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AN EXTREMAL PROPERTY OF CONTRACTION
SEMIGROUPS IN BANACH SPACES

JEROME A. GOLDSTEIN AND BELA NAGY2

1. Introduction and the main result

Let the closed operator B generate a (Co) contraction semigroup T on a
complex Banach space X, and let f be a unit vector in X. It is evident that if
f is an eigenvector of B corresponding to a purely imaginary eigenvalue, then
l( Ttf, x* )1 l( f, x* )1 for every functional x* in the dual space X*. In the
converse direction Goldstein [3] proved that if X is a Hilbert space and f is a
unit vector in X satisfying

lim I(rtf f)l 1,

then f is an eigenvector of B belonging to a purely imaginary eigenvalue. He
also gave an example in [3] showing that the corresponding natural general-
ization of his assumption in the case of a general Banach space X need not
imply the desired conclusion: in the space X C[0, 1] there is a unit vector f
and a unit vector x* in X* satisfying

(f,x*) 1, I<Tf, x*>l--- 1

for every t > 0 without f being an eigenvector of the generator operator B.
Trying to find an extension of the main result of [3] to the case of a general

Banach space X we first observe (see Lemma 2 below) that the "single
functional assumption" of [3] in a Hilbert space immediately implies a
corresponding "every functional statement": for every g in the Hilbert space
X we then have

lim I<Ttf, g>l --I<f, g>l.
too

Since we have to postulate more than the "single functional assumption" in
an arbitrary Banach space, we shall suppose what we can call the "every
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functional assumption". In other words, we shall prove the following main
result of this note:

THEOREM. Let X be a complex Banach space, T a (Co) contraction semi-
group ofbounded linear operators on Xgenerated by the closed linear operator B,
andf X a nonzero vector satisfying

lim [<Ttf, x*>[ =l<f, x*>l

for every x* in the dual space X*. Then f is an eigenvector ofB corresponding to
a purely imaginary eigenvalue.

The proofs of the assertions above will be given in six lemmas in Section 2.
Lemma 2 will deal with the mentioned equivalence in Hilbert space, whereas
Lemmas 1 and 3 through 6 will give parts of the proof of the main result in
the Banach space case. The main tool will be the reduction of the investiga-
tion to the smallest T-invariant subspace containing f, where the restriction
of the semigroup will be shown to be weakly almost periodic in the sense of
deLeeuw and Glicksberg [1].

Notations will be standard or explained in the text. Note that I" will
denote any norm, and (x, x*} will often denote the value x*(x) of the
functional x* at x. The operators T(t) in the semigroup will also be denoted
byTe.

2. Lemmas and proofs

It is well-known that in any Banach space X for any unit vector f there
exist orthoprojectors Pf onto f, i.e. bounded linear idempotent operators Pf
with norm 1 and range L(f), the (one-dimensional) subspace spanned by f,
satisfying f f. Any such othoprojector has the form P. y* (R) f, i.e.
P,(.) y*(. f, where y* has norm 1 in X* and satisfies (f) 1; the
converse is also valid. Using these notations we start with the following
simple result.

LEMMA 1.
we have

Under the conditions ofthe precedingparagraph, for any x* X*

I<f, x* >1 IPx*l,

Further, if T is a contraction semigroup, the following are equivalent:
(a) I(erTtf, x*)l - I(f,x*)l as t foreveryx* S*;
(b) I(Ttf, y* )l 1 as t ---> for the functional y* of Pf.
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Proof Clearly,

iP x,i sup I<x,P x*>l

On the other hand,

IP*x*l sup I<y*(x)f,x*>l <l<f,x*>l.
Ixl--1

The equivalence of (a) and (b) is immediate from the considerations above.
If X is a Hilbert space, the "single functional assumption" of the introduc-

tion clearly implies the "every functional assumption" via the main result of
Goldstein [3]. We show here that this can be proved immediately (without
recourse to [3]), which in the end will yield a completely different proof of the
main result of [3].

LEMMA 2. Let X be a Hilbert space, f a unit vector in X and T a contraction
semigroup in X. [(Ttf, f)[ ---> 1 as t - if and only iffor every g X;

lim I(Ttf, g)[ IPfgl =l(f, g)l,
t-oo

where Pf denotes the selfadjoint projection onto L(f).

Proof
then

We shall prove the only if statement. By assumption, if Iefgl 4= O,

Hence for every g X we obtain

lim (Ttf, Pfg)l IPfgl.
too

Assuming nonzero denominators, Bessel’s inequality gives, with pc
I-Pf,

efgl
/ Ttf’ legl

< lrffl2"

By assumption, the first term and the right-hand side tend to 1; hence the
second term converges to 0 as t . Since

(Ttf g) (Ttf Pfg) + (Ttf P/g),
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we obtain

lim I(Ttf, g)l lim I(Ttf, Pyg)l IPzgl.

If Pg 0, then Pfg g, and our assertion is valid by what has been proved
above. If Pfg 0, hence g Pfg, take the vector f in place of Pfg and
apply Bessel’s inequality again. It yields

lim I(rtf, g)l 0 IPfgl,
t--

and the proof is complete.
From now on we shall consider only the general case where X is a complex

Banach space. Also, in what follows T will denote a contraction semigroup,
and f a fixed unit vector in X.

LEMMA 3. With the notations above assume that for every x* X*,

lim I<rf, x* >1 =l<f, x*>l.
t-

Then the orbit (Ttf’t > 0} is a relatively compact set in the weak topology
ofX.

Proof. By assumption and by Lemma 1,

tlim I((z Pz)rtf, x*)l IP?(Z* P?)x* o

for every x* X*. Hence

lim [Ttf y* (Ttf)f 0

in the weak topology of X (here, as above, y* denotes the linear functional
corresponding to the orthoprojector Pf). With the notation c y*(Ttf)we
have

lim Ictl 1,

Therefore for every real sequence converging to infinity there is a subse-
quence {t(n)} such that limn_ c(t(n)) c, where the complex number c has
modulus 1. Hence

lim Tt(n)f cf
n
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in the weak topology of X. For any nonnegative real sequence with a finite
limit point the strong continuity of the orbit {Ttf:t > 0} yields the existence
of a subsequence for which Tt(n)f converges in the strong topology of X.
Hence the orbit is relatively weakly compact.

Definition. Any vector x X whose orbit satisfies the conclusion of
Lemma 3 will be called a weakly almost periodic vector (with respect to the
semigroup T), and we shall write x WAP(T).

LEMMA 4. The closure L in the norm topology of the linear span of the orbit
of the vectorf is contained in WAP(T).
L is a T-invariant subspace, and T restcted to L is a weakly almost periodic

semigroup in the sense ofdeLeeuw and Glicksberg [1]. Hence L is the topological
direct sum of the closed subspaces Lo and L of the flight vectors and of the
reversible vectors (cf. 1, Theorem 4.11]).

Proof The vectors {Tsf:S > 0} and their linear combinations evidently
have relatively weakly compact orbits. The fact that the set WAP(T)of
weakly almost periodic vectors is norm-closed can be proved for the semi-
group case exactly as for the group case by Eberlein [2, Theorem 4.2]. The
T-invariance of L is again clear. For the rest see deLeeuw and Glicksberg [1,
Section 4].

As an alternate reference for the deLeeuw-Glicksberg theory, see Krengel’s
book [6].

LEMMA 5. In the notation of Lemma 4 let I Po + Pi be the sum of the
projectors corresponding to the direct sum decomposition L Lo Li. Then
f =elf L1.

Proof The vector Pof is in L0, which means, by definition, that the
vector 0 is in the weak closure of the orbit {TtP0f > 0} (see [1, pp. 73-74]).
Hence for some generalized sequence {t(a): a A} of nonnegative reals we
have limA Tt)Pof 0 in the weak topology of L. The range of the general-
ized sequence above has at least one limit point p in the extended set of the
nonnegative reals. If p R, then there is a subsequence {t(n):n N} of the
generalized sequence such that lim t(n) p. By the strong continuity of
the semigroup and by the preceding remarks then

TpPof lim Tt(n)eof lim Tt()Pof O,
noo A
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where the limits are taken in the weak topology of L. Hence

rtPof 0 (t > p),

and the proof can be finished exactly as in the case of the other logical
possibility. This is p o% which implies the existence of a subsequence
{t(n) :n N} tending to o such that

lim ( Tt,n,f, P’z*) lim < Tt(n)eof z*) 0
n-coo n

for every z* L*, since the projector P0 clearly commutes with the restric-
tion TIL. On the other hand, by assumption,

<pof. z* >1 =l<f. pz* >l lim <T.,of. Pz* >l 0
n

for every z* L*. Hence Pof 0, and f Plf is in L 1.

LEMMA 6. The restriction S {St: t > 0} Of T to L can be extended to a
group G {G R}, almostperiodic in the sense that for any x L the orbit
{Gtx t R} is relatively compact in the norm topology of L1. Them is a real
number A such that, ifB denotes the generator operator of the semigroup T, then

Bf iaf, Ttf eiatf.

Proof. By [1, Lemma 4.6], L is the closed linear subspace of L spanned
by the common eigenvectors of T having eigenvalues of modulus 1, i.e. by
those x L that satisfy

Ttx= Stx=ei’tx ( > O)

for some /x R. Linear combinations of such vectors have finite dimen-
sional, hence relatively norm-compact orbits with respect to T. Eberlein [2,
Theorem 4.2] shows again that the set of all vectors with relatively norm-com-
pact orbits is closed in the norm topology, hence S TIL is almost periodic.
By Lyubich and Lyubich [7, pp. 80-81] the semigroup S extends to an almost
periodic group G; further for every A R there is an orthoprojector

Q(A) t--,oolim 1/tfSre
where the integral exists in the strong operator topology. These orthoprojec-
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tors have the following properties:

Q(A)Q(Ix) 6xQ(A),
span{Q(A)Ll: A R} La,
({kerQ(A):AR} ={0},

Q(,)L x L Bx )tx}

{x L "Ttx ei*tx for t R},
and the operators S and Q(A) clearly commute for every t, Z R.
Should there exist no )t R with the property stated in the lemma, there

would be A,/z R such that

Q(A)f0, Q(ix)f O, A .
Assuming this, for every z* L] we have

as t . There exists a linear functional x* L] such that

c(A) (Q( A)f, x*) :# 0, c(Ix) (Q( Ix)f, x*) 0.

Taking this x* in place of z* in the formula above we obtain

lim ei;ttc(A) + ei’tc( Ix) c(A) + c(Ix) I.
t---

Hence we obtain

lim c(X)
c(tz) + e-*’ c(X)

which is clearly absurd. The proof is complete.

+1,

3. The Hilbert space case again

In this section we shall give a different (third) proof of the Hilbert space
special case of the main theorem by using the following extension of a result
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of Norbert Wiener (for the extension and for historical remarks see, e.g.,
Goldstein [4]):

WIENER’S THEOREM. Let B generate a (Co) contraction semigroup T on the
Hilbert space X. Then for all fl, f2 X,

lim -1 fol(r(t)f2 fl)l 2
soo S

at E I(Pxf2,fl)l2,

where A is the set of all purely imaginary eigenvalues ofB, andfor h A, Px is
the orthogonal projection onto the kernel ofB hi.

Proof of the Hilbert space theorem.
space X satisfying

Let f be a unit vector in the Hilbert

lim I(Ttf f)l 1.
t-oo

Applying Wiener’s theorem above gives

E leaf[ 4= lim
1 fo 12

,a
_ 7 [(T,f,f) dt 1.

From this we obtain

1 E Iexf[ 4-< E [exfl 2< [f[2__ 1,
AA AA

since the distinct orthogonal projections of f are pairwise orthogonal (cf.
Jacobs [5]). This line of inequalities shows that there is exactly one A A for
which

O #Pf =f,

which is the assertion of the theorem.
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