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PETTIS INTEGRALS AND SINGULAR INTEGRAL
OPERATORS

BRIAN JEFFERIES AND SUSUMU OKADA

Introduction

The present note is concerned with conditions guaranteeing the integrabil-
ity of operator valued functions acting on spaces L’(Rn) for 1 < p < oo. To
set the stage, some definitions and notation need to be fixed. Let E be a
locally convex space. Let (f, ’,/x) be a measure space. A scalarly/x-mea-
surable function " f E is said to be Pettis ix-integrable if

for every s E’, and for every A a, there exists a vector /x(A) E
such that (/x(A), s) fA((to), st) d/x(to) for all s E’. In the context of
Banach spaces, the notion of a vector valued function being integrable in this
sense is, perhaps, less widely used than the familiar notion of Bochner
integrability. If X is a Banach space with norm I1" II, then a function :
f--, X is said to be strongly ix-measurable if it is the limit /z-a.e. of a
sequence of X-valued --simple functions. If is strongly /x-measurable,
then the function II I1: --’ [0, oo) defined by (o,)  ( o)II for all
to fZ is /x-measurable, and is said to be Bochner tz-integrable if
fllq’ll d/x < oo. In this case, there exist X-valued e-simple functions sm,
rn 1,2,..., such that limm_,oo fllq -Smll d/z 0, and so for each A
a, if /x(A) E is defined by

/z(A) moolim fASm dtx,

then

(*/z(A), ) fn(*(to), ) d/z(to)

for all sr X’, as required for the definition of Pettis integrability.
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The difference between Pettis integrability and Bochner integrability is
essentially the difference between the absolute summability of a sequence
and the unconditional summability of a sequence in a Banach space. Explic-
itly, if fI is the set N of counting numbers, ’ is the collection of all subsets
of N and is counting measure, then a sequence " N X with values in
the Banach space X is Bochner /x-integrable if and only if {xI(m)}n= is
absolutely summable in X, that is, =lll(m)ll < o. On the other hand,
the function W is Pettis/z-integrable if and only if {W(m)}n= is uncondition-
ally summable in X, which is to say that there exists Em rW(m) X such
that for every neighbourhood U of 0 in X, there exists a finite subset J of N
such that -’m NW(m) ’m i(m) U for every finite set K J. A
theorem of Dvoretsky-Rogers ensures that in every infinite-dimensional Ba-
nach space, there exists an unconditionally summable sequence which fails to
be absolutely summable [Day].
The Pettis integral has been used to explore the geometric properties of

Banach spaces [Tal] and there is a sense that it is an integration process
"deeper" than the Bochner integral; for example, G.A. Edgar [Edg, Theorem
4.2] has shown that the assertion "for every Banach space X, each bounded
and scalarly measurable function xF: [0, 1] X is Pettis integrable with
respect to Lebesgue measure" is independent of the usual axioms of set
theory (ZFC).
The purpose of this note is to indicate that even for the spaces LP(Rn),

1 < p < oo, which are well understood from the point of view of Banach
space geometry, conditions ensuring the Pettis integrability of operator
valued functions acting on LP(R), 1 < p < oo, are closely related to funda-
mental problems in harmonic analysis--the boundedness of singular integral
operators. The observation may not be new, although as far as we know it
was first exploited in [Jef]. However, it does seem worthwhile to make an
explicit note of it in a context more general than that considered in [Jef].

In section 1, the integrability of convolution-valued functions on LP(Rn),
1 < p < oo, is deduced from an obvious estimate in terms of the Bochner
norm; see Proposition 1.1. This contrasts with the main result, Theorem 2.7
in Section 2, where the convolution-valued function acting on LP(Rn),
1 < p < oo, is only Pettis integrable, and its integral is associated with a
singular integral operator. The relationship between the Pettis integral and
singular integral operators is made explicit in Section 3 with the example of
the Hilbert transform.
The techniques used in proving our results are an unusual combination of

arguments concerning summability in a Banach space, applied here to the
spaces LP(Rn), 1 < p < oo, and methods from real-variable harmonic analy-
sis. The main idea is to use Marcinkeiwicz’ interpolation theorem to provide
a candidate for the indefinite integral. We then need to check that the
operators so defined are actually the values of the integral. It is feasible that
general arguments guaranteeing the Pettis integrability of Banach space
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valued functions, see [Tal], could profitably be applied to the proof of the
boundedness of singular integral operators by exploiting the connection
outlined in this note.

1. Integrability of convolution-valued functions

Let E be a locally convex space. Let (f, , IX) be a measure space. A
function : f E is said to be scalarly ix-measurable if the function
o ((o), ), o f, is ix-measurable for each : E’. The function is
said to be scalarly ix-integrable if it is scalarly ix-measurable and
fa[ ((o), )1 dix(w) < 0% for every E’.

In the case that X is a Banach space and E .’(X), the space of
continuous linear operators on X endowed with the strong operator topoi-
ogy, the notion of Pettis integrability translates as follows. A scalarly ix-mea-
surable function : f .za(X) is Pettis ix-integrable whenever

for every x X and X’, and for every A ’, there exists an operator
ix(A) .W(X) such that (ix(A)x, sc) fa((w)x, sc) dix(o) for all x

X and : X’. The existence of ix(A)x X satisfying the preceding
equality for each x X and A ’ ensures that the linear map x
ix(A)x, x X, is continuous, by the closed graph theorem. If for each

x X, the function defined by x(o) (o)x, o 2, is Bochner ix-inte-
grable, then it follows that is Pettis ix-integrable in .W(X). A simple
condition ensuring Bochner integrability is given in this section.

Let n be a positive integer. The inner product E. x.yj of two vectors
x (Xl,..., Xn), and y (yl,..., Yn), in R is denoted by (x, y). The
associated norm of R is written as 1. I. Where necessary, the Lebesgue
measure on R is denoted by A; it is taken to be defined on the collection
(Rn) of all Borel subsets of Rn. For each 1 < p < 0% the space
LP(Rn,,.(Rn),A) is denoted simply by LP(Rn); the norm of LP(Rn) is
denoted by lip, as usual. The occasional confounding of a function with its
equivalence class modulo null functions causes no confusion in the present
context.

For a function f LZ(Rn) O LI(R"), the Fourier transform f LZ(Rn) of
f is defined by

f(X) fR,,e-i(x’6>f() d, x - Rn

and the Fourier transform is extended to all of L2(Rn) by continuity. We set



PETTIS AND SINGULAR INTEGRALS 253

-f f for all f L2(Rn). The same notation is adopted for functions
f LI(Rn), so, where appropriate, o- also denotes a continuous linear map
from LI(Rn) to the space of continuous functions vanishing at infinity.
For the L2(Rn) case, on denoting the adjoint of the bounded linear

operator

r: L2(Rn) L2(Rn)

by r., the Fourier-Plancherel theorem asserts that

1,.-1
(2,rr)

n

For each j" 1,..., n, let Dj be the self adjoint extension of the opera-
tor (1/i)O/Oxj defined on the space of all smooth functions of compact sup-
port and set D (D1,...,Dn). For all f,g L2(Rn), set (f,g)=
fInf(x)g( x) dx.
Given a bounded Borel measurable function b: R C, the operator

is defined by

t(D): L2(Rn) - L2(Rn)

[b(D)f] b. 3 for all f L2(Rn).

The operator b(D) corresponds to the operator obtained from the functional
calculus for the n-tuple D of commuting self adjoint operators. Suppose that
q belongs to the space Zl(Rn). Then q belongs to the space C0(Rn) of
continuous functions on R vanishing at infinity, and we have

[q(D)f] .j f Lz(Rn).

Because [4’ * f]^ g.f, we have (D)f d/ f for all f L2(R"). Recall
that for all 1 <p<o% O LI(Rn) and fLP(Rn), the function q,,f
belongs to LP(Rn) and

I1 * flip IlOlllllfllp [Hew-Ro, p 298].

Define (D)f g/ f for all f LP(Rn), that is, it will prove convenient to
denote the bounded linear operator of convolution with O, defined on each
space LP(Rn), 1 < p < 0% by (D); the identities above, valid on L2(Rn),
explain the origin of the notation.

Let (t2,,’,/x) be a g-finite measure space. Let (I): f--, LI(Rn) be a
function. Let r(I): 12 L(Rn) be the function defined by rO(to)=
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r[(to)] for every to f. Set o,(D)f (to). f, for every f LV(Rn),
1 < p < 0% and every to f.
The following basic result gives a sufficient conditions for the integral of a

convolution-valued function to define a bounded linear operator on Lp(Rn).

1.1 PROPOSITION. Let t:I): ’ --> LI(Rn) be a Bochner ix-integrable function.
Let 1 < p < . Then for each f LP(Rn), the function to dPo(D)f, to 12,
is Bochner integrable in LP(Rn).

Proof The product tr-algebra of ’ and (Rn) is denoted by ’(R) (Rn).
The space Ll(f, LI(Rn))of Ll(Rn)-valued Bochner/z-integrable functions is
isomorphic to

LI( X Rn, ,_’(R) (Rn),/.t (R) A) [O U, Example VII.I.10],

so corresponding to P: 12 - LI(Rn), there exists an integrable function b:
12 R C such that for each f LP(Rn) and for almost every 12, the
function (to, ). f is a representative of the equivalence class dPo,(D)f.
The function (to, x) [th(to," )* f ](x), to 12, x Rn, is jointly measur-

able and

fl[(o, .), f II, d(o) < Ilfll,fll(o, ")Ill

by [Hew-Ro, p 298]. It follows that the function to ,(D)f, to 12, is
strongly measurable in LP(Rn) and

1.2 Remark. In Section 3, we shall see that in the cases where the
integral of the function : f --+ LI(Rn) is associated with a singular integral
operator, there exists an element f LP(Rn) for which the function to

,,(D)f, to f, is not Bochner integrable in L’(Rn).

2. Pettis integrability of convolution-valued functions

Let (I1, ’,/,) be a tr-finite measure space. We first establish conditions
for which a function : I1 LI(Rn) defines a Pettis integrable operator
valued function to ,o(D), to f, acting on L2(Rn).
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The space L(Rn) endowed with the weak*-topology tr(L(Rn), LI(Rn)) is
written simply as L(R").

2.1 LEMMA. (i) /f : -- LI(Rn)/s scalarly measurable function, then the
function q-: L(R") is scalarly measurable in L(Rn).

(ii) If rdp is scalarly integrable in L(Rn), then -dp is Pettis integrable in
L(R’), and

sup{fn[(oqr(to), f)[ d/x(to)" f LI(Rn), Ilfl[1 1} < oo.

Proof. Assume that : f -o LI(Rn) is scalarly measurable. The adjoint of
the linear map

#r: L(R,) LOO(R,),

is again the Fourier transform ,-, so

( rcp(to), f) ( (I)(), .grf)

for all f LI(Rn) and to f. If is scalarly measurable, then it follows
that r is scalarly measurable.
The proof of the second assertion follows from the closed graph theorem

[D-U, p. 53], but it may also be seen directly, as follows.
There exists a countable subset H of the closed unit ball of LI(Rn) so that

Ilglloo sup{l(g,f>l: h H}

for all g L(Rn). If r’ is scalarly measurable in Z(Rn),r then it follows
that the function II-ll is measurable. Set ’m {to ’]: I1(o,)11 _< m},
m 1, 2, Then for each A ,/and m 1, 2,..., the linear functional

f 5 LI(Rn),

is continuous on LI(Rn), so there corresponds a vector

such that

nA
ogr(I)(to) d/z(to) L(Rn)

nA
-(to) d/z(to), f ) f. f )

n
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for all f LI(Rn). Moreover, the scalar integrability of ensures that the
sequence of vectors

f -(o) d/z(o), rn 1,2,...,
mf3A

is Cauchy in Z(Rn)r which is a sequentially complete space, so there exists
a unique limit

fA*(o) dm( o)

as m with the property that

for all f LI(Rn).
It follows that is Pettis -integrable. Consequently, the set

w=

is bounded in Z(Rn), and so norm bounded in L(R). Therefore,

gW

2.2 Note. If is scalarly integrable in LI(Rn), then is scalarly
integrable in Z(Rn)r. However, the converse may not hold, in general. This
is typical of the situation where the integral of the operator valued function
o (o,(D), o f, acting on L2(Rn) is associated with a singular integral
operator; see Example 3.1. []

2.3 THEOREM. If rcb. L(Rn) is scalarly integrable in ZO(Rn)r then
the operator valued function oo dpoo(D) oo , is Pettis integrable in
-za(L2(Rn)), and for all A ,/,

i1_ suo(f .< f) idl.l,(oo)’fLl(Rn), [if ill-< 1).
Furthermore, for each f L2(Rd) and A ,.ca, the equality

z-fA,o( D)fdlx( o) f,.z-( oo) dlz( oo).f

holds.
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Proof First, - is Pettis integrable in L(Rn)r by Lemma 2.1. Because
L2(Rn) is a separable reflexive Banach space, it suffices to prove that for each
f L2(Rn), the function o) +oo(D)f, w 1), is scalarly integrable in
L2(Rn); see, for example, [D-U, Theorem 11.3.7].

Let f and g be elements of the closed unit ball of L2(Rn). Then

ffl((O)f, g)ldlx(oo) (2’n’) ff[((O)f, c-*’g)ldtx(oo )

In the last term, f. LI(Rn), where the brackets represent the duality
between L(Rn) and LI(Rn). Furthermore, Ill" lla _< (27r)n, so the required
operator bound follows as f and g range over the unit ball of L2(Rn).

Let f L2(Rn). The equalities

ff(+,o(D)f, g) d/x(6o) (2’n’) ft2(+,o(D)f, ,.-*.z-g) dl(a))

(2T/’)
-n

for g e Le(Rn) ensure that f(D)fd() f()d(),f holds
because,

for all h

2.4 COROLLARY. There exists a constant M > 0 such that the inequality

fA,o( D)fdl-( oa ) (x)> --Ilfl12
holds for all a > O, f L2(Rn) and A ..; that is, the family
fA,o(D) d(to): A ,_/’} of operators is uniformly of weak-type (2, 2).

The following result of Benedek-Calder6n-Panzone [Tor, Theorem XI.1.1]
is basic to proving ,Pettis integrability in the present context. For each
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X0 Rn and R > 0, let

n(x0, R) {x Rn: Ix x0l <

The collection, modulo null functions, of all bounded measurable functions
with compact support in R is denoted by Z(Rn).

2.5 THEOREM. Let T be a sublinear operator from L(Rn) into the space of
measurable functions. Suppose that T satisfies the following two conditions:

(i) There exists a constant r satisfying 1 < r < 0% for which T is of weak-type
(r, r); more precisely, there exists a constant c > 0 such that for all f L(R")
and a > O,

rA({I Tfl > }) cllfllrr.
(ii) There exist constants c2 > 1 and c3 > 0 such that given xo R and

R > O, the inequality

Izf(x)ld c311fll
n\B(xo,c2R)

holds for every f L(R) with the property that supp f __. B(x), R) and

fo f(x) dx O.
(Xo, R)

Then T is an operator of weak-type (1, 1); that is, there exists a constant
ca > 0 such that

A{IZfl > a} c411fll

for all f LT(Rn) and a > O. Moreover, C4 depends only on Cl, C2, C3 and n.

The translate x f(x + a), x Rn, of a function f: Rn ----> C by an
element a R is denoted by fa" Given a property P(x) concerning ele-
ments x of R, it proves convenient to denote the set {x Rn: P(x)} by
{P(x)}, with the understanding that x is a generic element of R.

2.6 LEMMA.
function

Let q: f - LI(R") be a scalarly measurable function. The

((..0, y) )-") ( (1)( (..0)-y (1)((..0), X{ix 2]yl}) o) ( , ,’ ( Rn,

is jointly ’(R) (Rn)-measurable.
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Proof. The result is easily seen to be true if is an Ll(Rn)-valued simple
function. Because LI(Rn) is separable, a scalarly measurable function with
values in LI(Rn) is strongly measurable, so the general result follows on
taking limits in LI(Rn) of Ll(Rn)-valued simple functions. D

2.7 THEOREM. Let : LI(Rn) be a scalarly measurable function.
Suppose that the following two conditions hold:

(i) r:
__
L(Rn) is scalarly integrable in Z(Rn),.

(ii) There exists a constant c > 0 such that

), X,,x, >_ >1 a -< c for all y 4= O.

Then, the operator valued function to ,o(D), to , is Pettis integrable
in ..(LP(Rn)) whenever 1 < p <

Proof. According to Theorem 2.3, the function to c,o(D)f, to f, is
Pettis /x-integrable in L2(Rn) for each f L(Rn), so set TAr=
fAo,(D)fdtx(to) for every f L(R") and A ’. For each A ,a, the
function TAf is square-integrable on R, and by Corollary 2.4, TA is a
weak-type (2, 2) operator from L(Rn) to the space of measurable functions.
We see that TA is of weak type (1,1) by appealing to Theorem 2.5, as follows.

Let x0 R and R > 0. Let f be a bounded measurable function such
that supp f

_
B(xo, R) and fB(x),R)f(x)dx O. Then for each to 12,

o,( D)f(x) fib,dO(to)( x y)f(y) dy

[ dO(to)(x y)f(y) dy
"B(Xo, R)

fB(xo, t((to)(x y) (to)(x Xo))f(y ) dy.

Let un be the characteristic function of the set {x Rn: IX X 01 > 2R}. If
11 denotes the integral f\mo.2mlZAf(X)l dx, then

11 Ilu.ZAflll Ul di,o ( D)fdtz ( to )

The set of all g L=(R) N L2(R") satisfying Ilgll _< 1 is a norming set for
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LI(Rn), so it follows that

Suppose that g is an element of L(Rn) L2(R’) with I111oo _< 1. Let 12
denote the integral

-*(w)(X Xo))f(y) dy ] dxdl(to).

The function (x, y) UR(X)g(x)((to)(X y) (to)(X Xo))f(y), X, y
Rn, is Borel measurable for each to , because (w) LI(Rn). Hence, by
Tonelli’s theorem,

(xo, R

(x),R)

-@()( xoll]lf(yllaya.()
f.f, I,()(x- y +Xo)

(xo, R) l>2ly-Xol

Then
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Now the function

(w, y) ( dp((.O)_y f(O)), X{lxl>21yl 0.) ", y Rn,

is jointly ,/(R) ,(Rn)-measurable according to Lemma 2.6, so by Tonelli’s
theorem,

ffn(xo, R)[ flxl> 21y-xolI(I)(w)(x y + Xo) (oa)(x)ldx]lf(y)ldydz(oo)
=fo If(y)lfn[f I())( x -y +x0)

(xo, R) 1>21y-x0l

ay

<_ cf, If(y)ldy.
B(Xo, R)

Therefore, condition (ii) of Theorem 2.5 is satisfied with c3 independent of
A , and TA is an operator of weak-type (1, 1), with the constant c4 of
Theorem 2.5 independent of A . The proof of Theorem 2.7 is com-
pleted by appealing to the following lemmas.
The following result is proved, in greater generality, in [Thl, 0.2] by

appealing to the Banach-Dieudonn6 theorem.

2.8 LEMMA. Let 1 < p < o and let 1 < q < oo be defined by 1/p + 1/q
1. Suppose that H is a subset of Lq(R) with dense linear span. Let {fi}=1 be a
sequence of functions in L’(Rn) satisfying the property that for every subse-
quence s fi}=1 of {fi} 1, there exists a function gs LV(R’) such that
(gs, h) Ek=l(fj: h) for all h H.
Then {fj}7= is unconditionally summable in LP(Rn) and g Y’:=f. for

every subsequence s {f}=l of {fi}= 1.

2.9 LEMMA. Let 1 < p < 2. Then for each f L(R"), the function oo
oo(D)f, o 12, is Pettis tx-integrable in LV(R"). Furthermore, there is a
constant ap > 0 such that

for every f Z(Rn) and A ’.
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Proof. In view of the conclusion of Theorem 2.5, the result follows from
the Marcinkiewicz interpolation theorem [Tor, Theorem IV.4.1], given that
TA is of weak-type (1, 1) and weak-type (2, 2), uniformly for each A
However, a small modification (implicit in [Tor, Theorem XI.3.1]) needs to be
made to the proof. We then need to check that the operators so obtained are
actually the values of an indefinite integral.

Let f be an element of Z(Rn). Then T,4 f fo,(D)fdlz(to) is a square-
integrable function on Rn, for every A ,a. If f is real valued, then for any
y > 0, the truncation XFf of f on the set F {x Rn: Ill < /} belongs to
Z(Rn) too. For complex valued f, write it as the sum of its real and
imaginary parts. The proof of [Tor, Theorem IV.4.1] now establishes that for
any 1 < p < 2, there is a constant ap > 0 such that

for every A ’. Furthermore, the constant a, is independent of the choice
of f L(Rn). In particular, the assumption in [Tor, Theorem IV.4.1] that T
is already defined on LI(Rn) + L2(R) is superfluous; the weak-type (1, 1)
and weak-type (2, 2) constants do not depend on A , so ap does not
depend on A a either.

It still needs to be established that the function to o,(D)f, to 12,is
Pettis /x-integrable in Lt(Rn), and that for every A a and every g
Lq(Rn) with 1/p + 1/q 1, the equality (TAf, g) f(80(D)f, g) dtz(to)
is valid. This follows from [Th2, Corollary 5.1], but we give a direct proof in
the present context.

According to Theorem 2.3,

(Tqf, g) fA(,o(D)f,g) dl.(to)

for all g Lq(R") n L2(IIn) and A ,. The function to IIoo(D)fllp,
to 12, is -measurable, because LP(R) has a countable norming set
consisting of elements of Lq(Rn) L2(R). Now the number II(D)fllp is
finite for all to 1 and the measure space (l, ,.’,/x) is tr-finite, so there
exists an increasing family of sets 12k ’, k 1,2,..., such that 12
t=ll2k, and for each k 1,2,..., the set 12k has finite /x-measure and
II(D)fllp < k for every to 12k. Let E1 fll and Ek Ok \ fk-1, k
2, 3,
Then for each k 1, 2,..., the function to o,(D)f, to ,, is bounded

and strongly measurable in LP(Rn), so it is Bochner/z-integrable on Ek, and
so Pettis/z-integrable on Ek. Given k 1, 2,..., the equality
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holds for all g Lq(Rn) ("1L2(Rn) and A , so

TAcr,,f fAcr,,,o(D)fdl-(to)
because Lq(Rn) 0 L2(Rn) is dense in Lq(Rn). We show that the vectors
fAnr,,,,,(D)fdlx(to), k 1,2,..., are unconditionally summable in LP(Rn).
For each g - Lq(Rn) 0 L2(Rn),

k=l n2k

because the function to o(D)f, to fl, is Pettis/-integrable in L2(R) by
Theorem 2.3. Moreover, if {k= is a subsequence of {})__ , then

(Tnf g) _, oo(D)fdla,(to), g
k

for the set B u= I(A o jk), SO by Lemma 2.8, the vectors fA c ,,,(D)f,
k 1, 2,..., form an unconditionally summable sequence in LP(R"). Hence,

(TAf g )
k=l

for all g . Lq(Rn) and A ,.’.
By choosing A to be the set of all to 1"/for which R((,,,(D)f, g)) > O,

and then those for which R((,,,(D)f, g)) < 0, it follows that

Similarly,
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so that fnl<p,o(D)f, g)l d/z(to) < and the equality

holds for every g Lq(R") and A by the Beppo-Levi convergence
theorem. The function to o(D)f, to f, is therefore Pettis/x-integrable
in LP(Rn), as required, ra

The following elementary lemma asserts that the collection of all
LT(R") satisfying I]bllq < 1 is a norming set for LP(Rn).

2.10 LEMMA. Let 1 < p < and q p/(p 1). Let d L]oc(Rn) be a

function such that

sup (
Then b LP(Rn) and IIllp .

2.11 LEMMA. Let 2 < p < o and q p/(p 1). Then for each
L(Rn), the function to bo,(D)f, to g2, is Pettis iz-integrable in LP(Rn).
Furthermore, there is a constant ap > 0 such that

for every f L(R) and A ’.

Proof The reflection operator A: LI(Rn) LI(Rn) is defined by Ag(x)
g(-x) for all g LI(Rn) and for almost all x Rn. Set bo,(D)=

[A(to)]^(D) for each to f; then

for every f L(Rn) and Z(Rn).
Let th be an element of L(Rn) satisfying IIllq 1. Because 1 < q < 2, it

is possible to apply Lemma 2.9 to the function to A(to), to f, to
deduce that the Lq(Rn)-valued function to o,(D)b, to f, is Pettis
/x-integrable in Lq(Rn), and there exist a constant /3q > 0 such that
IIf,4cb(D)b d/x(to)llq </3allllq for each A e . In particular,

f( P,,,( D) f d/} dp, ( to )
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for all A . The function o o(D)f, o f, is Pettis/z-integrable in
L2(Rn) by Theorem 2.3. Since b L(Rn) c_ L2(Rn), we have

for each A ’. The function fAo,(D)fdlz(o), being in L2(Rn), belongs to
L]oc(Rn), so an appeal to Lemma 2.10 proves that fAo,(D)fdtz(oo) LP(Rn)
as well, and

As yet, we only have the equality

for all A and all b Z(Rn). However, [Th2, Corollary 5.1] or the
direct argument of Lemma 2.9 establishes that fnl(o(D)f, b)l d/z(w) <
and

for all A o’ and all 4) Lq(Rn)

The next lemma provides a convenient condition guaranteeing that a
function is Pettis/z-integrable.

2.12 LEMMA. Let X be a Banach space. Suppose that ., j 1, 2,..., are
strongly measurable Pettis iz-integrable functions converging Iz-a.e. in X to a

function : 12 X. If the X-valued vector measures .tx, j 1, 2,..., are
uniformly countably additive, then is Pettis iz-integrable and
limj__,supA llm(A) tz(A)ll 0.

Proof By virtue of Egorov’s measurability theorem, there is an increasing
collection of non-/z-null sets Ok ’ of finite /z-measure, k 1,2,...,
which cover f, such that on each set Ok, k 1,2,..., the functions j,
j 1, 2,..., converge uniformly to . Given e > 0, choose k 1, 2,..., so
large that II.((f \ fk) C A)II < e/4 for all A o’ and j 1,2,
There exists a positive integer J such that I1I,(o)- .(o)11 < e/(4tz(12k))
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for all j > J and to fk. For all A ’ and m,j > J,

II n A) %(a n A)II

+ II*.(a nA) NA)II +

A kA

that is, limm, j._,suPAjIlm/x(A)- *#(A)II 0. In particular, for each
A ’, the vectors fl(A), j 1, 2,..., are convergent in X.
To show the Pettis /x-integrability of , let : X’. Then the scalar

function (, : ) is /x-integrable because the functions (i, ), j 1, 2,...,
form a Cauchy sequence in mean by the above argument and
limj_,(.(to), :) ((to), sc) for /x-almost every to f, by assumption.
Consequently, for every A ’,

fA(W, ) d/x lim fA(at, ) d/x
j---

lim (%/X(A),

which proves that is Pettis/x-integrable.

Proof of Theorem 2.7. Let 1 <fi < . By Lemmas 2.9 and 2.11, for each
f L(R") the function to ,,(D)f, to II, is Pettis /x-integrable
in L(R). Furthermore, there is a constant ap > 0 such that
II fA,,(D)fd/x(to)llp <-- apllfllp for every f L(R") and A

Let f LP(Rn) and choose functions fk L(Rn), k 1, 2,..., conver-
gent to f in LP(Rn). Given to f, we have
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and

for all A . and k, m 1,2, Then by Lemma 2.12, the function
to +,o(D)f, to , is Pettis -integrable in L’(Rn) and

fo(D)fdtz( to) lim fA,O(D)fk dlz( to )
k

for each A ’. In particular,
f LP(Rn) and A

f,o(D)fdla(to)ll, < %llfllp for every

2.13 Remark. The mean value theorem ensures that condition (ii) of
Theorem 2.7 holds whenever the function (to, x) (to)(x), to 12, x Rn,
is jointly measurable, the function is smooth on R\ {0} for almost all
to 12, and there exists a constant B > 0 such that fnlX7(x)l d/z(to) <
B/Ix[n+l for all x : 0. The analogue of Theorem 2.7 for non-convolution
operators may be formulated in terms of this condition.

3. The Hilbert transform and Pettis integrals

The Hilbert transform H: L2(R) L2(R), is defined by (Hf)-- sgn f for
every f LZ(R), so we have H-- sgn(D) in the operational calculus for self
adjoint operators. Here sgn: R --* {- 1, 0, 1} is the signum function, sgn(x)
x/Ixl, x O, sgn(0)= 0. The operator H is actually a singular integral
operator in the following sense. For every e > 0 and f L2(R), set

Hef(x) " -yl>e

1
x-y f( y )dy for allxR.

The integral exists by virtue of the Cauchy-Schwarz inequality and the so
defined operator H on L2(R) is continuous for every e > 0. Then the
operator H on L2(R) is also given by Hf-- lim --,0 Her for each f L2(R).
It is well-known that the limit converges in L2(R) (see, for example, [B-N,
Theorem 8.1.7]), or alternatively it can be deduced from Proposition 3.2 and
Lemma 3.3 below.

It is easy to check that H can be represented as a genuine Pettis integral

H= fo ff,(D) dt
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with respect to the function Ft: R R defined by Ft(x) sgn(x)e-lXlt/Tr
for all > 0 and x R. The identity

2 at sgn(c)
7r" t2+2

for every : :# 0 together with Theorem 2.3 serve to establish this.
However, this observation alone does not explain why the introduction of a

suitable auxiliary parameter enables the replacement of a principal value
integral by an operator valued Pettis integral. Furthermore, the question
arises of what is the relationship between the convergence of the principle
value integral to the convergence of the Pettis integral. Rather than provid-
ing more results applying to the general framework, we illustrate the situa-
tion more completely in the following example.

3.1 Example. Given > 0 and e > 0, let Ff(x) sgn(x)e-lXlt/Tr for all
x R such that Ixl > e, and Ff(x) 0 for all x R such that Ixl _< e, We
calculate the Fourier transform Ff of Ff for all > 0 and e > 0:

Now for all e, > 0 and : R,

2 [ e-t sin(e) ]t2+2

2 sin(e) [ sc ]"- (ete-t) e 2 + 2

<Cl[ Il ]t2 + :2 (1)

where

C1
2 sin v

sup ue-U" sup v
u>0 v>O

also,

2e --et cos( ) 2
7r t2+2" (2)
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Because

2 fo I1 dt
7r t2+:2

for every : : 0, it follows from Theorem 2.3 that for every e > 0, the
function fi[(D), > 0, is Pettis integrable in .(L2(R)). According to
Remark 2.13 and Theorem 2.7, the function fi[(D), > 0, is Pettis
integrable in _o’(LP(R))whenever e > 0 and 1 < p < . rq

Let F Ft for every > 0.

3.2 PROPOSITION. The limit lim_ 0 fA(D) dt fAlt(D) dt converges in
the strong operator topology of ..(L2(R)), uniformly for A (R).

Proof Let

v(Z)(:) fAll/(t 2 + :2)dt

for all A (R) and R. Then Iv(A)(:)I _< -/2 for all A (R) and
sc R, so it follows by dominated convergence that A v(A) .f, A (R),
is an L2(R)-valued measure for each f L2(R). Now by (1), IPt(:)I _<

Cl1:1/(t 2 / :2) for all e, > 0 and : R. By the Plancherel formula

<_ A ,(R),

for all f, g L2(R) and for all e > 0. Therefore, for each f L2(R), the
family of LZ(R)-valued vector measures A fA[(D)fdt, A (R), e > 0,
is uniformly countably additive. By virtue of the estimate (1), dominated
convergence and the Plancherel formula, fft(D) fit(D) in the strong
operator topology on .z’(LZ(R)) as e 0, for each t > 0. It follows from
Lemma 2.12 that the function t(D), > 0, is Pettis integrable in
_W(LZ(R)), and given f LZ(R), we have lim_ 0 fAff(D)fdt fAt(D)fdt
in the norm topology of LZ(R), uniformly for A ,/. []

The following lemma is most easily proved by computing Fourier trans-
forms and appealing to Theorem 2.3. The following proof illustrates directly
how the choice of the functions Ft, e > 0, > 0 was dictated by the require-
ment that

fo F (x) dt

for all x 4: 0, in conjunction with the application of Fubini’s theorem.
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3.3 LEMMA. For every e > 0, the identity H foFi (D) dt holds.

Proof Let f LZ(R) and g L2(R) N LI(R). Then

f;(.(D)f,g)dt f:(F * f,g) dt

g(x)dxdt.

Now for each t > 0, the function (x, y) - g(x)F(x y)f(y), x, y R, is
integrable by the Tonelli’s theorem, and

y)f(y)ldxdy IIgll211Fllllfll2.

Let A: L2(R) LZ(R) be the reflection operator Af(x)= f(-x), x R,
f LZ(R) on LZ(R). Then by a change of variables, we have

f[(x y)f(y) dy]g(x) dx fZ(u)(Af)* o(u) du.

Now (Af), g L2(R), and for each u R with/ 4: 0,

fo F(u) dt

so again, by the Fubini-Tonelli theorem, (t,u) F(u)(Af), (u), > O,
u R, is integrable on [0, oo) R, and we have

The equality

(F (D)f g) dt (Hf g)
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therefore follows for every f L2(R) and every g L2(R) CI LI(R). Because
LE(R) f) LI(R) is dense in LE(R), we have H fo’Ft (D) dt. El

3.4 THEOREM. The equality H fo’Ft(D) dt holds in the space _(L2(R)).

Proof.
because

The statement is a consequence of Proposition 3.2 and Lemma 3.3

H -01imH and --,01im fI[(D) dt ffft(D) dt

in the strong operator topology. El
As mentioned previously, for each 1 < p < 0% the function fit(D),

t > 0, is Pettis integrable in .’(LP(R)). The Hilbert transform H and the
integral fo’Ft (D)dt are also equal as operators on the space LP(R).
The next example shows that loFt(D)dt is a genuine Pettis integral, not a

Bochner integral, that is, there exists a function f La(R) such that
fllPt(O)fll2 dt o.

3.5 Example. Suppose that f(x) x
R. Then

-1/2[ln(x)- ll-lx(0,1](x) for all x

(sc2+t2)2 d
dt

12 1 1/t

12 d"" "" (2 + 1)2[ln(:t) 1

[z 12 1/2 1
d>

)2 27 (2+ 1 lln(t) 1

5o tlln(t)-lldt=

dt

dt

The function f belongs to L2(R) and it follows from Plancherel’s theorem
that

f ll  (o) ll=dt
Acknowledgements. The second author thanks Professor Masami Okada

for useful discussions. He also acknowledges the support of the Australian
Research Council and a University of New South Wales Research grant.



272 BRIAN JEFFERIES AND SUSUMU OKADA

REFERENCES

[B-N] P.L. BUTZER and R.J. NESSEL, Fourier analysis and approximations, Vol. 1, Birkhauser-
Verlag, Basel, 1971.

[Day] M.M. DAY, Normed linear spaces, 3rd ed., Springer-Verlag, New York, 1973.
[D-U] J. DIESTEL and J.J. UHL JR., Vector measures, American Mathematical Society, Provi-

dence, 1977.
[Jef] B. JEFFERIES, Pettis integrals with singular kernels, Integral equations and Operator Theory

9 (1986), 654-678.
[Tal] M. TALAGRAND, Pettis integral and measure theory, Mem. Amer. Math. Soc. No. 307, 1984.
[Thl] G.E.F. THOMAS, The Lebesgue-Nikodym theorem for Vector Valued Radon Measures, Mem.

Amer. Math. Soc. No. 139, 1974.
[Th2] Integration of functions with values in locally convex Suslin spaces, Trans. Amer.

Math. Soc. 212 (1975), 61-81.
[Tor] A. TORCHINSKY, Real variable methods in harmonic analysis, Academic Press, New York,

1986.

THE UNIVERSITY OF NEW SOUTH WALES
KENSINGTON, AUSTRALIA

THE UNIVERSITY OF TASMANIA
HOBART, AUSTRALIA


