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FACTORIZATION OF COMPOSITION OPERATORS
THROUGH BLOCH TYPE SPACES

HANS JARCHOW AND REINHARD RIEDL

Introduction

One way to compare function theoretic properties of analytic functions and
functional analytic properties of linear operators is through "change of
variable" type formulae. The corresponding operators are known as composi-
tion operators; they have been studied on various classical function spaces, in
particular Hilbert function spaces. In this paper we continue investigating
composition operators within the framework of general Hardy spaces on the
open unit disk.
We are going to identify those composition operators C, say from H to

HI, which allow a canonical factorization X H for some /3 > 0 where
X is isometrically isomorphic to the classical Bloch space/3. More precisely,
our result characterizes q’s such that f f’o defines a bounded linear
map B H, and we shall obtain analogous statements for HP-spaces when
p > 1 by replacing B with appropriate analytic Lipschitz spaces. As it will
turn out, such operators are not only bounded but enjoy nuclearity properties
similar to those of diagonal operators p.
The authors thank the referee for several valuable remarks.

Preliminaries

We shall mainly work with classical Hardy spaces

Hp (0 <p < o).

Recall that Hp consists of all analytic functions f on the open unit disk

D={zC’lzl <1}

in the complex plane which satisfy

r<l -r
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if 0 < p < , and which are bounded when p :

Ilflloo: sup If(z)l < .
zD

With respect to II lip, Hp is a Banach space when 1 <p < , and a
p-Banach space when 0 < p < 1.

In what follows, rn will always denote normalized Lebesgue measure on
the unit circle T OD. We shall frequently identify, through the usual
procedure of taking radial limits t lim r f(reit), HPwith a closed sub-
space of LP(m); in this way, Hp becomes the closure of all polynomials in
LP(m)’s metric topology when 0 < p < , and in its weak* topology when
p . We refer to Duren [4] for this and further results on Hp spaces to be
utilized in the sequel without specific reference.

It will be convenient to denote by the set of all analytic functions q:
D C such that (D) c D. In other words, is obtained from the unit ball
of H by just deleting the constant functions generated by the elements of T.
Take any q . It is a well known consequence of Littlewood’s Subordi-

nation Principle (Duren [4], p. 10) that, regardless of how we select 0 < p < ,
ffoq

defines a bounded linear operator

C: Hp -’ Hp,

the so-called composition operator induced by p. For a discussion of various
aspects of this notion, in particular in the Hilbert space setting, we refer to
C.C. Cowen’s recent survey article [2].

In the sequel, we consider only finite values of p; our interest will mainly
be in those composition operators C: Hp Hp which have the property
that, for some 1 _</3 < 0% Co(Hp) is contained in HOp. It turns out that this
is a property depends on q and /3 but not on p; it is therefore justified to
label such composition operators -bounded. There are composition opera-
tors with very special properties (e.g., belonging to the Hilbert-Schmidt class
when considered as operators H2 H2) which fail to be /3-bounded for
every /3 > 1; see [6] and [7].

Order boundedness

As for Banach spaces, we shall employ standard terminology and notation.
Let X be a Banach space, /x a measure (> 0), and p a positive real

number. We say that an operator u: X LP(/z) is order bounded if it maps
Bx, the unit ball of X, into an order interval of L P(/z): we thus require the
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existence of a non-negative member h of LP(/x) such that [uxl < h/x-a.e, for
each x Bx.
The question of when a composition operator is order bounded as a map

from Hp to Lq(m) was answered by H. Hunziker [6]:

THEOREM 1.
statements.

(i)

(ii)

(iii)
(iv)

For each 0 < fl < o and p alp, the following are equivalent

For some 0 < p < 0% C exists as an order bounded operator Hp

L IP(m).
For every 0 < p < o% C exists as an order bounded operator Hp

L I3P(m).
(1 [q[2)-i belongs to L (m).
For some (all) 0 < r < 0% ([[qn[lr)= o is in the Lorentz sequence space
l(r/13), r.

Let us say that C is [3-order bounded when this happens.
For /3 > 1, examples of /3-bounded composition operators which are not

/3-order bounded can be found in [6]. For 0 </3 < 1 the existence of such
examples is obvious: just note that every composition operator C is continu-
ous as a map from Hp to Hp, whereas /3-order boundedness of C requires
that m{lql 1} 0.
We also mention that y-boundedness of C implies /3-order boundedness

whenever />/3 + 1 [6]. Recently, the second named author [12] proved that
this may fail when we only require y =/3 + 1.
The case /3 1 was already investigated by J.H. Shapiro and P.D. Taylor

[14]; they proved that condition (iii) of Theorem 1, with /3 1, characterizes
the Hilbert-Schmidt composition operators on H2. To get this result, only
recall that the monomials z (n 0, 1, 2,... ) form an orthonormal basis in
H2 and that the condition (ll,n II)n (11Czn II)n 12 is just a standard
characterization of a Hilbert-Schmidt operator.

This can easily be generalized. Recall that for a >-1 the weighted
Dirichlet space consists of all analytic functions f(z) E=oa,zn on D
such that

lfll (n + 1)

is finite.

_
is a Hilbert space with respect to I1; -1 is the Hardy

space H2, and -2 is the classical Bergman space L2a(D, dxdy/Tr). Since the
functions z (n + 1)(a-1)/2zn form an orthonormal basis in , we may
state:

PROPOSITION 2. Let 0 < [3 < oo and p } be given. C is -order bounded
if and only iff f p induces a Hilbert-Schmidt operator H2.



434 HANS JARCHOW AND REINHARD RIEDL

For further characterizations of /3-order boundedness via factorization
through Hilbert-Schmidt operators see [8].

Remark. It is easy to see that an operator u: 12 Lq(tx) is order
bounded if and only

2
if, regardless of how we choose an orthonormal basis

(en) in 2, (Enlue,[)1/2 exists as an element of Lq(tz). Using this and
arguments to be employed in the proof of Theorem 3 below, one may prove:

Let q do, a > O, 0 < < and 3’:= a/3/2 be given.
bounded if and only if it maps . order boundedly to L (m).

C is y-order

Bloch like spaces

Given w D, the point evaluation

6w" He --* C" f f(w)

is well known to be a bounded linear form. Its norm is known to be

II’wll(H’)* (1 -Iwl=) -1/"

see e.g. [7]. A slightly less precise result which would still be adequate for the
purposes of this paper can be found in [4], p. 36.

Actually, 6w can be identified with the composition operator whose symbol
is the constant function z w. We shall write

for the normalized functional in (HP)* generated by 6w.
Fix now 0 < p < o. To conform with established notation (e.g., [15],

III.H.27), we denote by Xx/p the set of all analytic functions f: D C such
that

Ilfll(1/p) sup (1 Izl)l/Plf(z)[ <
xD

This is a Banach space with norm I[’ll(1/p), and from Ilfll(1/p)-
SUpz o](6(P), f)] we infer that Hp embeds contractively into X1/p; by
looking at the constant one function we see that the embedding actuaiiy has
norm one.
Boundedness and compactness of composition operators on spaces X1/p

have recently been studied by K. Madigan [9]. We take another direction and
relate /3-order boundedness of composition operators to a specific mapping
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property involving these spaces:

THEOREM 3. Let 0 < fl < o be given. The following statements about a

function q dp are equivalent.
(i) C is fl-order bounded.
(ii) For each 1 <_ p < , f f q defines an order bounded operator

Xl/p -- L [3P(m).
(iii) For some 1 <_ p < , f f q defines an order bounded operator

X1/p --. L P(m).
(iv) For some, and then all, 1 <_ p < , f fo defines a bounded

operatorX1/p L 13p(m).

Naturally, we will denote the operators appearing in (ii), (iii), (iv) by C,
too.

Proof All implications other than (i) (ii) and (iv) (i) are trivial, and
(i) (ii) is easy: Suppose that C is fl-order bounded, that is, (1 112)-1
is a member of L (m). So (1 I1 )-l/p is in L P(m) and it acts as an
m-a.e, upper bound for the [Cfl’s when f is in the unit ball of X/p.
The proof of (iv) = (i) is based on a lacunary sequences argument similar

to the one used by Arazy-Fisher-Peetre [1, Theorem 16]. Fix 1 < p < oo and
write a p-1 for notational convenience. We start by showing that the
lacunary function

f(z) E 2tnz2n (Z D)
n=0

belongs to X,.
In fact, given z D, we have

If(z)l _< [zln 2na
1- Izl E Izl

n--0

E 2klzln+2k
n,k=O

-< E E 2lzl < C1 E mlz[m (C1 < 2/(2- 1))
m=l k<log m m--1

ma m
=Cl E 1)m=l

O" (O / + m)

.a.(a/l).....(a/m) Izl mm!

=C1 E (F(a) + 8m)" a’(a + 1)
m!

(a + m) Izlrn,
m=l
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where (m) is a suitable null sequence of scalars. Consequently, there is a
constant C2 such that, for any z D,

f(z) <C2
a (a+ 1) (a+m) .Izlm =C2 "a"

Izl m=l
m! 1- Izl

a+l

hence

sup If(z)l" (1 I1=)1/
xD

< 2. sup If(z)l’ (1 Izl) 1/p
zD

as asserted.
Set K ....llfllx/. Use the Rademacher functions

rn" [0, 1] R:t sign sin(2nTrt)

to define, for each non-dyadic t [0, 1],

ft(z) E rn(t)2n/pz2" (z D)"
n--O

Clearly, IIf, llx/ K for each t. Khinchin’s Inequality tells us that for each
0 < q < there are constants Zq, Bq > 0 such that, however we choose
finitely many scalars al,..., at,

A E rk(t)ak dt < nq. E lakl 2

k=l k=l

1/2

Using this with C A we get

pgBp > dt13p

, rn( t)2n/pq( ei)
n=O

>_ C" E 2n/pqg(ei) 2" 2

" n=0

13p/2

>_ C" 22n (p(eiO)
p’2"+’

dO
dt

dO

dO
2-- (since p > 1).
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Write In {k N0" 2n 1 < k < 2n+l

find that
1} (nNo). For 0<r< 1, we

E 22nr2n+ 1

"" E E wn+l" (r2)
n=O n=O kI

>" E E (k+ 1).r
n=0 kI

2k

1 1

(1 rz) 2

Thus, with tr C. 2-8/2,

It follows that (1 q12)-t is m-integrable. QED

For a > 0, the Bloch type space consists of all analytic functions f:
D --* C whose derivative belongs to X,. By f Ill’ I1) a seminorm with one
dimensional kernel is defined on ; the corresponding normed quotient
’/C is a Banach space, and f f’ induces an isometric isomorphism of
’/C onto X,. The classical Bloch space is the space ’1, and what
corresponds to X1 inside of ,’1 is known as the "little Bloch space". It is
known (Duren [4], p. 74) that in case 0 < a < 1 membership in ’ can be
characterized in terms of a Lipschitz condition of order 1 a; more pre-
cisely, an equivalent seminorm on is given by

fsup{lf(z) f(w) }iz_wll_"
"z,wD, z4:w

see also K. Zhu [16].

COROLLARY 4. Given q dO and 0 < fl < , the following are equivalent.
(i) C is B-order bounded.
(ii) For some, and then all, 1 < p < , f f’oq defines a bounded

operator /p Hp.
(iii) For some, and then all, 1 < p < , f f’ q defines an order bounded

operator .a/p Lp(m).

Recall that a Banach space operator u: X Y is (absolutely) p-summing
(for 1 < p < ) if it takes weak p sequences (Xn)n in X into strong p
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sequences (UXn)n in Y. In other words, we require Y’---1 [[UXnI[p to be finite
whenever =ll(X*, xn)Ip converges for each x* from X*, the dual of X.
The operator u: X Y is p-summing if and only if there is a probability
measure/z such that u admits a factorization

u X w ,Zoo

where Zoo is a subspace of Loo(/x), Zp is Zoo’s closure in LP(/x), j is induced
by the formal identity jp: E (tz) LP(Ix), and v and w are suitably chosen
operators. The operator u is called p-integral if a factorization

kvu X w Jp
Lp v y**Loo(Ix) (tz)

is available, kv being the canonical embedding Y Y**. A still smaller class
consists of all p-nuclear operators: u is p-nuclear if it factors

u X_E..loo a lp o Y

where A is a diagonal operator induced by a scalar/P-sequence.
Thus formal inclusions Loo(tz) LP(tz) and diagonal operators loo p

appear as the prototypes of all p-integral and p-nuclear operators, respec-
tively.
A classical theorem due to A. Grothendieck [5] informs us that u: X

LI(/z) is order bounded if and only if it is 1-integral. The following extension
to the case 1 <p < goes back to L. Schwartz and S. Kwapiefi: if u"

X - LP(Ix) is order bounded, then it is p-integral, and if u’s adjoint, u*, is
p-summing, then u is order bounded. The converse is known to fail in both
cases. We refer to A. Pietsch’s monograph [11] for details on summing,
integral and nuclear operators.

It is well known that given 1 < p < , every operator from an Loo-space
into an LP-space is r-integral, where r 2 when 1 < p < 2 and r > p when
2 < p < , and that this is best possible for general operators.
The situation changes if we consider composition operators. It was already

shown in [8] that, for a certain range of p’s and /3’s,/3p-summability of the
adjoint of a composition operator C: Hp - Hp is equivalent to /3-order
boundedness. The next result shows that, in the present context, /3-order
bounded composition operators display a property known from diagonal
operators: once they are defined, the appropriate nuclearity is automatic.

COROLLARY 5. Suppose that p >_ 1 and tip >_ 1. If q is such that C,
exists as a bounded operator X1/p ---> Htp, then this operator is [3p-nuclear.

Proof. It is a consequence of Theorem 3 that C is certainly/3p-summing
as an operator X/p n13p. But since X/p is isomorphic to (cf. [15],
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p. 90), this operator is actually tip-integral. If tip 1, then we can settle the
case by using the fact that H is a separable dual space and so has the
Radon-Nikodym property; cf. Diestel-Uhl [3], p. 79. In the general case, we
may proceed as follows. Consider

Xl/P f X1/P
Izl--,

(1 Iz12)/ "lf(z) o}.
This is a closed subspace of X1/p, more precisely, it is the closure of Hp in
X1/p. It was proved by L.A. Rubel and A.L. Shield [13] that (X/p)** X1/p
and that X/p has a separable dual; see also K. Zhu [16]. By a result of
Persson ([10], Theorem 5), C, is tip-nuclear as an operator X/p HP. But
any/3p-nuclear representation of this operator is also a tip-nuclear represen-
tation of C," Xl/p -- Hp. QED

Let us conclude by presenting the following problem. If we write an
analytic function f: D C as a power series f(z)= E=of(n)zn, then we
see that in general a composition operator C, must have the form

(*) C= _,n(R)qn,
n---O

where 1n f f(n) is understood as a functional on the underlying domain
space; to investigate the mode of convergence is part of discussing properties
of the operator. It is plausible to expect that, in the situation of Corollary 4,
(,) should be a tip-nuclear representation. But, as can easily be verified,
each /xn is a bounded linear form on X1/p with norm of order O(nl/P), SO

that we see from (iv) of Theorem 1 that (,) doesn’t supply us automatically
with a tip-nuclear representation whenever q e is such that C, maps
X1/p to Hp. So we may ask what a "natural"/3p-nuclear representation of
an operator as "natural" as a composition operator C,: X1/p - Hp looks
like.
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