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MINIMIZING NORMS OF POLYNOMIALS UNDER
CONSTRAINTS ON THE DISTRIBUTION OF THE ROOTS

FRANCK BEAUCOUP

Let P(z)= _,=oaiz be an univariate polynomial with complex coeffi-
cients; we note Ilell maxll=l Ie(z)l. m well-known result of Erd6s-Turan
(see [6]) asserts that if the ratio

vllaoan

is not too large, then the roots are uniformly distributed in different angles
with vertex at the origin. To be precise, for every a,/3 with 0 < a </3 < 2r,
if N,, t is the number of roots zy with arg z. [a,/3 ], then

N,, t 2--------n < c n log
/laoan

where n is the degree of P.
Erd6s-Turan obtained c 16, a value which was improved later by

Ganelius (see [7]): c 2.619. Taking the polynomial (z- 1)n, we see that
c >_ 1/v/log 2 1.201.
The result of Erd6s-Turan concerns the distribution of roots in the whole

plane, but it does not yield optimal estimates if specific constraints are laid
upon the roots, especially if they are required to lie in a half-plane, or a
sector. However, the polynomials whose roots lie in the open half-plane
{Re z < 0} play a particularly prominent role in physics; they are called stable
polynomials (see [8]). By extension, we call "stable" any polynomial all of
whose roots lie in the closed half-plane {Re z _< 0}.

In the present paper, we consider the following problem: let P be a
polynomial whose roots lie in a sector {IArg zl > 0 > 7r/2}; what distribu-
tion of the roots minimizes the quantity Ilell//laoa,, ?

Beside the norm I1" I1, we consider Ilel12 (ET=olajl2)1/2, These two
norms have very different implications: the first one, for a signal, controls
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maximal values whereas the second one controls the quadratic mean, that is
the energy.
We also consider the norm [P ], introduced by Bombieri in [2], and defined

by

[P]

1/2

where is the binomial coefficient nt/jl(n-j)! This norm is closely
linked with the representation of the polynomial on a hypercube (see [4]).
Together with the associated scalar product, it is very useful in the area of
multivariate polynomials (see [2], [3], [4], [9], [10]).
For this last norm, we get satisfactory results only in the case 0--- r/2

(stable polynomials).
On account of the result of Erd6s-Turan, we might expect the minimum of

the norms to be reached for the uniform distribution of the roots inside the
considered sector. But this is completely wrong: on the contrary, the distribu-
tion at the extremities of the sector gives the minimum.
To be precise, we obtain the following result.

THEOREM. Let 0 be real, r/2 <_ 0 <_ zr. In the set of polynomials P with
complex coefficients, of degree n (n > 1), having all roots in the sector { Arg z
>_ 0}, the polynomial

Pn(z) (z ei)tn/21(z e-i) n-Ln/21

(where [n/2] is the integral part of n/2) makes the quantity f(P)
N(P)/ v/la0a,I minimal, where N(P) is either Ilell or Ilel12.

If 0 zr/2, this result is also validfor N(P) P].
Moreover P is, up to complex conjugation of the roots, the only monic

(an 1) polynomial minimal for f, except if 0 r/2, n is odd and N(P) is
either Ilel12 or [el. In this case, the minimal monic polynomials have one free
root; that is they are of the form

P( z) ( z e’)( z2

__
1)(n-1)/2 with 7r/2 < I1

Obviously, rotating the roots, one can get a similar statement for other
convex sectors.
We now prove the theorem. We must distinguish between the different

norms.
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1. Proof of the theorem for the norm II II

Let P(z) an lqn= I(Z Z), with z,, p,, ei’’, 1 < v < n. We introduce
Q(z) FI=l(Z ei’). A well-known lemma due to Schur (see [6]) asserts
that for every z of modulus 1,

Ie(z)l
[aoan[ >_lQ(z)l

with equality only if all roots zj have modulus 1.
Thus f(P) > f(Q), with equality only if P has all its roots of modulus 1,

and it suffices to minimize IIPII over the set of monic polynomials (the
quantity f(P) is homogeneous)with degree n and such that all roots lie on
the arc Arg z > 0} of the unit circle.
The following proposition shows that any minimal polynomial has no root

inside the arc.

PROPOSITION 1.1. If P is minimalfor IlPlloo in the set of monic polynomials
ofdegree n having all roots on the arc [1Arg z[ >_ 0} of the unit circle, then P has
all its roots at the boundary of this arc; that is P is of the form

P(z) (z ei)P(z e-i)
q

withp + q n.

Proof. We say that a point z0, Iz01 1 is a maximal point of the
polynomial P if Ie(z0)l Ilello. We need two lemmas.

LEMMA 1.2. Let P(z) an 1-I#v-- (z ei), with 0 -< (1 < < q# < 2r,
be a polynomial such that all roots have modulus 1. On each arc (tpv, tp+l) of
the unit circle between two consecutive roots, the polynomial P has at most one
maximalpoint.

Proof We consider the real function g, defined on R by

g(t) =le(e")l
n

ladlE 1--I (2- 2cos(t- o)),
,-----1

and its logarithmic derivative h(t) g’(t)/g(t), defined on (o, o+1).
Computing the derivative of h, we get

1 n 1
h’(t) -- (t" tp,)v--1 sinE 2

<0,

which ensures that g has at most once local maximum in (o, (v+l)"
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The next lemma is an immediate consequence of the previous one.

LEMMA 1.3. Let P be a stable polynomial such that all roots have modulus 1
and with at least one root inside the half-plane {Re z < 0}. Then P has only one
maximalpoint zo, and this maximalpoint satisfies Re z0 > 0.

Proof We consider, as in Lemma 1.2, the real functions

g(t) =lp(eit)l and h(t)= g(t)"

The stability of P implies that IP(eit)l > Ie(ei-t))l for every t, Itl < 7r/2;
and since P has at least one root inside the half-plane {Re z < 0}, the
previous inequality is strict for tl < 7r/2.

This ensures that all maximal points of P have non-negative real parts.
Then, in view of Lemma 1.2, it suffices to show that and -i are not

maximal for P: if P(i) 0, then is not maximal for P, if P(i) 4 O, then
computing h(Tr/2), we get

n ’rr/2 q,,)2 <0.

Thus g’(r/2) < 0 and r/2 is not extremal for g.
In the same way we can show that -i is not maximal for P, which

completes the proof of Lemma 1.3.

Remark. Lemma 1.3 is also valid for stable polynomials with roots of any
modulus (and at least one root in the open half-plane {Re z < 0}). The proof
will appear in a forthcoming paper [1].

We can now prove Proposition 1.1. Fixing 2,..., n R with 0 < I%.1
zr, 2 < j < n, we write, for q R, 0 < I1 -< r,

n

P(z) (z ei) I-I (z eiv).

Let q R, 0 < I1 r. Our claim will be proved if we find q’ R,
0 _< I,’1-< r, such that IIe,ll < IIell.
The polynomial P has, on account of Lemma 1.3, only one maximal point

z0, and it satisfies Re z0 > 0.
We must distinguish between two cases.

First case. zo 4: -e’. Writing o Arg z0, this means

It0- ql < r.
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Let e > 0 be small enough so that

{It- tol < ) c (It- ql < r}.

Writing M max{Ie(eit)l, It- tol > }, we have M < IIell and for
close enough to q, we again have

M’= max(le,(e.)l, It- tol >_ )< II&ll.
But if p’ satisfies Ip’ tol < q9 t01, then for every t with It t01 < we
have

thus

le it ei,’l < [e it ei,l,

and finally Ie,(eit)l < Ie(eit)l IIell.
Hence we see that an appropriate choice of q’ gives

Second case. zo -.eiL Writing Q(z) 1-Ivn=2(z e
(z ei)Q(z).
We will prove that zo is a maximal point for Q.
Let us consider the functions

itPv), we have P,(z)

f(t)=lP(eit)l, fl(t)=leit--eil, fz(t)=lQ(eit)l,
:’(t) f(t) :z(t)g(t) f(t) gl(t) fl(t)’ g2(t) f2(t)"

We have f(t) fl(t)fE(t) and g(t) gl(t) + gE(t).
Since z0 is maximal for P, we have g(to) 0. Moreover, since ei -Zo,

we also have gl(t0) 0. This gives gE(t0) 0 and fz(to) O.
Since the polynomial Q is stable with all roots of modulus 1, the proof of

Lemma 1.3 implies that f vanishes only once on r/2, zr/2[. So z0 is the
only maximal point for Q in {Re z > 0}.
Hence we have

P(zo)[ IIP lifo, [zo e ’l [Iz ei’lloo 2, Q(zo)l Q

So let q’ q, r/2 < I’l r. The point zo is not maximal for z- ei’;
hence

Izo ei"l < IIz ei’pll 2
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and

e,(z0) < 2 II Q II IIe II

Now, if z z0 satisfies Re z > 0, then z is not maximal for Q; hence

IQ(z) < Ilall

and

]P,(z) < 2]IQII= ]IPII=.

Therefore IIe,lloo < IIell, and Proposition 1.1 is proved.

PROPOSITION 1.4. In the set of the polynomials ep, q(Z) (7. ei)P(z
e-o)q with p + q n, the polynomial P, Pt/z -t/2 to the complex
conjugation of the roots, the only polynomial mini/natfor ll.S’llUf.
Proof If we take p, q N, with p + q n 1, it suffices to prove that

if p > q, then Ilep+l, qll > Ilep, q+l I1. This means that if one wants to add
another root, in order to decrease the norm of the polynomial, one has to put
it on the side where there are fewer roots.
So let p,q N, p + q n 1, p > q. Reasoning as in the proof of

Lemma 1.2, one shows that any maximal point of Pp+ 1, q (resp. of Pp, q+l) lies
in the open half-plane {Im z < O} (resp. in the closed half-plane {Im z < 0}),
which proves our claim, on account of the fact that for every t, r < t < 27r,
one has IPp+l, q(eit)l > IPp, q+l(eit)l.

2. Proof of the theorem for the norm II 112

For P(z) aFl__l(Z pvei’v) and Q(z) I-Ivn_l(Z ei*), we use again
Schur’s argument:

Ie(z)l
laoanl >_la(z)l

for every z of modulus 1. Integrating over the unit circle, we get f(P) > f(Q),
with equality only if P has all its roots of modulus 1. Hence, once again, it
suffices to minimize IIPII2 over the set of monic polynomials with degree n
such that all roots lie on the arc Arg z > 0} of the unit circle.

In order to state an analogue of Proposition 1.1, we must distinguish
between the case 0 > r/2 and the case 0 zr/2.
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PROPOSITION 2.1. Let P be a polynomial minimal for I1" 112 in the set of
monic polynomials with degree n having all roots on the arc Arg z >_ O} of the
unit circle.

If 0 > zr/2, then P has no root inside the arc; that is, P has the form

e(z) ep, q(Z) (z eio)P(z e-i)
q

with p + q n.
/f 0 r/2, then P has either the form P with p + q n, or (and only ifn

is odd) the form P(z)= (z- ei)(z2 +P’I<n-1)/2 and tp, r/2 <_ Ipl <- r,
does not affect IIPll2.

Proof. Fixing z2 ei*2,..., zn ei*. with 0 < ql l-I, 2 < v < n we
set Q(z) Yl=2(z z).
Then, for q R, 0 < I,1 -< r, we write P,(z) (z ei*)Q(z), and find

IIe, l122 IIzQ ei*QII22

21101122 2Re((zQ, ei*Q))

21101122 2Re(e-i,(zQ, Q))

21101122 21 (za, a)l cos(

where : Arg(( zQ, Q)). But

Re((zQ, Q)) ----f IQ(eit)12costdt,

and for every t, It[ < r/2,

Ia(e")l >- I.
So Re((zQ, Q)) > 0; that is I1 r/2.

Moreover, if Q has at least one root inside the half-plane {Re z < 0}, then
inequality (.) is strict for Itl < zr/2, and one can therefore conclude that
(za, Q) 4:0.
For 0 > 7r/2, we remark that if q’- l < q- 1, then IIe,l12 < IIel12.

Since I1 -< r/2, the result follows.
For 0 zr/2, it suffices to study the cases where (zQ, Q) vanishes.

According to what we saw already, this can happen only if Q is of the form
Q(z) (z i)P(z + i)q, with p + q n 1.



498 FRANCK BEAUCOUP

Moreover the quantity

Im((zQ, Q)) -f_lQ(eit) 12 sin dt

cannot vanish if p 4: q. Indeed, if p > q, one has a(eit)l < Q(e
every t, 0 < < ,r, and thus

-it)l for

Im((zQ, Q)) < o.

Then, in order to prove Proposition 2.1, it suffices to note that if n is
odd and Q(z) (z2 + 1)(n-l)/2, then (zQ, Q) 0 and II(z e*)all2
II(z i)QIIz for every q.
We have seen in this proof that if Q is a stable polynomial then

Re((zQ, Q))> 0. This yields the following multiplicative estimates for the
euclidean norm.

PROPOSITION 2.2. Let Q be a stable polynomial and a >_ 0, then

II(z-  )QII= <- v/1 + a211Qll2 -<ll(z +

The next proposition is the analogue of Proposition 1.4.

PROPOSITION 2.3. In the set of the polynomials

ep, q(Z) (Z ei)P(z e-i)
q

with p + q n, the polynomial Pn Ptn/2 ], n-[ n/2 is, up to the complex
conjugation of the roots, the only polynomial minimal for II 2.

Proof Taking p,qN, p+q=n- 1, p>q, we have to prove that
Ilep+a, qll2 > I[ep, q+1112.
For q R, 0 < I1 -< r, we consider the polynomial

Ro( z ) ( z e’)ep, q( Z).

We have to show that IIRol12 > IIR_ol12.
Setting Q Pp, q, one writes, as above,

IIR, II22 21101122 2 Re(e-i < zQ, Q))

21101122 21 (zQ, Q) cos( ,),

where : Arg((zQ, Q)), and as we have already seen, Im((zQ, Q))< 0,
since p < q.
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Hence (zQ, Q) 0 and s < 0, which gives IlR0l[2 > IlR_0ll2 and proves
our claim. The theorem follows as before.

3. Proof of the theorem for the norm [.

Once again, we will consider only the monic polynomials such that a0
P(O) 4: 0.

Schur’s argument used for the first two norms no longer applies, and we
cannot restrict ourselves to the polynomials such that all roots have modu-
lus 1.
We first state the following proposition.

PROPOSITION 3.1. Let P be a polynomial minimalforf(P) [P]/ /laoa.I
in the set of stable polynomials with degree n. Then P has at most one root in the
open half-plane {Re z < 0}; that is P is of the form

P(z) (z Zl)Q(z),

where Re Z 0, and all the roots of Q are purely imaginary.
Moreover, if Re Z < 0 then f(P) does not depend on Arg Z1. Hence for

every real q, 7r/2 _<[q[ < zr, the polynomial

(z [z ]ei)Q(z)

is also minimalfor f in the set of stable polynomials with degree n.

Proof. Suppose that the polynomial P, minimal for f in the set of stable
polynomials with degree n, has a root z plei in the open half-plane
{Re z < 0}. We write e(z) (2: Zl)Q(z) and Q(z) Ej=0n-lbj2;J. Then r/2
< I,1 -< r and Q is stable.
We also write, for every real q, r/2 < I1 -<

ep(z) (z- pleip)a(z) (then P etl),

One has

lpl lbobnl



500 FRANCK BEAUCOUP

and

[(z-plei’)Q] 2

[zQ ole’CQ] 2

[zQl2+p2a[ Q12 2pl Re(e-i’[zO, O])

where [Q]e is Bombieri’s norm at the degree n, applied on Q (which has only
degree n 1),

[Q]2
J=( n)j

(with the convention bn 0),

and is the scalar product associated to Bombieri’s norm at the degree
n" if R(z) E z n

l=oCj and S(z)= Ej=odjzj, then

JR, S]

_
cidi

So

[p]: [zQ]2 + p[Q]2 2pll[zQ, Q]I cos( :- 0),

where sc Arg([zQ, Q]).
We can see that q appears only in the quantity cos(:- q). Let us show

that I:1 _< r/2, that is Re([zQ, Q]) > 0.
For that purpose, we will use the following integral representation for

Bombieri’s norm, due to Boyd (see [5]).
If R is a complex polynomial with degree n, then

7r (1 + r2) +2 rdrdO.

For the associated scalar product, one gets

n+lJR, S] r f2rf
+ R(rei)g(reiO )

o "o (1 + r2)
] rdrdO.



MINIMIZING NORMS OF POLYNOMIALS 501

So

7r (1 + r2) n+2
Ia(re ) eidO

and

cosOdO dr.
7r (1 + r2) n+2 "0

The stability of Q gives, for every r with 0 < r < +oo and every 0 with
101 _< r/2,

Q(rei)l >lQ(rei(- ))l,

which yields Re([zQ, Q]) > 0, that is I1 r/2.
From this we will deduce that [zQ, Q] 0. Indeed, suppose that [zQ, Q]

4: 0, and take q R, 7r/2 < I1 -< zr, such that I:- ql < 1:- qal (this is
possible since I1 -< 7r/2 and 7r/2 < Ii -< r). We then have [PC]2 < [P1]2,
so f(P) < f(P), which contradicts the minimality of P P

Therefore [zQ, Q] 0 and q does not affect f(P). "
Thus, in order to prove Proposition 3.1, it only remains to show that Q has

all roots purely imaginary. To that aim, we note that if Q has at least one
root in the open half-plane {Re z < 0}, then one has, for every r with
0 < r < +oo and every 0 with 101 < r/2,

a(rei)l >lQ(re-)I,

so Re([zQ, Q]) > 0, and therefore [zQ, Q] 4: O, which completes the proof of
Proposition 3.1.

Proposition 3.1 leads us to the study of polynomials having all roots purely
imaginary. This is the aim of the following two propositions.

PROPOSITION 3.2. Let P(z)= I-IvP=l(Z- pvi)I-Inv=p+l(Z + pi) be a polyno-
mial with degree n having all roots purely imaginary. Writing Q(z)=
(Z- i)P(z + i)n-p, one has

[P]
Pl"’" Pn

>[Q],

with equality if and only if Pv 1 for every v, 1 < v < n.
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Proof In [2], it is shown that if R and S are polynomials with respective
degrees p and q, then one has the inequality

[RS] >
(p + q)! [R][S].

So, with R(z) I-Iff=l(z p,,i) and S(z) I-In=p+l(z + p,,i), we get

[P] > dp! -p)!
V n!pa p,

[I-I=,(z- pi)] [I=+,(z + pi)]

LEMMA 3.3. Let P be a polynomial with degree d such that all roots

z pei, 1 <_ v <_ d, have the same argument p. Then

[P] > [(z- ei)a],P1’’’ Pd

with equality if and only if Pv 1 for every u, 1 < u < d.

Proof By rotating the roots of P (which does not affect [P]//px... Pa )
we may assume that o O; that is, P has all roots real positive.
We write P(z) E]=oajz FlUu= (Z Pu)" Since (z- 1)a=

E]=O()(--1)d-Jzj, we have to prove that

j=O j--

J

It suffices to show that for every j, 0 _< j < d, one has

(***)
laiZ+laa_[2

>2d( )2Pl’’’Pd J

With j 0 or j d, inequality (, ,) becomes

1 +(Pl Pd
Pl Pd

which is obviously true.
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Let now j, 1 < j < d 1. Then

Thus

aa-j ( 1) E pvl pvj
l<Vl< <v1<d

a. ( 1) a-" E P,,
l<Vl< <Vd_j<d

(-1) a-i E Pl Pd

l<Vl< <vj<d Pvl Pry

(--x)d-j(Pl Pd)
1

l<vl<... <vy<d Pv

(layl 2 + laa-y 2
1

Pl’’’ Pd
( pl"’’ pd) E Pv,l<vl<... <vj<d

( )2Pl’’’ Od l<v<... <v<d

:( E
l<v< <vj<d

+ PVl**PvJ
1N1< <v]<_d P1"’" Pd

which becomes, after a suitable change of notation,

lajl 2 + laa_jl 2

Pl"’’Pd Xk

xk’s, 1 <k < z’.), are real positive and satisfy xk 1,1 <k < ()where the
if and only if (0,..., Oe) (1,..., 1).
The following lemma completes the proof of Lemma 3.3.
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LEMMA 3.4. Let N N*, we consider the function defined by

g(Xl,...,x) x,
k=l

Xl,...,XN > O.

Then the only minimalpoint for g is in the point (1,..., 1).

Proof We expand the squares and use the fact that the function, x x
+ 1/x, x > 0, is minimal for x 1 and only there.
Having proved Lemma 3.3 we return to the proof of Proposition 3.2.

Applying Lemma 3.3 to the polynomials R and S, we get

[P]
CPl Pn

> p! (n -p)!
n! [(z i) p] [(z + i) -P i,

with equality if and only if p 1 for every v, 1 < v _< n.
But the pairs (R, S) extremal for (, ) (that is for which equality holds in

(, ,)) are exactly the pairs (R(z) (z a)p, S(z) (z + 1/)q) with
a C (see [4] or [10] for a proof).
So the pair (z i)p, (z + i)n-p is extremal for (, ,), which means

(n -p)’
n! [(z-i)Pl[(z+i)n-p] [(z-i)P(z+i)

and Proposition 3.2 is proved.
Now we minimize [.] over the set of the polynomials

ep, q(Z) (z i)V(z + i)
q
with p + q n.

PROPOSITION 3.5. In the set of the polynomials Pp, q(Z) (z i)P(z + i)q

with p + q n, the polynomial Pn =Ptn/2 ], n -[ n/2 is, within the complex
conjugation of the roots, the only polynomial minimal for [.].

Proof Since (z i)p and (z + i)q are extremal for (, ,), one has

[ep q] 2(p+q,/2 P! q!
(p+q)!’

so we easily complete the proof with the inequality

p!(n-p)!>_ n- - !,

which is strict if p (In/2], n In/2]}.
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Using the previous three propositions, we can finally prove the theorem.
Let P be a monic polynomial minimal for f in the set of stable polynomials

with degree n. According to Proposition 3.1, P has at most one root in the
open half-plane {Re z < 0}.
We distinguish between two cases.

First case. P has no root in {Re z < 0}. Then, according, to Proposition
3.2 and Proposition 3.5, we have either P Pin/21, n-t n/2 en or P
en -t n /21, n /2 l"

So:
If n is even, then P(z)= (z2 + 1)n/2.
If n is odd, then

P(z) (z + i)(z2 + 1)(n-l)/2 or P(z) (z i)(z 2 + 1)(n-l)/2

Second case. P has one root with negative real part, then

P( z) (z pe)Q( z)

with 7r/2 < Il r and Q has all roots purely imaginary.
Moreover, according to Proposition 3.1, the polynomials (z- pi)Q and

(z + pi)Q are also minimal for f. Then Proposition 3.2 implies that p 1
and

Q( z) ep, q( Z) ( z i)P( z + i) q,

withp+q=n- 1.
Thus it remains to show that necessarily p =q (and therefore n is odd).
The polynomials (z- pi)Q Pp+a,q and (z + pi)Q Pp, q+a are both

minimal for f, so

[ep+l,q] [ep,q+l]
But we know that

[ep+q,q] ( P +n!l)!q! 2n/2

and

[Pp, q+l] /P! (qn!+ 1)! 2n/2

Therefore, the condition [Pp+l, q] [Pp, q+l] implies that p q.
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To complete the proof of the theorem, it suffices to note that if n is odd,
then every odd coefficient of the polynomial (z2 + 1)("-1)/2 vanishes.

Therefore, writing P(z)= (z- eiXz2+ 1)(n-l)/2, r/2 < I,1-< r, we
see that q does not affect f(P) and so P is minimal for f, for every q,
’/2 < I<1-< rr.

4. A few optimal estimates for stable polynomials

The theorem we have just proved yields, with 0 r/2, the following
optimal estimates:

Let P(z) Z,=oaz be a stable polynomial with degree n. Then

> 2"/2 (1)

[P]
 /laoanl )

-1/2

> 2n/2 n
tn/2 (2)

Moreover, if n is even, then

)
1/2

n
> n/2 (3)

and if n is odd, then

/laoan n-1)1/2>- n-1 (4)
2

Remark. The result of Erd6s-Turan, with c 2.619, yields the following
estimate for stable polynomials:

>_ en/4c and 4c2 27.44.
v/la0al

Here we get

2IIPIIo > e(n/2)log 2 and 10g 2 2.89.
1/laoan[
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5. Other norms

The result we get for the norms I1" Iloo, t1" 112 and [.] with 0 r/2 is not
valid for every usual norm.

Indeed, consider the L norm

71"

Ilelll f Ie(e")ldt,

and write P,(z) (z ei*)(z
IIe/2 I1 1.698 so

2+ 1). Then one has IIell 1.552 and

IIP/2 I1 IIP_/2 II1 > IIPll,

Here n 3, and both of these two polynomials have all roots of modulus 1.
We see that the polynomial P=, which has a root inside the left half-plane, is
smaller (for the L norm) than P/2, which is the polynomial e,,-tn/21, tn/2l
of our theorem for n 3 and 0 r/2.
Hence our claim is not valid in this case, and one can check that P= is

minimal for f(P) IIPII1/v/la0al in the set of stable polynomials of degree
n--3.
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