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RELATIVE SPECTRA IN COMPLETE LMC-ALGEBRAS
WITH APPLICATIONS

MICHAEL E. BOARDMAN

1. Notation

Let e’ be a complex (linear associative) algebra with topology induced by
a separating directed set of algebra seminorms (11 IIi)i i. Such an algebra is
known as a locally multiplicatively-convex (lmc) algebra. We assume through-
out that e’ is unital and complete in the sense that every net that is Cauchy
in each seminorm converges.

This definition of lmc-algebra is equivalent to the existence of a local base
at 0 consisting of convex idempotent sets [12]. However, we are able, in
general, to replace the algebra seminorms with equivalent algebra seminorms
and still have the same topology on e’. This technique proves to be useful in
several examples below.
For each I, the set

{a z: Ilalli- 0}

is seen to be an ideal of ’. II [li induces an algebra norm on ’/4/. Let /
be the completion of the normed algebra ///.
/ is called the factor algebra associated with II/. We write 7"/- for the

canonical homomorphism from " into /.
We will make extensive use of the subalgebra of so-called "seminorm-

bounded" elements:- asg’lllall= supllalli<o
iI

We use the terms "seminorm-bounded" and "bounded" synonymously.
Let . be a Banach algebra continuously embedded into . We assume

1 _. We are primarily interested in investigating when an element of
admits an inverse in .. To this end, let Inv(g’) denote the group of
invertibles of g’ while Inv(’) denotes those elements of Inv(sg’) that have
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inverses in . Similarly, Inv(’) is the set of elements of Inv(’) with
inverses in ..
For a ’ define the spectrum relative to the subalgebra of bounded

elements as

ag(a) {A CI(A -a) Inv()}.

The set C \ a(a)will be denoted p(a). Similarly define a.(a) and p_(a).
Many of our results involve bounded linear operators on some Banach

space. For such an operator a, let ]]a]]op be its operator norm and O-op(a) its
spectrum as a bounded operator.

2. Structure of lmc-algebras

As noted above, the topology on ’ in general can be induced by different
collections of seminorms. Therefore, the collection of factor algebras for a
lmc-algebra need not be unique. Under our assumption of completeness,
however, a’ can be characterized by any collection of factor algebras. Recall
that a directed set of topological algebras ()i i together with a collection
of connecting continuous homomorphisms (7l’i,j)i>ji, "lT"i,j:ii--> j, is
called a projective system if for i, j, k I with > j > k, rrj, k 7ri, ri, k.

Endow I-I i/ with the product topology and coordinate-wise operations.
The subalgebra

li,_m /= {(ai)i,lTri,j(ai) aj when > j}

is called the projective (or inverse) limit of the .
Any collection of factor algebras for with canonical homomorphisms

forms a projective system. It is this observation that allows the characteriza-
tion of complete lmc-algebras in terms of any collection of factor algebras.

Tx-IZOlZM 2.1 [12]. is the projective limit of its factor algebras.

As spectral theory in Banach algebras has been extensively researched, this
theorem is the principal tool for developing much of the spectral theory of
complete lmc-algebras. As a simple example we have the so-called Arens
Invertibility Criterion:

COROLLARY 2.2. If Si is a collection of factor algebras of sO’, then an
element a " is invertible if and only if 7ri(a) is invertible in i for each
iI.
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Although can vary depending upon the choice of algebra seminorms,
there is a restriction on those elements that can be bounded for some choice
of seminorms. Surprisingly, this restriction depends only upon the algebraic
structure of

THEOREM 2.3. Let a such that try(a) is bounded. Then there exits a
collection of seminorms on " defining the same topology so that a

Proof We employ the method in [8] used to show that for each element
of a Banach algebra, the algebra can be renormed with an equivalent norm
so that the spectral radius of the element is the same as the numerical radius.
It suffices to consider a such that the spectrum of a is contained in the open
unit disk about 0. Then, by the spectral radius formula in a Banach algebra
[7], for each I,

1/nlim [[a nil/ < 1.

This gives us for each I, sup, >_ 0 Ilanlli Mi < o. For b e’, set

qi(b) sup Ilanb [li.
n>_0

Then qi is an algebra seminorm and is in fact equivalent to IIi since

Ilblli < qi(b) < Millblli.

Now, for each I, set

Ibli sup{qi(bc)lc ,, qi(c) <-- 1}.

Then li is also an algebra seminorm. Further,

Ibli sup{q/(bc)lc za’, qi(c) <_ 1}
<_ sup{qi(b)qi(c)lc ,/, qi(c) <_ 1} < qi(b) <_ Millblli.

On the other hand, since qi(ls.) SUPn>_ 0 Ilanlli Mi, we have

1 ) 1 1
b > q, b --i --ii q ( b ) > //llblli.

Therefore, l" is equivalent to II" I1i. Since lali 1 for each I, a is
bounded. 1
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3. Examples

Our main example is actually a model for the remainder of the examples
we exhibit. Examples 3.3 and 3.4 are in fact F-algebras (that is, complete
under an invariant metric).

Example 3.1. Let (/)iI be a projective system of Banach spaces such
that each connecting homomorphism, rri,., is surjective. Let be the
projective limit of this system, b the collection of seminorm-bounded
elements of . For each I, let / be the algebra

B(,. )IHi,jT/defri,jT/’:-! is well-defined on for > jt,J

The condition of well-definedness is equivalent to the existence of a linear
map T. such that the following diagram commutes:

"n’i,

For each > j, ’Wi, is a continuous surjective homomorphism between
Banach algebras; the open mapping theorem guarantees it is open. Thus, T.
is continuous. That is, if T is in /, then the operator rri,.T is bounded
on jo
As 7ri, is a surjection, applying the open mapping theorem again yields

6>0 so that for each ye j with Ilyll< 1 there is an xe / with

"rri, j(x) y and [[xlli < 3. So, if T/(n) / converges to T/e /, then for
y as above,

II(l-Ii,jWi(n) 1-Ii,jTi)y ll(TFi,jTi(n) --’Wi,jTi)(qT"}y)l "( [["Yl’i,jil l[Ti(n)

Thus, Hi, jTi(n) converges to l-Ii, jT in norm and the map IIi, is continuous.
Therefore, (i)ii is a projective system of Banach algebras. Let
z’= lim /.
There is a natural way to view as a collection of linear maps. More

precisely, can be thought of as

{T" --- IT is linear and continuous and "lT"iT-1 is well defined for all i}

For x , let Tx be the element of X given by the condition "tT"i(Tx)-"
1-IiT(Trix). Let again be the bounded elements of s’. Let Pi "rri[,.
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PROPOSITION 3.2. (1) If T then T B(Lrb).
(2) If in addition, for all I and all x 6i, there exists x 6Ub with

7ri(x) x and [[Xllb [IXi[li, then for T B(b) with the property that
PiTP-1 is well defined on ii, T extends to f" in and, moreover, T with
II TIIo II 711 .

Proof. (a) For x ’b, Tx is in 6rb since

sup I[Zx[[i sup II-i(Zx) lli sup 117riZ’-l(Trix) lli
sup II(niz)(rx)lli sup(llHiZll llrixlli ) IlZll" Ilxll,

This same calculation shows that T B()with IITIIop IITII.
(b) We first show that T extends to a linear operator on

let 7x be the unique element of 6Lr= lim 6/ such that (x)
(piZp 1)(’w/x). Since

T/.iT/./--1( X ) p Zp 1(7l.i(77.; 1(xi)) ) p Zp 1( x )

and PiTP is well defined, so is T/’i’/7"/- 1.

’ has the subspace topology inherited from I-I,/, so ,’/7" is a continu-
ous open map. Therefore, by the continuity of T, "tT"iT’n"- is continuous, that
is, T see’. By the main assumption in (b), for each x ii with IlXilli 1,
there is an x 6Lrb such that [Ix I[- 1. Therefore

sup IlZxll sup sup IITxlli sup sup IITxll
x " x x

IIx r IIx b IIx Iii

sup Tlli TII

and we have TII Zllo.

Example 3.3. Let 1 < p < . For each n > 1, let 6Lrn C with p-norm:
Ilxllp (E=llXklP)1/p for p < 0% and Ilxll maxl<i< [Xi[. As this norm
induces the topology of coordinatewise convergence, 6’= lim 6 is topo-
logically algebraically isomorphic to the collection of all complex sequences
with the topology of coordinatewise convergence. The collection of bounded
elements of this locally-convex space is isomorphic to /P(N). Using the
construction in Example 3.1, the algebra consists of all n x n lower-tri-
angular matrices and [[Zlln sup{llTxll Ix Kn, llxllp < 1}. Of course, the
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topology induced by IIn on /n is equivalent to the topology of entrywise
convergence. Thus e’, the inverse limit of the ,;ae’n, is isomorphic to the
algebra of all lower-triangular matrices with entrywise convergence. This
algebra has the property in Proposition 3.2 (b) and therefore the collection of
bounded elements of is the Banach algebra of lower triangular matrices
that induce bounded operators on lP(N). Finally, for T e" we have %(T)
is the n n lower-triangular matrix in the upper-left corner of T. This
example illustrates the importance of the choice of seminorms for the
algebra.

Example 3.4. Again choose 1 < p < . For each > 0, let t LP[0, t).
For f 5U and s < t, let ,rrt, sf =f[to, s), the restriction of f to [0, s). Then
(t)t>0 is a projective system of Banach spaces. The inverse limit is
isomorphic to Lioc([0,)), the collection of Lebesgue-measurable functions
such that

for all compact subsets K
_

[0, o). Here, of course, the topology on Loc([0, ))
is that given by the seminorms IlK.
For each > 0, let

S {r B(gP([O,t)))lTrt,sr’n’,ls is well defined for0 < s < t}.

Using the construction in Example 3.1, for > s > 0, [it, "Jt -’--> Js is
-1defined by [It, sT "n’t, sTTrt, s. Let ze’= lim sg/t. For f Loc([0,)) and

> 0, let

If(x) ifx<t
Ptf(x)

0 otherwise

Then is isormorphic to the collection of all continuous linear maps T on

Loc([0, )) such that PtT PtTPt and PtTIl,,(to, t)) B(LP([O, t))). This alge-
bra also satisfies the condition in Proposition 3.2 (b) and therefore the
collection of bounded elements of e" consists of all bounded linear operators
on L P([0, )) such that PtTP;-1 is well defined. For each > 0, we consider
LP([t, )) a subspace of LP([0, )) via the isometric embedding of extending

f LP([t, )) to be zero on [0, t). Then for T , we have each of these
subspaces is invariant under T. In fact, as a result of Proposition 3.2, is
isometric to the nest algebra determined by these subspaces.
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4. Spectral theory

An easy observation is that for each a x’, rsc(a) c__ a(a)
_
a(a). As

a result of Arens invertibility criterion (Corollary 2.2), we know how to
calculate tr(a)for each a

PROPOSITION 4.1. o’(a) [,.J i’i(’lT"i(a))

Since the spectrum of an element in a Banach algebra is non-empty, this
result guarantees that the algebraic spectrum of any element of a complete
lmc-algebra is non-empty. However, r(a) need be neither closed nor bounded
as in the Banach algebra case.

Example 4.2. Let s" be the complete lmc-algebra in Example 3.3. Then
for each matrix T ’, we have tr(T) diag(T). Let T (amn),n= with
an, n and a 0 if m :/: n. Then o-(T) N and o-(T-1) {1/n n N}.

There are conditions on the algebra sg’ that guarantee every element has
compact spectrum. In particular if Inv(s’) is open (i.e. s" is a Q-algebra),
then every element has compact spectrum [6]. However, none of the exam-
ples we have cited thus far have this property. In fact, N.C. Phillips [14] has
shown that an lmc-algebra, sO’, in which each of the seminorms satisfies the
C*-property and for which the invertibles form an open set, is actually a
C*-algebra.
The set a(a), in general, behaves more like a Banach Algebraic spectrum

than does tr(a).

PROPOSITION 4.3. Let a, b s’, a Inv(’), a b

_
and let

Ila b ]l_ < Ila- ll1. Then b Inv_() and

Ila -1 IIlla b I1_
1 Ila bll_lla-lll_

Hence a(a) and as(a) are closed.

Proof The proof is as in the Banach algebra case.

Analogous to Banach algebraic spectrum, a is in some sense upper
semi-continuous. More precisely,

PROPOSITION 4.4. Fix a x’. Let V be an open subset of C such that
a(a) c_ V and V is compact. Then there exists 8 > 0 so that if b " with
a b 2 and [[a b[[ < 8, then a(b) c_ V.
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Proof If no such 6 exists, then for each n > 1, there is a b so that
a b ., [[a-bnl]< 1/n and A a(bn) for some A Vc. Now,
some subsequence {)tn} converges to say )t o VC since V is compact. So,

But, )to a(a) implies ()to a) Inv(s’). By the previous Proposition
4.3, for sufficiently large k, ()tn- bn) Inv(e’). This is a contradiction.

PROPOSITION 4.5. Let a and )to a(a).
(1) Ira _q, then a(()t 0 a) -1) {()to )t)-ll)t a(a)}.
(2) If a ., then a(()to a)-1) {()to )t)-l] a(a)} u {0}.

Proof (1) is standard in Banach algebra theory. For (2), let a .,
)to a(a). If )t a(a) U {)to}, then since

()t a) -1 ()to a) -1 ()to )t)()to a)-l( )t a) -1,

we have

)t)-I ()to a)-l] [()to )t) + ()to )t)2()t a)-l]
1 + ()to )t) [()t a) -1 ()to a) -1

-()to )t)()to a)-’()t a) -1]
=1

Now, ()to )t) + ()to
a(()to a)-l). That is,

--a)-1 .. Thus we have ()to

a.,(()t o -a)-’)__ {()to- )t)-’l)t a_(a)} U {0}.

For the reverse inclusion, we first note that 0 a(()to
Now, if

a)-1)since a _.

()to

then )t . a_(a) since

()t a) ()to-)t)()to a)[()to- )t)-i ()to a) -1]
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and the right-hand-side is ilwertible in .. Hence

e_((A0 a) -1) a {(Ao A)-llA o.(a)} U {0}. =
Several authors have shown the existence of a canonical holomorphic

functional calculus for elements of a complete lmc-algebra. The construction
is given here for completeness.

Let a and let (a) be the collection of all functions holomorphic on
a neighborhood of tr(a). Let F F(a). By Proposition 4.1, for each I,
we can define F(’rri(a)) using the ordinary functional calculus for elements in
a Banach algebra. Since each map 7ri, for > j is continuous, it
follows that

"n’i,j(F("tr’i(a)) ) F(’n’i, o’rri(a)) + F(’rrj(a)).

Therefore, (F(w’i(a)))i is an element of lim z/ and by Theorem 2.1,
there exists a unique b such that ,n’i(b) F(,n’i(a)). We define F(a) b.
Also, from Proposition 4.1, we immediately have a spectral mapping theorem
for the algebraic spectrum, tr(F(a)) F(tr(a)).

It is natural to ask under what conditions F(a) .. or . In the theory of
closed unbounded operators, there is a functional calculus for functions that
are holomorphic on a neighborhood of the spectrum of the operator and
have a limit at infinity [9]. Applying such functions to a closed operator
results in a bounded operator. In [5], Barnes used a similar construction for
elements in an F-algebra. Here, we show that this method applies in our
case.

Let a ,’. Let F’(a) be the collection of all complex-valued functions,
G, holomorphic on a neighborhood of a.(a) and at infinity. That is,

(1) F is holomorphic on open U with Uc compact and a.(a) c_ U,
(2) F() lim F(A) exists.

Let F be a cycle in U \ a(a)so that

-1 ifz U
Indr(z) 0 ifza(a).

Define P(a) by

if(a) F(o)l+ (X)(X a) -1 dX.

Note that the integral is defined in ’ since the function h (h a)-1 is a
continuous function, F is a rectifiable curve and s" is complete. In fact, since
1 _, it is the case that if(a) ...
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THEOREM 4.6 [5]. /(a) F(a). Furthermore, the mapping # (a) --given by #(F) F(a) is an algebra homomorphism.

The following two theorems generalize results found in [5] and their proofs
are merely adaptations of those found in that work.

SPECTRAL MAPPING THEOREM 4.7. For a ’, and F o(a), we haue

as(F(a)) {F(X)lh e a(a) U (o}).

Proof Let U be an open subset of C so that U is compact, a(a)
_
U

and F is holomorphic on U. First, since limlhl-o F(h) exists, {F(h)[h
as(a) U {o}} is a closed subset of C. If h 0 is not in this set, then there is an
e > 0 so that

IF() o1 >- 2e for all a(a).

Let W {h U[ IF(h)- ho[ > e}.
W is open and since limll-oo F(h) exists and U is compact, W is

bounded. Define G on W by

G(h)

Then G (a) and G(a). (h F(a)) 1. So, h o a_(F(a)) and

a_( F(a))
_
F(a(a)) tO F().

Now, let /.t o F(a(a)). Then there is h o a.(a) so that F(h0) o.
Define G on U by

F(h)-F(ho)
h ho

F’(ho)

if h U\

if h ho.

Then G (a) and F(Ao) F(h) (ho A)G(A) for h U implies

/zo-F(a) (ho-a)G(a).

Since (h o a)G(a) G(a)(h o a), the invertibility of the right-hand-side
above would imply that of ho a. Thus, (/z F(a)) Inv(’) and

F(a(a))
_
a.(F(a)).

Since a(F(a)) is closed and limll_o F(A) F(o) exists, we also have that
F() a(F(a)), m
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Using the functional calculus and the above Spectral Mapping Theorem,
we are able to prove an important property of a(a).

THEOREM 4.8. a(a) is bounded if and only if a ..
Proof If a ., then a(a)= try(a)which is compact. Now, suppose

a(a) is bounded. Let R be such that a(a) is contained in the interior of

DR, {h C [hi < R1}. Fix R and R2 so that R2 > R > R1. Let the open
set U be defined by U {z: [z[ 4= R}. Define the function

[, lal <R
O, lal >R.

Notice that F or,e’(a) and F(o0 0. Let be the positively oriented
boundary of DR, and r the negatively oriented boundary of DR2. Then

1 1 F(A)( A a)_lF(a) +y(,)(h g)-i d/

1 fa2rri a(;t a) -1

So, we have

rci(F(a)) 2rri h(h rci(a))

Also, the function G(A) h is holomorphic on o’i(’rri(a)) and

"rri(a ) G(rri(a)) A(A ,rri(a)) d, "tri( F( a) )

Hence, F(a) a _@. m

In [1], Allen investigates spectrum of an element of a locally-convex
algebra relative to the collection of topologically bounded elements [1,
Definition 2.1]. In that work, it is shown that in the complete locally
multiplicatively-convex case, the topologically bounded elements are precisely
those elements with bounded algebraic spectrum. Combining this observation
with Theorems 2.3 and 4.8, we see that this collection consists of all elements
of the algebra that are bounded under any collection of seminorms generat-
ing the topology.
The functional calculus xI, is only defined for a small class of holomorphic

functions. These functions must be holomorphic off of a compact subset of C
and have a limit at infinity. However, one can show that under different
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conditions, the algebraic functional calculus yields bounded elements. For
example, a Hille-Yosida type theorem, both for (C0)-semigroups and for
analytic semigroups is true in this setting (see [10]). The proofs of these
theorems are nearly identical to their counterparts in the theory of closed
operators and are omitted here.

5. Relationships between or(a), a(a) and a2(a)

It is well-known that if is a Banach algebra with closed subalgebra

_
and a is in ., then Or(a) Or(a) [7]. A similar property holds in
complete lmc-algebras if we assume . is a closed subalgebra of .
PROPOSITION 5.1.

a(a)
__
a(a).

Assume . is closed in . Then for a e’, we have

Proof The proof is similar to the Banach algebra case. Since the interior
of a(a) is a subset of the interior of a(a), it suffices to show Oa(a) c_
a(a).

Let A0 Oa(a) and suppose Ao a(a). Let {A (a(a))c be a
sequence of complex numbers converging to A 0. By the continuity of the
resolvent function Ra: p(a) where Ra(A) (A a) -1, we have

(A a) -1 Ra(An) Ra(AO) (A0 a) -1.

But . closed in implies (A 0 a) -1 .. This is a contradiction. I

THEOREM 5.2. Let 5 be the Banach algebra of bounded elements of ’,
_

a closed subalgebra. Then for every connected component, E, of (a(a))c,
either E

_
a(a) or E c_ (a(a))c. That is, a(a) can be formed by filling in

some of the "holes" of a(a). In particular, if a \ _q, then a(a) has
compact complement.

Proof Let E be a component of (a(a)). Write E (E N a(a)) U (E
(a(a))C). Notice that

Therefore, E a(a) is both closed and open in E. So, either E in
which case E c_ (a(a))c or E a(a) E, that is E

_
a(a).
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If a \ ., then by Theorem 4.8, a(a) is unbounded. Hence, it
contains the unbounded component of (a(a)) and a(a) has compact
complement, m

COROLLARY 5.3. Assume . is closed in . If a has a(a) with
empty interior, then a(a) as(a).

Proof. Since a(a) has empty interior, a(a) Oa(a). By Theorem 5.2,
a.(a) c: a(a), m

Several results in Banach algebra theory and operator theory pertain to the
connectedness of spectrum [4], [16]. We state a theorem here for which many
of these results are corollaries.

THEOREM 5.4. Fix an element a /. If (R) is a bounded component of
a.(a), then 0 ( rA(a) 4 .
Proof Suppose that A and F are disjoint nonempty open and closed

subsets of a(a) such that A is bounded, a(a) A t F and rs(a)
_

F.
Let U be a bounded open neighborhood of A such that U does not intersect
F. Let V (U)c, a neighborhood of F. Then

(1) UC V=,
(2) (U tA V)c is compact.

Define the function F by

1,F(A) {0,
Then, F (a). By the Spectral Mapping Theorem 4.7, F(a) :/: O. How-
ever, by the Spectral Mapping Theorem in a Banach algebra [7] and the fact
that F 0 on some neighborhood of rse(a) we have F(a) 0. This is a
contradiction.
Now suppose O q o-s(a) J. Let 6 d(O, rs(a)). Corollary 1 on Page

83 of [13] implies there is a closed and open subset 1) a(a) such that
19 c_ 12 and d(o), 19) < 6 for o) 1). But 12 63 rs(a) 4: by the previous
argument and this is a contradiction.

COROLLARY 5.5. (1) If a2(a) \ r(a) is bounded, then every component of
a(a) intersects r(a).

(2) If a _q, then every component of a(a) intersects r(a). Hence, for
a _q, the connectedness of r(a) implies that of a(a).

(3) Every bounded component of a(a) intersects a(a).
(4) If a(a) \ a(a) is bounded, then every component of a(a) intersects

a(a).
(5) Any isolated point of a(a) is in r(a) (hence in a(a)).
(6) If a(a) is totally disconnected, then a(a) a(a) r(a).
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Proof (1), (3), and (4) are clear. (2) holds by Theorem 4.8. (5) holds since
isolated points are components. (6) holds because a space is totally discon-
nected if each of its points is a component, m

These observations allow us to say more about the structure of a2(f(a)) in
certain cases. Suppose a and f is holomorphic on a neighborhood of
a(a) such that f(a) .. Then a(f(a)) is a compact subset of C. By the
Spectral Mapping Theorem for the algebraic spectrum and the previous
result, if A is a connected component of a(f(a)), then A has non-trivial
intersection with (r(f(a)) f(tr(a)). The continuity of f gives us f(tr(a))_

f(tr(a))_ f((a)). Thus, if tr(a) is connected, then so is tr(f(a)) and
we have:

COROLLARY 5.6. Let a and f holomorphic on a(a) such that
f(a) _. Then, if tr( a) is connected, so is a(f(a)).

6. Interpretation of results in a Banach algebra

Although the following results can be proved using Banach algebra tech-
niques, we include their statements here as corollaries of the previous
Propositions. Throughout this section, is a unital Banach algebra, a
special case of a complete lmc-algebra in which the bounded elements
comprise the entire algebra.
We can restate Theorems 4.8 and 5.2.

COROLLARY 6.1. If .f is a closed subalgebra of such that 1 _q, then
for a , a

_
if and only if a(a) is bounded.

COROLLARY 6.2. Let _q be a closed subalgebra of with 1 ... Let
a . Then for every connected component, A, of (a(a))c, either A

_
a(a)

or A
_

(a2(a))C. In particular, if a \ .., then a(a) has compact
complement.

Combining Corollaries 6.1 and 6.2, we have:

COROLLARY 6.3. Let _c be a closed subalgebra of with 1 _. If
a with Ill-all < lthena-1 _qifandonlyifa _.
Proof If a _, then by hypothesis, try(a) is contained in {, CI I,

1] < 1} and a is invertible in .. If a ., then since try(a) is contained in
{A CI I,- 11 < 1},0 is in the unbounded component, E, of (try(a))c.
Since a(a) is unbounded, it includes E and hence, a -1 _. m
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COROLLARY 6.4. Let . be a closed subalgebra of with
Suppose a, b with a Inv() and satisfying (i) 111 -a-lbl[ < 1 and
(ii) (a-lb) -1 ... Then a Inv.() if and only if b Inv.().

Proof a .. implies b is invertible and b- (a lb)- la ...
Conversely, conditions (i) and (ii) give by Corollary 6.3 that a-lb ... Thus,
if b .. then a -1 (a-lb)b -1 .. I

7. Applications

Example 3.1 revisited. Let be the algebra in Example 3.1.

PROPOSITION 7.1. For T :’, T is a closed operator on rb.

Proof Suppose {fn} is a sequence in b that converges to f in ’b and
that Tfn is in Lrb and converges to g in 5Lrb Then since 7rifn converges to
rrif, we have

,wi( Tf ) ( I-IiT ) ( ,n-i fn ) ,17.iT,.ff- ( ,lT.iL) ---> ,wiT,-o-- ( ,17.if )

(H/T)(-n-if) ,-gl-i(Tf).

On the other hand 71"i(Tfn) --"> 7rig. Therefore, Tf g. I

For T , we would now like to compare its spectrum as an element of
the complete lmc-algebra and its spectrum as a closed operator. To this end,
we have:

PROPOSITION 7.2. For T s’, a(T) \ crop(T) c U i lOp(HiT) where
crp(S) is the point spectrum of an operator S.

Proof Let h ag(T)\ crop(T). Then (h T)-1 exists in B(o"b) but for
some I, Pi(A Z)- Pi is not well defined. That is, there is x b,
x 4:0 so that Pi(X) 0 but Pi(A T)-I(x) 4: 0. Set Yi pi(A T)-I(x);
then

( ’/TiTT/’71) Y 7t"i(i T),’gl--lpi(l T)-I( X) 7l’i X O.

That is A crp(I-IiT). 1

COROLLARY 7.3. Let T . Suppose [.J iicrp(I-liT) has empty interior.
Then Crop(T) a(T).
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Proof. Since is a closed subalgebra of B(,qKb), we have that Oaa)(T) c_
0%p(T). This implies either the two sets are equal or they differ by a set with
nonvoid interior.

Example 3.3 revisited. Let dw’ be the algebra of lower triangular matrices
as in Example 3.3. We assume p [1, o] is fixed and that IITIIn is the
operator norm of the n n upper left-hand corner of T acting on P(n).
Then as noted earlier, the topology on sO’ induced by these seminorms is that
of entrywise convergence. Also observed earlier was that the Banach algebra

’ is the closed subalgebra of B(lP(N)) consisting of operators induced by
lower-triangular matrices (with respect to the standard basis). The next two
propositions are easily proved and are stated without proof.

PROPOSITION 7.4.
crse(T) diag(T).

If T s’, then T is a closed operator on P(N) and

PROPOSITION 7.5. is an inverse closed subalgebra of B(lP).

The latter well-known result actually follows from previous considerations.
If T , has no inverse in , then 0 a(T). Since U:=acrp(Tn) is a
countable set, by Corollary 7.3, a(T) Crop(T) and so T also has no inverse
as a bounded operator.

Let T be a lower triangular matrix inducing a bounded operator on/P(N).
In [17], it is proved that every component of the spectrum of T as a bounded
operator intersects the diagonal. We have shown a generalization of this
result and provide the statement below.

THEOREM 7.6. Let T ’. Then every non-empty bounded relatively open
and closed subset of crop(T) contains a diagonal element of T. In particular, if
T is strictly lower-triangular (i.e ann O) and induces a bounded operator on
/P(N), then Crop(T) is connected.

For now, let p and s" the algebra of lower-triangular matrices with
corresponding seminorms. Let 5 be the collection of matrices T sO" such
that T maps every convergent sequence to a convergent sequence. Such
matrices are called conservative and have been studied extensively. It is well
known that

_
is a closed subalgebra of , the lower-triangular matrices

inducing bounded operators on/(N) [18]. Applying Theorem 5.4, we state a
result for which Theorem 1 of [16] is a corollary.

THEOREM 7.7. Let T d’. Then every non-empty bounded relatively closed
and open subset of a(T) intersects the diagonal of T. In particular, there does
not exist a conservative matrix, T, with 0 an isolated point in a(T).
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Furthermore, Corollary 6.2 gives us an unusual test for whether or not a
matrix is conservative.

THEOREM 7.8. If T , then T is conservatite if and only iffor some A in
the unbounded component of (a(T)), (A T)- is conservative.

Now suppose A and B are infinite lower triangular matrices inducing
bounded operators on =. A is said to be stronger than B if for every
sequence x such that Bx is convergent, Ax is also convergent. If A is
stronger than B and B is stronger than A, then A and B are said to be
equipotent. It is know that A is stronger than B if and only if BA -1 is
conservative [18]. From this and Corollary 6.4, we have:

THEOREM 7.9. Suppose A and B are lower triangular matrices inducing
bounded operators on 1() and A invertible as a matrix. If 1 BA-I[I < 1
and B is stronger than A, then A and B are equipotent.

Proof By Corollary 6.3, BA -1 is conservative if and only if AB-1 is
conservative.

Example 3.4 revisited. Fix p [1, ] and let e" be the algebra obtained
in Example 3.4. Combining Propositions 7.1 and 7.2 we already have the
following result.

THEOREM 7.10.
over,

For T s’, T is a closed operator on LP([O, )). More-

Using this theorem, we can prove that several large classes of integral
operators possess connected spectrum.
Suppose k(x, t) is measurable on (0, ) (0, ) and that fk(x, t)f(t)dt

pis finite almost everywhere for each f Lloc([0, )). We define T Int(k) by

Tf(x) Int(k)f(x) fk(x,t)f(t) dt.

We refer to k as the kernel associated with the integral operator T. If
Tf Loc([0, )) for all f Lioc([0, )), then T e’ and is therefore a dosed
operator on LP([0, )). In [4] it is conjectured that if T as above is a bounded
operator on LP([0, )), then it has connected spectrum. In that work, Barnes
exhibits several classes of kernels for which the conjecture holds. Applying
some of our results, we are able to enlarge these classes.
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For now, assume 1 < p < oo. Suppose k is a kernel such that

)k(x,t)l
q
dt Loc([0 oo))

where 1/p + 1/q 1. If the left-hand-side is actually in LP([0, oo)) for all
f LP([0, oo)) then T Int(k) is known as a Hille-Tamarkin operator. In the
general case, we say T Int(k) is a local Hille-Tamarkin operator.

THEOREM 7.11. If T is a local Hille-Tamarkin operator, then"
(1) If T is bounded on LP([0, oo)), then (op(T) is connected.
(2) In general, T has no non-zero eigenvalues.

Proof Since T is a local Hille-Tamarkin operator, PxT is a Hille-Tamar-
kin operator on L’([0, x)) for each x > 0. It is well known that such
operators are compact [11]. For each x > 0, 0 < < x, the operator PxT has

M {f LP([0, x))lf(y) 0 for almost all y > t}

as a closed invariant subspace. These spaces form a continuous chain in
LP([0, x)). That is, for each t (0, x),

span

y>t

In [15], it is shown that a compact operator on a Banach space with a
continuous chain of closed invariant subspaces is quasinilpotent. That is,
O’op(PT) {0}. It is easy to see that

e" {T B(LP([0, t)))lTrx, yTrrf.. 1,y is well defined for 0 < y < x}
is a closed subalgebra of B(LP([O, x))) and so rcx(PxT) {0}. By Proposition
4.1, rc(T)= {0}. If T is bounded, Corollary 5.5 (2) gives us a(T) is
connected. To conclude %p(T) is connected, we observe that by Proposition
7.2,

a(T) \ Crop(T )
_

{0}.

This of course implies the two sets are equal and rop(T) is connected. To
prove (ii)we note that any eigenvalues of T are in rsc(T). m
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The following kernels induce local Hille-Tamarkin operators:
(1) (i) k(x, t) E,=lthk(X)qk(t) where bk LP([0, oo))

/4oc([0,
(2) (ii) k(x, t) locally essentially bounded.

and bk

Now, suppose p 1. An integral operator T Int(k) is said to be a local
Hille-Tamarkin operator on Loc([0, oo)) if

f0Vess sup lk(x, t)ldx < oo for each y > 0
t>_0

THEOREM 7.12. Suppose T is a local Hille-Tamarkin operator on L]oc([0, oo)).
Then T has no non-zero eigenvalues. If in addition, T is bounded on LI([0, o)),
then trop(T) is connected.

Proof. In [11], it is shown that if S is a Hille-Tamarkin operator on
Ll([0, x]), then S2 is compact. Hence PxT2 =(PxT)2 is compact. We
can therefore apply the argument in the previous proof to conclude that
trsc(T 2) {0}. By the Spectral Mapping Theorem, we have trsc(T) {0}. The
rest of the theorem follows just as in the previous proof, m

It is well known that bounded convolution operators on LP([0, oo)) have
connected spectrum. In fact, the spectrum can be calculated using the
Laplace Transform. It is known that operators induced by kernels of the form
k(x, t) h(x, t)j(x t) have connected spectrum whenever h is essentially
bounded and j LI([0, oo)) [4]. We can get more by applying our technique.

THEOREM 7.13. Let 1 <_ p < oo. Let T Int(k) by induced by a kernel of
the form k(x, t) h(x, t)j(x t) where h Eliot([0, )) and j L]oc([0, )).
Then T has no non-zero eigentalues and if T is a bounded operator on
Loc([0 o)), then it has connected spectrum.

Proof. Theorem 11 of [4] implies that for each x > 0, trop(exT)--{0}.
Duplicating the proofs of the previous two theorems, we are done. m

Applications of Banach Algebra Results. Let X be a Banach lattice. A
bounded operator T on X is said to be positive if Tf > 0 whenever f > 0.
T B(X) is regular if it can be written T (T T2) + i(T3 T4) where T/
is positive for 1, 2, 3, 4. As we see below, it is not necessarily true that
every bounded operator is regular. The regular operators form a unital
algebra and can be given a complete norm, denoted Ilr, that is continuous
with respect to the operator norm.
The LP-spaces are standard examples of Banach lattices. It is well known

that when p 1 or p o, every bounded operator is regular. In a recent
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paper by Arendt and Voigt [3] it is proved that for 1 < p < 0% the Banach
algebra of regular operators is not dense in B(LP([0, oo))). We can use this
result to add to an observation made in [2] that certain operators have no
regular resolvents.

THEOREM 7.14. Let 1 < p < oo. If T is a bounded operator on LP([0, oo))
such that the distance from T to the collection of regular operators is positive
and Crop(T) is polynomially-convex, then the distance from (A T)-1 to the
regular operators is positive for all (Cr(T)).

Proof Let B(LP([O, oo))) and let . be the closure of the algebra of
regular operators in the operator norm. Then as noted, . 4: . Since
T \ _, applying Corollary 6.2, we are done. m

As a final application of the Banach algebra results, let X be a Banach
space. Suppose M is a closed subspace of X. Then the collection of all
bounded operators T such that TM

_
M is a closed subalgebra of B(X).

Therefore as a simple application of Corollary 6.2, we have"

THEOREM 7.15. If T B(X), then T has M as an invariant subspace if and
only if ( T)- has M as an invariant subspace for some in the unbounded
component of (Crop(T)). In particular, if Crop(T) is polynomially-convex, then T
has a non-trit)ial invariant subspace if and only if ( T)-1 does for some .
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