a Banach space X is finite dimensional. We are going to obtain the general form of additive derivations on $\mathcal{B}(X)$, that is, on the algebra of all $n \times n$ matrices.

Let D be an additive derivation on the algebra of all $n \times n$ matrices. Lemma 2.1 implies the existence of an additive derivation f on \mathbf{F} such that D(tI) = f(t)I holds for all $t \in \mathbf{F}$. A simple calculation shows that a mapping E on the algebra of all $n \times n$ matrices defined by

$$E((a_{ij})) = D((a_{ij})) - (f(a_{ij}))$$

is a linear derivation. Thus, E is an inner derivation. We have obtained the following result.

THEOREM 2.2. A mapping D defined on the algebra of all $n \times n$ matrices is an additive derivation if and only if there exists an additive derivation $f \colon \mathbf{F} \to \mathbf{F}$ and an $n \times n$ matrix (b_{ij}) such that

$$D((a_{ij})) = (a_{ij})(b_{ij}) - (b_{ij})(a_{ij}) + (f(a_{ij})).$$

Putting $(a_{ij}) = tI$ in the above relation one can see that the additive derivation f in the previous theorem is uniquely determined. Thus, if the relations

$$D((a_{ij})) = (a_{ij})(b_{ij}) - (b_{ij})(a_{ij}) + (f(a_{ij}))$$
$$D((a_{ii})) = (a_{ii})(c_{ii}) - (c_{ii})(a_{ii}) + (g(a_{ii}))$$

hold for all $(a_{ij}) \in \mathcal{B}(X)$, then we have f = g and $(b_{ij}) = (c_{ij}) + tI$ for some $t \in \mathbf{F}$.

Now, we are ready to prove our main theorem.

THEOREM 2.3. Let X be an infinite dimensional Hilbert space. Then every additive derivation D: $\mathcal{F}(X) \to \mathcal{B}(X)$ is of the form

$$D(A) = AT - TA$$

for some $T \in \mathscr{B}(X)$.

Proof. Suppose that A is a normal finite rank operator. Then we can find a complete orthonormal set

$$\{x_1, x_2, \ldots, x_m\} \cup \{x_\alpha; \alpha \in J\}$$

such that Im A is spanned by $\{x_1, x_2, ..., x_m\}$. Let us choose a pair $\beta, \gamma \in \{1, 2, ..., m\} \cup J$. We extend the set $\{x_1, x_2, ..., x_m\}$ to the countable set

$$\{x_n; n \in \mathbb{N}\} \subset \{x_1, x_2, \dots, x_m\} \cup \{x_\alpha; \alpha \in J\}$$

such that $x_{\beta}, x_{\gamma} \in \{x_n; n \in \mathbb{N}\}$ is valid. Let us denote the orthogonal complement of the subspace spanned by $\{x_n; n \in \mathbb{N}\}$ by Y. For an arbitrary $n \in \mathbb{N}$ we define orthogonal projections P_n, R_n by

$$P_n x_k = x_k \text{ for } k \le n \text{ and } R_n x_n = x_n,$$
 $P_n x_k = 0 \text{ for } k > n \text{ and } R_n x_k = 0 \text{ for } k \ne n$ $P_n|_Y = 0 \text{ and } R_n|_Y = 0.$

Let $P: X \to X$ be an orthogonal projection satisfying $Px_k = x_k$, $k \in \mathbb{N}$, and $P|_Y = 0$. We denote the algebra of all $n \times n$ matrices by M^n . We shall need two more definitions. A mapping $\varphi_n: M^n \to \mathcal{B}(X)$ is defined as follows:

$$\varphi_n((a_{ij}))\Big(\sum_{k\in\mathbb{N}}t_kx_k\Big)=\sum_{i=1}^n\bigg(\sum_{k=1}^na_{ik}t_k\bigg)x_i$$

and

$$\varphi_n((a_{ij}))|_Y=0.$$

We will denote the mapping φ_n^{-1} : Im $\varphi_n \to M^n$ by ψ_n . It is easy to prove that the mapping E_n : $M^n \to M^n$ given by

$$E_n((a_{ij})) = \psi_n(P_nD(\varphi_n((a_{ij})))P_n)$$

is an additive derivation for all $n \in \mathbb{N}$. So we can find matrices $C^n = (c_{ij}^n) \in M^n$ and additive derivations f_n : $\mathbf{F} \to \mathbf{F}$ such that

$$E_n((a_{ij})) = (a_{ij})(c_{ij}^n) - (c_{ij}^n)(a_{ij}) + (f_n(a_{ij}))$$

holds for all $(a_{ij}) \in M^n$. For an arbitrary $(a_{ij}) \in M^n$ we choose $(b_{ij}) \in M^{n+1}$ in the following way:

$$b_{ij} = \begin{cases} a_{ij} & \text{if } i \le n \text{ and } j \le n, \\ 0 & \text{if } i = n+1 \text{ or } j = n+1. \end{cases}$$

Comparing

$$E_{n+1}((b_{ij})) = \psi_{n+1}(P_{n+1}D(\varphi_{n+1}((b_{ij})))P_{n+1})$$

and

$$E_n((a_{ij})) = \psi_n(P_n D(\varphi_n((a_{ij})))P_n)$$

we get $f_{n+1} = f_n = f$ for all $n \in \mathbb{N}$. Moreover, the matrices C^n can be choosen so that

$$c_{ij}^n = c_{ij}^k, \quad \max\{i, j\} \le \min\{n, k\}.$$

Thus, we can denote $c_{ij} = c_{ij}^n$, $n \ge i, j$. For arbitrary numbers $n, k \in \mathbb{N}$ and $i \ge n, k$ we have

(3)
$$P_{i}D(R_{n})x_{k} = P_{i}D(R_{n})P_{i}x_{k} = \begin{cases} c_{nk}x_{n} & \text{if } k \neq n, \\ -\sum_{\substack{i \\ r \neq i, \\ r \neq n}}^{i} c_{rn}x_{r} & \text{if } k = n. \end{cases}$$

Since the relation $\lim_{i\to\infty} P_i x = Px$ holds for all $x\in X$ the previous equation implies

$$PD(R_n)x_n = -\sum_{r \neq n} c_{rn} x_r.$$

It follows that the set $\{|c_{rn}|; r \in \mathbb{N}\}$ is bounded for all $n \in \mathbb{N}$. Let $M_n =$ $\sup\{|c_{rn}|; r \in \mathbb{N}\}.$

Suppose now, that f is not identically equal to zero. Then one can find a sequence $(t_n) \subset \mathbf{F}$ having the properties

$$|t_n| < 2^{-n} \min\{1, M_n^{-1}\},\,$$

(5)
$$|f(t_n)| > n + |c_{11}| + |c_{nn}|.$$

We define $S \in \mathcal{B}(X)$ by $Sx_1 = \sum_{k=1}^{\infty} t_k x_k$, $Sx_k = 0$ for k > 1, and $S|_{Y} = 0$. Multiplying the relation

$$D(R_nSP_n) = R_nSD(P_n) + R_nD(S)P_n + D(R_n)SP_n$$

by R_n from the left side and by P_n from the right side we obtain

(6)
$$R_n D(S) P_n = R_n D(R_n S P_n) P_n - R_n S D(P_n) P_n - R_n D(R_n) S P_n.$$

The relation $P_n^2 = P_n$ implies $D(P_n) = P_n D(P_n) + D(P_n) P_n$. Multiplying from both sides by P_n we get $P_n D(P_n) P_n = 0$. Since $S = SP_n$ it follows that

$$(7) R_n SD(P_n) P_n = 0.$$

The relation $R_n D(R_n SP_n) P_n x_1 = f(t_n) x_n + t_n (c_{11} - c_{nn}) x_n$ yields

$$||R_n D(R_n SP_n) P_n x_1|| \ge |f(t_n)| - |t_n| (|c_{11}| + |c_{nn}|)$$

which gives us together with (5) that

(8)
$$||R_n D(R_n SP_n) P_n x_1|| > n$$

holds for all positive integers n. Finally we have

$$R_n D(R_n) SP_n x_1 = R_n D(R_n) Sx_1 = \sum_{k=1}^{\infty} t_k R_n D(R_n) x_k.$$

Using (3) we get

$$R_n D(R_n) SP_n x_1 = \left(\sum_{k \neq n} t_k c_{nk}\right) x_n.$$

This implies together with (4) the following inequalities

(9)
$$||R_n D(R_n) SP_n x_1|| < 1.$$

Using (6), (7), (8) and (9) we see that

$$||R_n D(S) P_n x_1|| \ge n - 1$$

is valid for all $n \in \mathbb{N}$ which is contradiction. Thus, we have f(t) = 0 for all $t \in \mathbb{F}$. As a consequence we have $P_{\beta}D(tA)P_{\gamma} = tP_{\beta}D(A)P_{\gamma}$ for all $t \in \mathbb{F}$. It follows that D(tA) = tD(A) holds.

For an arbitrary finite rank operator A we have

$$D(tA) = D((t/2)(A + A^*) + (t/2)(A - A^*)) = (t/2)D(2A) = tD(A).$$

Using Theorem 1.1 we complete the proof.

COROLLARY 2.4. Let \mathscr{A} be a standard operator algebra on an infinite dimensional Hilbert space X. Then every additive derivation $D: \mathscr{A} \to \mathscr{B}(X)$ is of the form D(A) = AT - TA for some $T \in \mathscr{B}(X)$.

Proof. By Theorem 2.3 there exists $T \in \mathcal{B}(X)$ such that D(A) = AT - TA holds for all $A \in \mathcal{F}(X)$. Now, let $A \in \mathcal{A}$ be arbitrary. Then for every $B \in \mathcal{F}(X)$ we have

$$BD(A) = D(BA) - D(B)A = BAT - TBA - BTA + TBA = B(AT - TA).$$

Accordingly, D(A) - (AT - TA) annihilates $\mathcal{F}(X)$, and, therefore, D(A) = AT - TA.

REFERENCES

- 1. J. Aczél, Lectures on functional equations and their applications, Academic Press, New York, 1966.
- 2. P.R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal., vol. 12 (1973), pp. 275-289.
- 3. B.E. JOHNSON and A.M. SINCLAIR, Continuity of derivations and a problem of Kaplansky, Amer. J. Math., vol. 90 (1968), pp. 1067-1073.
- 4. P. Samuel and O. Zariski, Commutative algebra, Van Nostrand, New York, 1958.

E.K. University of Ljubljana Ljubljana, Yugoslavia