CODIMENSION REDUCTION THEOREMS IN CONFORMAL GEOMETRY

GIULIANO ROMANI¹

Introduction

We give the proof of the analogue, in conformal geometry, of the local version of the Theorem of Erbacher [E], and of theorems related to it.

The theorems obtained can also be viewed as the extension of classical theorems on reduction of codimension of a submanifold of a space of constant curvature to the case of a submanifold of a space locally conformal to a space of constant curvature that is locally conformally flat.

We start from the investigation of the geometric meaning of the nullity of the Willmore conformal forms, \dot{w}_M , of a submanifold M. These conformal forms, introduced in [R], are invariant under conformal changes of the metric of the ambient space \overline{M} .

We prove:

THEOREM. Let \overline{M} be a locally conformally flat manifold. If M is a submanifold of \overline{M} conformally nicely curved in \overline{M} , then $\overset{*}{w}_{M}$ is zero if and only if M is locally contained in a totally unbilical submanifold of \overline{M} of dimension $p = \prod_{r+1}^{r+1} \prod_{r+1}^{r+1} (r+1)$ -conformal osculating space).

From the theorem, we deduce the local conformal version of the Erbacher Theorem (recently proved by Okomura [O] in the case of \overline{M} of constant curvature).

COROLLARY III. Let \overline{M} be locally conformally flat and M a submanifold of \overline{M} . If $\widehat{W}_x M$ has constant dimension and is parallel in the normal bundle of M, then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim M + \dim \widehat{W}_x M$ ($\widehat{W}_x M$ first Willmore space).

Introducing the notion of *conformally parallel distribution along a submanifold*, the analogue in conformal geometry of the notion of parallel distribution along a submanifold in Riemannian geometry, we are able to prove the

© 1994 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received March 25, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A30; Secondary 53B25.

¹Work supported by the M.U.R.S.T. 60% and 40%.

local conformal version of a well known theorem related with the theorem of Erbacher:

COROLLARY I. Let \overline{M} be locally conformally flat. If Δ is a distribution of \overline{M} , conformally parallel along a conformally nicely curved submanifold M of \overline{M} , then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p \leq \dim \Delta$.

Corollary II is the following.

COROLLARY II. Let M be a submanifold of a locally conformally flat manifold \overline{M} . If dim $W_x(M) = \text{const.}$, for k = 1, ..., r and if $WM \oplus \cdots \oplus WM$ is parallel in the normal bundle of M, then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim \Omega_x M$, $x \in M$.

Obviously Corollary III is only Corollary II in the case r = 1, but we have pointed out Corollary III because it is the analog of the Theorem of Erbacher in its local version.

The results of [E] and [O] are global. Our results are local. Since all the spaces of constant curvature are locally conformally flat we have been able to obtain a unitary proof for the three different cases of positive, negative, zero curvature. These cases are treated separately in [E] and [O].

Acknowledgement. The definition of "Conformally parallel distribution," more geometric than my original one, was proposed by the referee. Using it I was able to simplify the proof of Lemma 5 of Section III. I want to thank the referee for this and other suggestions.

I. Preliminaries

Let \overline{M} be a Riemannian manifold endowed with the metric \overline{g} .

If $\sigma: \overline{M} \to \mathbf{R}$ is a function of \overline{M} the manifold \overline{M} , endowed with the metric $\overline{g}^* = e^{2\sigma}\overline{g}$, conformal with \overline{g} , will be denoted by \overline{M}^* . In a similar way the Levi-Civita connections of \overline{g} and \overline{g}^* will be denoted, respectively, by $\overline{\nabla}$ and $\overline{\nabla}^*$.

It is well known that the two connections $\overline{\nabla}$ and $\overline{\nabla}{}^*$ are related by the equality

(1)
$$\overline{\nabla}_{X_x}^* Y = \overline{\nabla}_{X_x} Y + X_x(\sigma) Y_x + Y_x(\sigma) X_x - \overline{g}(X_x, Y_x) (\operatorname{grad}_{\overline{g}} \sigma)_x$$

where, $\operatorname{grad}_{\overline{g}}\sigma$, denote the gradient of σ taken with respect to the metric \overline{g} .

If M is a submanifold of \overline{M} , the second fundamental form of M will be denoted by \hat{s}_M and the mean curvature vector at $x \in M$ by $H_x(M)$. If M is considered as submanifold of \overline{M}^* we shall denote M by M^* its second fundamental form by $\overset{0}{s}_{M^*}$ and the mean curvature vector at $x \in M^*$ by $H_r(M^*)$.

We denote by $N_x M$ (k = 0, 1...) the k-normal space of M at x (with the convention $\overset{0}{N_x}M = T_xM$) and by $\overset{k}{s}_M$ the k-fundamental form of M (for these notions and for related theorems see [S], volume IV, Chapter 7).

In [R] we have defined the k-Willmore space, $\overset{k}{W}_{r}M$, and the k-Willmore form, $\overset{\circ}{k}_{M}$, the analogue, in conformal geometry of submanifolds, of $\overset{\circ}{N}_{M}$ and $\overset{\circ}{s}_{M}$ respectively. Both are invariant under conformal changes of the metric \overline{g} .

The forms $\overset{k}{w}_{M}$ are defined by

(2)
$$\overset{0}{W}_{M}(X_{x}Y_{x}) = \overset{0}{s}_{M}(X_{x}Y_{x}) - \bar{g}(X_{x}Y_{x})H_{x}(M), \quad X_{x}, Y_{x} \in T_{x}M$$

(3)
$$\overset{k}{W}_{M}\left(X_{x},\overset{k}{W}_{x}\right) = P_{\left(T_{x}M\oplus\overset{1}{W}_{x}M\oplus\cdots\oplus\overset{k}{W}_{x}M\right)} \perp \left(\overline{\nabla}_{X_{x}}\overset{k}{W}\right), \quad X_{x} \in T_{x}M_{x}$$

The spaces $\overset{k}{W}_{x}M$ are those generated by the forms $\overset{k-1}{w_{M}}$ in $x \in M$. Using the notion of *r-conformal osculating space* of M at $x, \Omega_{x}M = T_{x}M \oplus \overset{1}{W}_{x}M \oplus \cdots \oplus \overset{r-1}{W}_{x}M$ (r = 1, ...), we can write

$$\overset{k}{W}_{M}\left(X_{x},\overset{k}{W}_{x}\right)=P_{(\overset{k}{\Omega}_{x}M)}\perp\left(\overline{\nabla}_{X_{x}}\overset{k}{W}\right), \quad X_{x}\in T_{x}M, \quad \overset{k}{W}\in\Gamma(\overset{k}{W}M), \quad k>0.$$

If for each k = 1, ..., the dimension of $W_x M$ is constant we say that M is conformally nicely curved in \overline{M} . Obviously that property is invariant under conformal changes of the metric in \overline{M} .

If M is conformally nicely curved we have proved [R] the so called conformal Frenet equations of M. Here we recall the property

(5)
$$\overline{\nabla}_{X_x} \overset{k}{W} \in T_x M + \overset{k-1}{W_x} M \oplus \overset{k}{W}_x M \oplus \overset{k-1}{W_x} M, \quad X_x \in T_x M, \overset{k}{W} \in \Gamma(\overset{k}{W}M)$$

(we assume $\overset{0}{W_x} M = T_x M$).

6. Remark. If, for an $x \in M$, $H_x(M) = 0$ then for each $k = 0, 1, \ldots, N_x M = W_x M$ and $\mathring{s}_m = \mathring{w}_M$.

7. Remark. By definition a point $x \in M$ is umbilical if \hat{w}_M is zero in x.

The conformal invariance of \hat{w}_M implies that each totally umbilical submanifold M of \overline{M} is changed in a totally umbilical submanifold by any conformal change of the metric \bar{g} .

8. PROPOSITION [S.S]. For each point z of any submanifold M of \overline{M} it is always possible to change the metric \overline{g} , around z, in a convenient one, \overline{g}^* , conformal to \overline{g} , in such a way that M, around z, is minimal with respect to \overline{g}^* .

In particular from Remark 7 and Proposition 8 we can deduce:

9. PROPOSITION. It is always possible, with a convenient conformal change of the metric \overline{g} , to change locally a totally umbilical submanifold M of \overline{M} , in a totally geodesic submanifold.

Let *l* such that $W M \neq 0$ and W M = 0 or, equivalent, such that $\stackrel{l-2}{w_M} \neq 0$ and $\stackrel{l-1}{w_M} = 0$. The number $s = \dim(T_x M \oplus \stackrel{1}{w_x} M \oplus \cdots \oplus \stackrel{l-1}{W_x} M) = \dim(\Omega_x M)$ is called the *conformal number of the immersion* $M \to \overline{M}$.

Finally we recall the two theorems that we generalize to the case of conformal geometry.

10. THEOREM (Erbacher [E]). Let \overline{M} be a manifold of constant curvature. If M is a submanifold of \overline{M} and the first normal space of M, $N_x M$, is of constant dimension, and is parallel in the normal bundle of M, then M is contained in a totally geodesic submanifold of \overline{M} of dimension $p = \dim M + \dim N_x M$.

11. THEOREM [S]. Let \overline{M} be a manifold of constant curvature. If Δ is a distribution of \overline{M} defined along M, containing the tangent space of M and parallel along M, then M is contained in a totally geodesic submanifold of \overline{M} of dimension $p = \dim \Delta$.

Theorem 11 is stated also in [E] in a quite different version related with the higher normal spaces of M in \overline{M} .

II. Inverse part of the theorem

INVERSE PART OF THE THEOREM. If $\dot{w}_M = 0$ then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim \Omega_x M$.

Before doing the proof we prove some lemmas and propositions.

For any fixed point of $z \in M$, Proposition 8 of Section I asserts that we can choose a metric $\overline{g}^* = e^{2\sigma}\overline{g}$ in \overline{M} and a neighborhood U_z of z in M such that

(1)
$$H_x(M^*) = 0, \quad x \in U_z.$$

Denote $\overset{1}{W_x}M \oplus \cdots \oplus \overset{r}{W_x}M$ by $W_x^{(r)}M$.

Let \dot{M}^* be a submanifold of $\overline{\dot{M}^*}$ which is a tubular neighborhood of U_z in the set of the points

$$y = \exp_x^* w_x, \quad x \in U_z,$$

where \exp_x^* is the exponential of \overline{M}^* at $x \in M$ and w_x has to be chosen in some neighborhood of the origin of $W_x^{(r)}M$. It is clear that for $x \in U_z$,

$$T_x \mathring{M}^* = T_x M \oplus W_x^{(r)} M = T_x M \oplus \mathring{W}_x M \oplus \cdots \oplus \mathring{W}_x M = \overset{r+1}{\Omega}_x M$$

2. Lemma.
$$\overset{0}{w_{M^*}} = 0, x \in U_z$$
.

Proof of Lemma 2. For each $x \in U_z$, $W_x^{(r)}M \perp T_xM$; moreover each vector of $W_x^{(r)}M$ can be extended in a tangent vector field of \dot{M}^* , parallel in \overline{M}^* , along its direction. Consequently, denoting with X_{α}^* an orthonormal basis in T_xM^* and with w_{β}^* an orthonormal basis in $W_x^{(r)}M^*$, for $x \in U_z$ we have

$$H_{x}(\vec{M}^{*}) = \frac{1}{\dim \vec{M}^{*}} \left[\sum_{\alpha} {}^{0}_{S_{\vec{M}}^{*}}(X_{\alpha}^{*}, X_{\alpha}^{*}) + \sum_{\beta} {}^{0}_{S_{\vec{M}}^{*}}(w_{\beta}^{*}, w_{\beta}^{*}) \right]$$

$$= \frac{1}{\dim \vec{M}^{*}} \sum_{\alpha} {}^{0}_{S_{\vec{M}}^{*}}(X_{\alpha}^{*}, X_{\alpha}^{*})$$

$$= \frac{1}{\dim \vec{M}^{*}} \sum_{\alpha} {}^{P}_{\perp_{x}\vec{M}^{*}} \left(\overline{\nabla}_{X_{\alpha}^{*}}^{*} X_{\alpha}^{*} \right)$$

$$= \frac{1}{\dim \vec{M}^{*}} {}^{P}_{\perp_{x}\vec{M}^{*}} \left(\sum_{\alpha} {}^{M^{*}}_{\nabla_{X_{\alpha}^{*}}} X_{\alpha}^{*} + \sum_{\alpha} {}^{0}_{S_{M}^{*}}(X_{\alpha}^{*}, X_{\alpha}^{*}) \right) = 0$$

 $(\nabla$ connection on M^* induced by the connection $\overline{\nabla}^*$). In particular

and we can compute $\overset{0}{w}_{\dot{M}^*}$ at the points $x \in U_z$, computing $\overset{0}{s}_{\dot{M}^*}$. As observed before, for $w_x \in W_x^{(r)}M$, $\overset{0}{s}_{\dot{M}^*}(w_x, w_x) = 0$. Then since $\overset{0}{s}_{\dot{M}^*}$ is bilinear and symmetric for $w_x, w'_x \in W_x^{(r)}M$,

(4)
$${}^{0}_{S\dot{M}^{*}}(w_{x},w_{x}')=0.$$

For $X_x \in T_x M$ and $w \in \Gamma(W^{(r)}M)$ from conformal Frenet equations of M^* in \overline{M}^* , (5) of Section I, and by hypothesis $\dot{w}_M = 0$,

$$\overline{\nabla}_{X_x}^* w \in T_x M \oplus W_x^{(r)} M = T_x M^{\prime *}$$

and then

(5)
$${}^{0}_{S_{M}^{*}}(X_{x}, w_{x}) = P_{\perp_{x}M^{*}}(\overline{\nabla}_{X_{x}}^{*}w) = 0$$

If $X_x, Y_x \in T_x M$ from (1) and Remark 6 of Section I,

$$\overset{1}{N_x}M^* = \overset{1}{W_x}M^* = \overset{1}{W_x}M \subset T_x \acute{M}^*$$

and then

(6)
$${}^{0}_{S\dot{M}^{*}}(X_{x},Y_{x}) = P_{\perp_{x}\dot{M}^{*}}(\overline{\nabla}_{X_{x}}^{*}Y) = P_{\perp_{x}\dot{M}^{*}}(\overset{M^{*}}{\nabla}_{X_{x}}Y + \overset{0}{s}_{M^{*}}(X_{x},Y_{x})) = 0$$

and Lemma 2 follows from (3), (4), (5), (6).

Since \overline{M} is locally conformally flat, it is locally conformal with the Euclidean space $\mathbf{E}^{\overline{m}}$, $\overline{m} = \dim \overline{M}$, with the canonic metric \langle , \rangle .

We shall denote with M^e and M^e , respectively, the submanifolds M^* and M^* as submanifolds of \overline{M} endowed with the metric \langle , \rangle of $\mathbf{E}^{\overline{m}}$. Lemma 2 and conformal invariance of the form $\hat{\psi}$ allow us to assert the next result.

7. PROPOSITION. The points of U_z are umbilical points of \dot{M}^e :

$${}^{0}_{\check{M}^{e}}(\check{X}_{x},\check{Y}_{x}) = \langle \check{X}_{x},\check{Y}_{x}\rangle H_{x}(\check{M}^{e}), \quad x \in U_{z}.$$

For $m = \dim M \ge 2$, the proof of Lemma 25 of Volume IV of Spivak [S], works to prove the next result if we denote by D the standard connection of $\mathbf{E}^{\overline{m}}$:

8. PROPOSITION. $|H_x(M^e)|$ is constant on M and for $x \in U_z, X_x \in T_x M$,

$$D_{\dot{X}_x}H(\dot{M}^e) = -\left|H_x(\dot{M}^e)\right|^2 \dot{X}_x \qquad \Box$$

(If dim M = 1 our theorems are obviously true because M is always totally umbilical.)

278

As an immediate consequence of Proposition 8 we have that $H_x(M^e)$ is always zero, or is always different from zero along U_z and then:

9. LEMMA. The distribution along U_z ,

$$\Delta_x = T_x \mathring{M}^e \oplus \left\{ H_x(\mathring{M}^e) \right\} \left(= \mathring{\Omega}_x M \oplus \left\{ H_x(\mathring{M}^e) \right\} \right), \quad x \in U_z,$$

is of constant dimension.

Moreover we have

10. PROPOSITION. The distribution along U_z ,

$$\Delta_x = T_x \mathring{M}^e \oplus \left\{ H_x(\mathring{M}^e) \right\} \left(= \mathring{\Omega}_x M \oplus \left\{ H(\mathring{M}^e) \right\} \right), \quad x \in U_z,$$

is parallel in $\mathbf{E}^{\overline{m}}$. In particular M is contained in a totally geodesic submanifold of $\mathbf{E}^{\overline{m}}$ with dimension $q = \dim \Delta_x$.

Proof of Proposition 10. Immediate from Proposition 7, Proposition 8, and Theorem 11 of Section I. \Box

And now we are able to prove the inverse part of the theorem.

If $H_x(\dot{M}^e)$ is identically zero for $x \in U_z$ we deduce from Proposition 10 that U_z is contained in a totally geodesic submanifold of $\mathbf{E}^{\overline{m}}$ of dimension $p = \dim \dot{M}^e = \dim \Omega_x$ and then U_z is contained in a totally umbilical submanifold of \overline{M} of the same dimension and the inverse part of the theorem is proved in that case.

If $H_x(M^e) \neq 0$ we consider a curve x(t) of U_z and we denote with $X_{x(t)}$ its tangent vector at the point x(t). Using Proposition 8 we obtain

$$\begin{aligned} \frac{d}{dt} \left(x(t) + \frac{1}{\left| H_{x(t)}(\dot{M}^{e}) \right|^{2}} H_{x(t)}(\dot{M}^{e}) \right) &= X_{x(t)} + \frac{1}{\left| H_{x(t)}(\dot{M}^{e}) \right|^{2}} D_{X_{x(t)}} H_{x(t)}(\dot{M}^{e}) \\ &= X_{x(t)} - \frac{\left| H_{x(t)}(\dot{M}^{e}) \right|^{2}}{\left| H_{x(t)}(\dot{M}^{e}) \right|^{2}} X_{x(t)} \\ &= 0. \end{aligned}$$

Then the point

$$y = x + \frac{H_x(\dot{M}^e)}{\left|H_x(\dot{M}^e)\right|^2}$$

does not depend on the choice of x on U_z ; moreover, from Prop. 8,

$$|y\vec{x}| = \frac{\left|H_x(\vec{M}^e)\right|}{\left|H_x(\vec{M}^e)\right|^2} = \frac{1}{\left|H_x(\vec{M}^e)\right|} = \text{const. on } U_z$$

and then U_z is contained in a sphere of $\mathbf{E}^{\overline{m}}$. But Proposition 10 says that it is also contained in an affine space of $\mathbf{E}^{\overline{m}}$ of dimension $q = \dim M + 1 =$ dim $\Omega_x^{(+1)}M$ + 1, and then in a totally umbilical submanifold of \overline{M} of dimension $p = q - 1 = {r + 1 \over \Omega_x} M$, so the inverse part is proved also in that case.

III. Direct part of the Theorem

DIRECT PART OF THE THEOREM. If M is contained in a totally umbilical r+1submanifold of \overline{M} of dimension $p = \Omega_x M$ then $\dot{w}_M = 0$.

We start proving some lemmas and propositions.

1. DEFINITION. Let Δ be a distribution along the submanifold M of \overline{M} . Δ is called conformally parallel if

(i) $T_x M \oplus W_x M \subset \Delta_x$, $x \in M$, (ii) the normal part of Δ is parallel in the normal bundle.

From (1) of Section I we can deduce that Definition 1 is conformally invariant.

The following lemma give a relation between parallel and conformally parallel distributions.

2. LEMMA. If Δ is a parallel distribution along a submanifold \tilde{M} of \overline{M} such that for each $x \in \overline{M}$,

$$T_x \tilde{M} \subset \Delta_x$$
,

then Δ is also conformally parallel.

280

Proof. For $X_x \in T_x \tilde{M}$ and $Y \in \Gamma(T\tilde{M})$ we have $\overline{\nabla}_{X_x} Y \in T_x \tilde{M} \subset \Delta_x$. From the parallelism of Δ_x we also have $\overline{\nabla}_{X_x} Y \in \Delta_x$. Then

$${}^{0}_{\tilde{\mathcal{M}}}(X_{x}Y_{x}) = \overline{\nabla}_{X_{x}}Y - \overset{\tilde{\mathcal{M}}}{\nabla}_{X_{x}}Y \in \Delta_{x}$$

and $\overset{1}{N_x} \tilde{M} \subset \Delta_x$. But $\overset{1}{W_x} \tilde{M}_d \subset \overset{1}{N_x} \tilde{M}$ and condition (i) follows. Take $X_x \in T_x \tilde{M}$ and $\tilde{Y} \in \Gamma(\Delta \cap \perp \tilde{M})$. The parallelism of Δ implies $\overline{\nabla}_{X_x} \tilde{Y} \in \Delta_x$ and then $P_{\perp \tilde{M}}(\overline{\nabla}_{X_x} \tilde{Y}) \in \Delta_x \cap \perp_x \tilde{M}$, which is condition (ii).

3. Remark. Lemma 2 implies that the tangent space to a totally geodesic submanifold \hat{M} is a conformally parallel distribution along \hat{M} and along each submanifold M of \overline{M} . Using Proposition 9 of Section I we can extend Remark 3 to the following lemma.

The tangent space to a totally umbilical submanifold \tilde{M} is a 4. Lemma. conformally parallel distribution along \overline{M} and along each submanifold M of \widetilde{M} .

We recall that we have denoted by l the integer such that $\stackrel{l-2}{w_M} \neq 0$ and $\stackrel{l-1}{w_M} = 0$, and by $s = \dim \Omega_x M$ the conformal number of immersion $M \to \overline{M}$. $M \to M$

By induction from Definition 1, using (4) and (5) of Section I we deduce:

5. LEMMA. If Δ is a conformally parallel distribution along M then for each $x \in M$ and i = 0, 1, ..., l, $\overset{l}{W_x} M \subset \Delta_x$; in particular $\overset{l}{\Omega_x} M \subset \overset{l}{\Delta_x}$ and dim $\Delta_x \ge s$.

Suppose M contained in a totally umbilical submanifold \tilde{M} of \overline{M} . By Lemma 4, $T\tilde{M}$ is conformally parallel along M. By Lemma 5, $\Omega M \subset T\tilde{M}$. If dim $\tilde{M} = \dim \Omega M$ we have $\Omega M = \Omega M = T\tilde{M}$; in particular $\dot{w}_M = 0$ and the direct part of the theorem is proved.

IV. Corollaries

From Lemma 5 of Section III and the inverse part of the theorem, we have:

1. COROLLARY I. Let \overline{M} be locally conformally flat. If Δ is a distribution of \overline{M} , conformally parallel along a conformally nicely curved submanifold M of \overline{M} , then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p \leq \dim \Delta$.

Suppose that, for a given submanifold M of \overline{M} , for each i = 1, ..., r, we have $W_x M = c(i) = \text{const.}$ Moreover suppose $WM \oplus \cdots \oplus WM$ is parallel in the normal bundle of M.

By property (5) of Section I it follows that $W_x M = 0$ for $x \in M$. In particular M is conformally nicely curved in \overline{M} and $\dot{w}_M = 0$. Using the inverse part of the theorem we obtain:

2. COROLLARY II. Let M be a submanifold of a manifold \overline{M} locally conformally flat. If dim $W_x(M) = \text{const.}$ for $k = 1, \ldots, r$ and if $WM \oplus \cdots \oplus WM$ is parallel in the normal bundle of M, then M is locally contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim \Omega_x M$, $x \in M$. \Box

As observed in the introduction, for r = 1, Corollary II gives:

COROLLARY III. Let \overline{M} be locally conformally flat and M a submanifold of \overline{M} . If $W_x M$ has constant dimension and is parallel in the normal bundle of M, then M is contained in a totally umbilical submanifold of \overline{M} of dimension $p = \dim M + \dim W_x M$. \Box

REFERENCES

- [E] J. ERBACHER, Reduction of the codimension of an isometric immersion, J. Differential Geometry, 5 (1971), 333-340
- [O] M. OKUMURA, Conformal first normal space of a submanifold, preprint.
- [R] G. ROMANI, Conformally invariant forms for submanifold. Seminario Matematico dell'Universitá e del Politecnico di Torino, to appear.
- [S] M. SPIVAK, A comprehensive introduction to differential geometry, vol. IV, Chapter 7, Publish or Perish. Houston, Texas, 1979.
- [S.S] Schouten and STRUIK, Un théorème sur la transformation conforme dans la géométrie différentielle à n dimensions, Comptes Rendus Acad. Paris, 176 (1923), 1597-1600)

Università di Roma "La Sapienza" Rome