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Introduction

One of Rubel’s many research problems about algebraic differential equa-
tions (cf. [5, problem 21] and [6, problem 28]) is as follows:

Given a sequence (zn) ofdistinct complex numbers tending to infinity, and any
sequence (wn) of complex numbers, does there exist a differentially algebraic
entire function f such that f(zn) w, for all n N?

It is classical that the answer is "yes" if the "differentially algebraic" require-
ment is dropped. Below, in (2.4), we show the answer is "no" in our case:

Given any such sequence (z), the set ofsequences (w) CN for which there
is a differentially algebraic entire functionf with f(zn) w for all n, is meagre in
the sequence space Cr equipped with the product topology. (Rubel had already
shown in [6] that if one prescribes not only the values of f(z) but also those
of f(J)(zn) for 1 < j _< n, then the interpolation problem is in general not
solvable.)
The goal of this paper is to reproduce Malgrange’s local parametrization of

the solutions of an analytic differential equation, which is perhaps not as
widely known as it should be, and to indicate its role in answering questions
of this sort.

Let us now define some of our terms precisely. By region in C we mean a
nonempty connected open subset of the complex plane C, and a holomorphic
function f on such a region is said to be differentially algebraic (or DA, for
short) if there is a nonzero polynomial P(Z, W, W’,..., W(m)) in the vari-
ables Z, W, W’,..., W(m) over C such that P(z, f(z), f’(z),..., f(m)(z)) 0
for all z in the region.
We then also say that f is a solution of the algebraic differential equation

(ADE)

P( z, w, w’, w(m)) O.
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One relevant observation (cf. [4]) is that then P can be taken to have rational
coefficients;so only countably many ADE’s need to be considered. (Quick
proof. Let K __. C be the field generated by the coefficientsof the polynomial
P(Z, W, W’,..., w(m)). Consider K(z) as a field of meromorphic functions
on the region D domain(f) and note that K(z) has finite transcendence
degree over Q. The field K(z, f, fo),... ) of meromorphic functions on D
generated over K(z) by f and its successive derivatives is already generated
over K(z) by f, f(1), f(2),..., f(m) alone, so K(z, f, f(1),...) has transcen-
dence degree < m over K(z), hence K(z, f, f(1),... ) has finite transcen-
dence degree over Q. This gives a nontrivial polynomial relation with rational
coefficientsrelating f, f(l,..., as desired.)
Now remember the somewhat vague but useful slogan:

The solutions of a differential equation (z, w, w’,..., W(m)) 0 near a given
point z zo form an m-parameterfamily.

(The idea is that a solution w(z) is largely determined near z0 by the values
W(Zo), w’(zo),..., w<m-1)(Zo).) It is understood here that the not identically
vanishing function is holomorphic in its variables z, w, w’,..., w<m) (or real
analytic, if one is interested in the real case), and that only holomorphic
(respectively, real analytic)solutions are considered.

This slogan, together with the countability observation above, certainly
suggests that the answer to Rubel’s question should be negative. The problem
is to give a precise sense to this slogan and then to prove it. The following
result of Boshernitzan [1] shows that some caution is needed here:

There is an ADE of order 19 with real coefficient whose real polynomial
solutions lie dense in the space of all real valued continuousfunctions on R, with
the topology of uniform convergence on compacta.

This seems incompatible with the "slogan" view that the solutions of a
given ADE form a finite dimensional family. We still have an escape route,
namely to view Boshemitzan’s example as analogous to Q being dense in R
and nevertheless very small inside R (countable, hence meagre, of measure 0,
etc.). This view turns out to be correct: roughly speaking, the solutions of a
given ADE of order rn form a union of countably many analytic families of
dimension < m.

Such a result is deduced in Section 1 from Malgrange [3], who refers for
part of his argument to Douady [2]. This part is replaced here by a more
elementary argument, since I was unable to extract the desired result from
Douady’s paper. Actually, Malgrange works with analytic rather than alge-
braic differential equations, and most of the results below are stated also in
that more general context.
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Another of Rubel’s problems (cf. [5, problem 20]) can be stated as follows:

Given a sequence (Zn) that tends to infinity in the complex plane, must there
exist a differentially algebraic entire function whose zeros are exactly the Zn’S?

We answer this negatively, in (3.3), by showing that for many such sequences
(zn) there is no DA entire function vanishing at all zn. Similar ideas are
involved.

I thank Lee Rubel for stimulating conversations on this topic.

1. Analytic parametrization according to Malgrange

The ring of holomorphic functions on an open set U in CM is denoted by
H(U). A region in cM is a non-empty connected open subset of cM.

Let a holomorphic function on a region E in C2/m be given. In
connection with differential equations we find it convenient to let
z, w, w’,..., w(m) denote the usual coordinate functions on E (rather than,
say, Zl,..., Z2+m)- The partial derivative Odp/Ow(m) of with respect to the
last variable is of course also holomorphic on E, and is called in this
connection the separant of . We now consider the following differential
equation of order < m"

A solution of ( ) in this paper is always a holomorphic function f on a region
D

___
C such that (z, f(z), f’(z),..., f(m)(z)) E and

dp(z,f(z),f’(z),...,f(’)(z)) O, for all z e D. If moreover f is not a
solution of the separant equation

(O(I)/ow(m))(Z,W, Wt,...,W(m)) O,

then f is called a non-singular solution of (.).
Next, let D be an open disc in the complex plane, centered, say, at 0, with

closure D and boundary 0D D\D, and define

Bin(D) {f -- n(D)" f(k) extends continuously to , for k 0,..., m}.
BIn(D) is clearly a C-linear subspace of H(D), and we equip BIn(D)with the
norm

Ilfll Ilfllsup + IIf’llsup + + IIf(m)llsup,

which is easily seen to make BIn(D) a complex Banach space.
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Suppose now that fo Bm(D) is a solution of (.) such that in addition:
(i) fo extends holomorphically to a solution of ( ) on a region containing D,
(ii) OdP/ow(m)(z, fo(z),..., f(om)(z)) 4= 0 for all z OD. (Here we use fo

also to denote its holomorphic extension to a region containing D.)

Under these assumptions we have:

(1.1) THEOREM (Malgrange [3, 4]). There is a holomorphic function F"
U D --, C, for some open set U in Ck, k <_ m, and an open neighborhood Vo
offo in Bm(D)such that for every solution f Vo of (.) there is a uniquepoint
a U with

f(z) F(a,z) forallz D.

Remark. The result is not stated in this form by Malgrange, but this
comes out of the proof below. Later we show how to arrange that the set of
aU for which the function F(a,z) on D is a solution of (.) is an
analytical subset of U.

Proof First take an open neighborhood V of f0 in BIn(D) such that if
f V, then

(z,f(z),f’(z),...,f(m)(z)) E(= domain(O)) for all z .
Define the map q" V --, B(D) by

(f) the function dp(z, f(z),..., f(m)(z)) on D.

Note that for small e BIn(D) and all z D we have, by Taylor expan-
sion,

XIt(f0 t_ d)(Z) --)(Z, fo(Z) %" ,ff(z), f(z) "+" ’(Z),..., f(om)(z) -]- oo(m)(z))
dp(z, fo(z), f;( z),..., f(om)(Z))
+ ( OdP/OW)(Z, fo( Z), f;( z), f(om)( z))
+( OdP/Ow’)(Z, fo(Z), f(z),..., f(om)(z)) ’(Z)

-]" (ofI)/ow(m))(Z, fo( Z), f( Z), f(om)( z) )(m)( z)

+ terms of degree>_2 in e(z), 8’(z),..., (m)(z).
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In other words,

(f0 + 8) (fo) + ao" 8 + al 8’ + +am 8(m)

+ terms of degree >2 in 8, 8’,..., 8<m),

where a is the holomorphic function (J)/w(i)Xz, f0(z), f6(Z),..., f(om)(z))
on D.

This shows that is differentiable at f0 with derivative ’(f0): Bm(D) -8B(D) given by ’(fo)(8) ao 8 + a + +am 8(m The same argu-
ment shows is differentiable at each f V, and even continuously differ-
entiable on V.
Now ’(f0) is a linear differential operator of order m with coefficientsai

that extend holomorphically to a region containing D, and whose "leading"
coefficientam has no zero on OD, by assumption.

In this situation Malgrange shows by a beautiful argument (1 of [3]) that
the image L := ’(fo)(Bm(D)) is closed in B(D) of finite codimension. It is
classical that the kernel K := ’(f0)-l(0) is a closed subspace of Bm(D) of
dimension k < m. Next Malgrange appeals to "raisonnements connus" and
Douady [2] to conclude that "l’espace analytique banachique -1(0) est, au
voisinage de f0, de dimension finie". This probably amounts to the argument
we give below: we change so as to make the Inverse Mapping Theorem
applicable.
Take continuous linear projection maps p" Bm(D) -- K and q" B(D) -L, so p and q are the identity on K and L. Now modify to a map
#" V - K L given by #(f) (p(f), q(f)). Clearly # is also con-

tinuously differentiable on V, with derivative (#)’(fo)" Bin(D) -- K L at
fo, given by (#)’(f0)() (p(), ’(fo)(e.)). Hence (#)’(fo) is a bijection,
and since we are dealing with Banach spaces, the inverse of (#Y(fo) is
continuous.
Then by the Inverse Mapping Theorem there is an open neighborhood

V0 c_ V of f0 in Bm(D) and open neighborhoods Vr of P(fo) in K and VL of
0 q(O)= q((fo))in L such that # maps V0 homeomorphically onto
Vr Vz, with continuously differentiable inverse O"Vr V - Vo c_ Bm(D).
Since #(V0 n -1(0))

_
Vr {0} we have

(#) /0 n XI-I(o) C..C_ O(VK X {0}).

Take a linear isomorphism e’.Ck K and let U e-I(VK ), an open set in
Ck. Then the map F U D - C given by F(a, z) O(e(a), O)(z) is easily
seen to be continuously differentiable, hence holomorphic. Moreover, if
f V0 is a solution of ( ), then by (#) there is a U such that f O(e(a), 0),
that is, f(z) F(a, z) for all z D. D
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(1.2) Remarks. (1) In the theorem above we can take F, U, V0 and an
analytic set

A {a U: go(a) gN(a) O}

with go,..., glv H(U)such that the map

a (the function F( a, z) on D)

is a bijection from A onto V0 -1(0) (the set of solutions of ( ) in V0). (In
this way we obtain a’ parametrization of the set of solutions of ( ) near f0 in
the space Bm(D) by an analytic set A of dimension < m.)
To get A, note first that our construction of F shows that, given any

a U, the function F(a, z) on D actually belongs to V0. It will be a solution
to (,) if and only if

(z,F(a,z),(OF/Oz)(a,z),...,(O"F/ozm)(a,z)) 0 for all z D.

The left hand side here is a holomorphic function G(a, z) of (a, z) U D.
Hence there are gn H(U), n 0, 1,..., such that G(a, z) Y’.gn(a)z for
(a, z) U D, the infinite sum converging absolutely, and uniformly on
compact subsets of U D. Let a0 U be the point for which F(ao, z)=
fo(z) on D. By a well known result on several complex variables, finitely
many of the g,’s, say go,..., gv, generate the ideal of H(U) generated by all
the g,’s, provided U is first suitably decreased to a smaller domain containing
a0. Then we can change V0 accordingly such that the result stated above
holds for our new F, U and V0, with go,..., gu generating the ideal of H(U)
generated by all g,’s.

(2) The assumption in the theorem and the previous remark that D is an
open disc centered at 0 can be replaced by the assumption that D is the
image of the open unit disc in C R2 under a Cl-diffeomorphism of an open
neighborhood of the closed unit disc with an open set in C--R2. (Same
definition of BIn(D).) Exactly the same proof works.

Next we use the theorem to parametrize solutions of (,) in spaces H(D).
We equip the C-linear space H(D), for any region D in the complex plane,
with the topology of uniform convergence on compact subsets of D. We will
need the fact that H(D) is then a Fr6chet space (complete metrizable locally
convex space), with a countable basis for the open sets. Let D(r) denote be
the open disc Izl < r of radius r centered at 0.

(13) COROLLARY. Let 0 < r < R, and let fo H(D(R)) be a non-singular
solution of the differential equation (,). Then there is a holomorphic function F
on U D(r), for some open set U

_
Ck, k < m, such that for every solution f
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of (*) in some neighborhood V(fo) offo in the space H(D(R)) there is a U
with

f(z) F(a, z) forallz D(r).

Proof By increasing r we may assume that (Ofl/w(m))(Z, fo(Z),...,
f(om)(z)) 4 0 for all z with Izl--r. Then we can apply the theorem to
D D(r). This gives a neighborhood V0 of folD in B’n(D) and a holomor-
phic function F on U D for some open U __c C, k < m, such that if f V0
is a solution of (,), then f(z) F(a, z) for some a U and all z D. We
may assume V0 {f Bm(D): IIf- (f0lD)[I < }, 0 < , where II" is the
norm on Bm(D) given in (1.3). Let now r < r’ < R. Then it follows from the
formula

g(J)(z) (j!12zri) flxl=,(g(x)/(x Z) j+l) dX (g H(D(R)), ] N)

that for some e’ > 0, if f H(D(R)) and If(x) -f0(x)[ < e’ on D(r’), then
[[(f- f0)[Dl[ < . (Apply the formula to g f- f0, J 0,..., m.) Hence

{f H(D(R))" If(x) -f0(x)l < ’ on D(r’)}

is a neighborhood of f0 in H(D(R))with the desired property.

Next we consider all solutions of (,) in H(D(R)), not just those near a
given non-singular solution.

(1.4) COROLLARY. Let not be identically 0, and 0 < r < R. Then there
are holomorphic functions F," Un D(r) C, with Un open in Ck(n), 0 _< k(n)
<_ m, for n 1, 2, 3,..., such thatfor each solution f H(D(R)) of ( ) there
are n and a Un with

f(z) Fn(a, z) for all z in D(r).

Proof. For each non-singular solution fo H(D(R)) of (,) we choose a
function F and an open neighborhood V(fo) in H(D(R)) with the properties
of Corollary (1.3). Since the space H(D(R)) has a countable base for the
topology, countably many of the V(f0)’s will cover the union of all V(f0)’s
(Lindel6f property), and so we can find countably many functions F as above
such that each non-singular solution in H(D(R)) is of the desired form on
D(r) for one of those countably many F’s. This takes care of the non-singular
solutions. The singular solutions are solutions of the separant equation, and
hence we apply the same process with replaced by its separant /Ow(’’).
This takes care of the non-singular solutions of the separant equation.
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Continuing this way we treat all solutions of (,) in H(D(R)) such that for
some k N and z D(R)we have (tgkdP/tg(w(m))k)(z,f(z),...,f(m)(z))

Next suppose that f H(D(R)) and (Okd/O(w(m))*)(Z, f(z),...,
f(m-1)(Z), f(m)(Z)) 0 for all k N and all z D(R). Take any R# with
r < R# < R. Then Taylor expansion of with respect to w(m) around each
point (z,f(z),...,f(m-1)(z),f(m)(z)) with Izl _< R# shows that for some
> 0 we have

(z,f(z),...,f(m-)(z),u) E domain(C)

and

dP(z,f(z),...,f(m-1)(Z),U) 0

for all z and u with [z[ _< R# and [u-f(m)(z)[ < e. Take a polynomial
u(Z) Q(i)[z] such that [u(z)-f((z)[ < e for [zl _< R#, and a region
E# in C2+(m-1) such that E# contains all points (z, f(z),..., f(m-x)(z)) with
]z[ _< R# and such that if

then

( Z, W, W’, W(m-l)) E#,

(z, w, w’,..., w(m-’, u(z)) e E.

Next define the holomorphic function P#" E# - C by

f#(Z,W, Wt,...,W(m-l))

Note that then f# flD(R#) is a solution of the differential equation
#(z,w,w’,...,w(m-l)) 0, which is only of order < m- 1, while the

original differential equation (,)was of order < m. We may also assume
that is not identically 0 (choosing u(Z) suitably), and that E* is a union
of finitely many open balls in C2+(m-a), each with rational radius and
centered at a point of Q(i)2+(m-1). This leaves only countably many possibili-
ties for *, depending on the original . Hence an obvious inductive
hypothesis gives the desired result. 1

(1.5) Remark. Actually Corollary (1.4) extends as follows:

Let d not be identica_.lly 0, and let D’ and D be simply connected bounded
regions in C such that D’

_
D. Then there are holomorphic functions Fn Un

D’ C, with Un open in Ck(n), 0 < k(n) < m, for n 1,2, 3,..., such that
for each solution f H(D) of ( ) there are n and a U, with f(z) F,(a, z)
for all z in D’.
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To see this one first proves the corresponding extension of Corollary (1.3),
and then adapts the proof of (1.4) in a straightforward way.

2. Interpolation for differentiallyalgebraic functions

We now apply the results of the previous section to answer Rubel’s
interpolation problem for differentially algebraic holomorphic functions.

(2.1) Given natural numbers rn and M, let us say a set S
_
CM has

complex-analytic dimension < rn if S is contained in the union of countably
many complex-analytic (embedded) submanifolds of CM of dimension < m.
Note that then every subset of S has complex-analytic dimension < m, and
that the union of countably many subsets of C of complex-analytic dimen-
sion < rn has complex-analytic dimension < m. If rn < M, then a set S

_
Cu

of complex-analytic dimension < rn is very small in Cu, in several ways: S is
meagre in Cu, and of Lebesgue measure 0.

If G U Cu is a complex-analytic map with U
_
Cm open, then G(U) is

actually a union of countably many complex-analytic submanifolds of dimen-
sion < m, in particular G(U) is of complex-analytic dimension < m. This can
be seen by partitioning U into countably many complex-analytic submanifolds
M (of various dimensions) such that each GIMi:M --, CM has constant
rank r, and then using the rank theorem and the fact that M has a
countable basis to conclude that G(M) is a countable union of complex-ana-
lytic submanifolds of Cu of dimension ri.

(2.2) As in the previous section, we consider the differential equation

(I)(z, w, w’,..., w(m)) 0

where is a holomorphic function on a region in C2+m. We also assume now
that dp is not identically O. Let points Zl,..., zu C be given and define
I(P,Zl,..., Zu) to be the set of all (f(zl),..., f(zu)) CM with f a solution
of (.) defined on a region in the complex plane containing the points
Zl,..., ZM. (The region may vary with f.)

(2.3) PROPOSITION. The set I(, z1,... XM) has complex-analytic dimension
<_ rn in Cu. In particular, if m < M, I(dp, z1,... zu) is meagre and of
Lebesgue measure 0 in cU.

Proofi Let f be a solution of (.) on a region D such that zl,..., zu D.
Then there is a connected set P

_
D such that:

(i) Zl, ZM -. P;
(ii) P is the union of finitely many (compact) line segments inside D;
(iii) the endpoints of these line segments are among {Zl,..., zM} {a +

bi: a, b Q};
(iv) no two distinct segments intersect except at endpoints.
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By deleting superfluous segments we get a "spanning tree", so we may even
assume P is simply connected. Hence, for the purpose of the proposition we
may as well assume D is the e-neighborhood of such a polygonal path P for
some positive rational e > 0. Then D is also simply connected and bounded.

Let 0 < e’ < with e’ also rational and let D’ be the ’-neighborhood of
P. Note that, given the points z,..., z, only countably many pairs (D, D’)
of this form exist. Now (1.5) gives us countably many holomorphic functions
Fn, D, D, Un, D, D, "--> C with Un, D, D, open in Ck(n’D’D’), 0 k(n, D, D’) < m,
such that for each solution f of (,) in H(D) there are n and a Un, D, D’
with f(z) Fn, D,D,(a, Z) for all z D’. Define Gn, o, D, Un, D, D, C by

Gn,o,z,(a) (Fn,o,l,(a, Zl),..., Fn,o,o’(a, zM)).
Then Gn, D, z’ is a complex-analytic map, and the considerations above show
that I((P, Zl,..., zt) is contained in the union of the sets G, o, o,(U, o, o,)
Ct, with (D, D’) ranging over countably many possible pairs of regions and n
over N. The desired result is now immediate from the remarks in (2.1).

(2.4) COROLLARY.
the set

Let (Zn)n N be a sequence of complex numbers. Then

{(f( zn) ) Cr" f is a differentially algebraic holomorphicfunction on a region

containing the points zo, z z
is meagre in the sequence space Cr. (Here we equip Cr with the product
topology making it a Polish space.)

Proof. This is almost immediate from the previous result and the fact
quoted in the introduction that each differentially algebraic holomorphic
function on a region in C is a solution of an algebraic differential equation
with rational coefficients.

3. Zeros of differentially algebraic functions

Here we answer Rubel’s question on zeros of differentially algebraic
holomorphic functions. We need one more technical lemma.

(3.1) LEMMA. Let U CC_ Ck be open, D a region in the complex plane, and
F :U D - C a holomorphic function. Let n > k and put

A {(Zl,...,zn) Dn" thereisa UsuchthatthefunctionF(a,z)
on D does not vanish identically but vanishes at the points z1,..., zn}.

Then A has complex-analytic dimension <_ k in C, hence is meagre in C.
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Proof By removing from U the closed subset {a U: F(a, z) 0 for all
z D} we may assume that for all a U there is z D with F(a, z) =/= O.
For each n-tuple (il,..., in) Of natural numbers, put

Ai {(Zl,..., Zn) . Dn" there is a U such that

(3F/az)(a, z1) 0 for 0 < j < il, ( 3i + 1F/3zi’ +)(a, z1) =/= O,

(o/o)(,z) ofoo _< _< i,(o’/F/oz’/l)(a,z) 0}.

Then A is the union of the Ai’s so it sufficesto show that each A is of
complex-analytic dimension < k. For given as above we have Z c. ,rr(Bi)
where rr" U D C D" is the projection map onto the middle factor
and B is the set of all points

(a, z1,...,Zn,WI,...,Wn) U Dn C

such that

and

(tgilF/ezil)(a, Zl) (ei,F/ezin)(a, zn) 0

(eil+lF/ezil+l)(a, zl) .w 1,...,(ein+lFIozi’,+l)(a, Zn).wn 1.

So n ---G-l(0,..., 0, 1,..., 1), where G’U Dn Cn --’ Cn Cn is the
complex-analytic map given by

V( a, zl, Zn, W1, wn) "--((a,,Flaz,1)(a, zl), ( a’.F/az,n)( a, Zn),

( O il + 1F/tgzi1-1 )(a, Zl)" Wx,..., ( t9 in+ 1F/Izinl )(a, z,)" Wn).

One easily checks that the Jacobian matrix of G has full rank 2n at each
point of Bi; hence B is a complex-analytic submanifold of U x Dn Cn of
dimension k + 2n 2n k. Now use the fact that A

___
r(Bi). rq

As before we consider a differential equation of order < m"

( z, w, w’, w(m)) 0

( a holomorphic function on a region in c2+m)o
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(3.2) COROLLARY.
the set

Assume is not identically zero. Then for each n > m,

(( Z1,.. Zn) --- Cn" there is a non-zero solution f H(D) of ( ) on a region

D c_ C such that Zl,..., zn D andf(z) f(Zn) 0}

has complex-analytic dimension < m in Cn, in particular, it is meagre in Cn,

Proof. Combine the arguments in the proof of (2.3) with Lemma (3.1).

For each infinite sequence (Zn) of points in C such that zn -") O0 there is a
nonzero entire function f such that f(zn) 0 for all n. But in general we
cannot take f here differentially algebraic as follows easily from (3.2):

(3.3) COROLLARY. Let {(z0, Zl,... ) CN" IZnl > n for all n}, a
closed subset of CTM. Then {(zn) f" there is a nonzero entire DA function f
such that f(Zn) 0 for all n} is meagre in 12.

4. The real analytic case

Let be a real analytic function defined on a non-empty connected open
subset E of R2/m. Consider the real differential equation of order < m

(*)R alP(x, y, y’,..., y(m)) O.

A solution of (*)R is now a real analytic function f on an open interval
I c R such that

and

(x, f(x), f’(x),..., f(m)(x)) E

(I)(x, f(x), f’(x),..., f(m)(x)) 0 for all x I.

If moreover f is not a solution of the corresponding separant equation, then
we call f a non-singular solution of (*)a. Note that we can always extend
analytically to a holomorphic function on a region in C2/m and a solution of
(*)a to a holomorphic solution on a region in C of the corresponding
complex-analytic differential equation. This is essentially what makes it possi-
ble to apply the results in the previous sections to the present real analytic
case. We leave the details to the reader and only state the outcome. Define
"having real-analytic dimension < m" (for subsets of Rt) in the same way as
"having complex-analytic dimension < m" (for subsets of Ct), with real-ana-
lytic instead of complex-analytic submanifolds.
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In the rest of this section assume that is not identically O.
Let points Xl,..., XM R be given and let IR(, Xl,..., XM) be the set of

all (f(xl),..., f(XM)) RM with f a solution of (*)l defined on an open
interval in R containing the points x1,..., xM. (The interval may vary with
the solution.)

(4.1) PROPOSITION. The set IR(, Xl,... XM) has real-analytic dimension <
m in RM. Hence, ifM > m, then IR(dP, x1,..., XM) is meagre and ofLebesgue
measure 0 in RM.

This may be compared with Boshernitzan [1], which gives a real algebraic
differential equation (,)R of order rn- 19, such that for all distinct real
numbers Xl,..., x the set IR(, Xl,..., Xt) is dense in Rra.

(4.2) PROPOSITION. For each M > m, the set

( Xl, XM ) 7. RM" there is a non-zero solutionfof ( )1 on an open interval

I
_
R such that Xl,... XM I andf(Xl) f(xM) 0}

has real-analytic dimension < rn in RM; in particular, it is meagre in RM.

Again, Boshernitzan [1], gives a real algebraic differential equation (.) of
order rn 19, such that for each M > 19 the set in (4.2) is dense in Rt.
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