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0. Introduction

Let F be a properly embedded normal surface in a compact, triangulated
3-manifold M. The projective class of F is a rational n-tuple lying in the
solution space of a finite linear system of normal equations defined in terms
of the triangulation of M. We refer to this compact, convex linear cell in R
as the projective solution space. A vertex surface in M is a connected,
two-sided, normal surface whose projective class is a vertex in the projective
solution space. We show that the finite collection of vertex surfaces carries a
significant amount of information about the topology of M and a variety of
interesting surfaces can always be found among the vertex surfaces. The
construction of the vertex surfaces is routine and the results we obtain lead
to decision and decomposition algorithms based on procedures using vertex
surfaces. Among these algorithms are improvements of earlier algorithms of
Haken [H1], [H2], and Jaco and Oertel [JO].
The theory of normal surfaces was developed by Haken in the early 1960’s

and he used it to solve a number of decision problems. In this theory each
normal surface F corresponds to a unique integral n-tuple F which is a
solution to a finite linear system of matching equations. The normal equa-
tions are obtained from these matching equations by the addition of a
normalizing equation. The projective class of F is the unit vector in the
direction of F. A fundamental surface is a normal surface whose coordinate
.4/F is not the sum of two integral solutions to the matching equations and
every normal surface can be obtained as a finite sum of fundamental
surfaces. There are only a finite number of fundamental surfaces and these
can be found algorithmically. Haken’s algorithms are generally based on
constructing the set of all fundamental surfaces and looking for surfaces from
among this set which shed information on the question being considered. In
our algorithms it is the vertex surfaces that provide a source of readily
constructed surfaces of significance that can be used to carry out certain
decision procedures. While all connected vertex surfaces are either funda-
mental surfaces or doubles of fundamental surfaces we give examples in 3
that show there are many fundamental surfaces which are not vertex sur-
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faces. It is a simpler procedure to list the vertex surfaces than it is to list the
fundamental surfaces.

In 4 we give a geometric characterization of those normal 2-spheres and
properly embedded disks which are vertex surfaces. Using this characteriza-
tion, we show in 5 that a non-irreducible, closed 3-manifold with a given
triangulation can be completely decomposed by a system {F1,..., Fn} of
pairwise disjoint, normal 2-spheres, each of which is a vertex surface. More-
over, this system of 2-spheres can be chosen such that the projective classes
of the vertex surfaces in are affinelyindependent and span an (n- 1)-
dimensional simplex which is a face of the projective solution space. This
leads in 7 to an algorithm to decompose a closed triangulated 3-manifold
into irreducible 3-manifolds.

In 6 we consider compression disks for the boundary of a compact,
irreducible 3-manifold M with compressible boundary. We show that there
exists a complete system . {D1,...,Dn} of pairwise disjoint, normal,
essential compression disks such that each disk D is a vertex surface and
splitting M along . yields a 3-manifold with incompressible boundary. In
the special case that M F [-1, 1], where F is a compact surface with
boundary, we can impose the additional requirement that each OD meets
both ends F {- 1} and F {1} in an essential arc. As a simple application,
we describe an algorithm to decide if a knot K in S is unknotted. Assume
S has been triangulated in such a way that K is contained in the 1-skeleton.
Let M denote the complement of a regular neighborhood of K with a
triangulation of M obtained from subdividing the induced cell decomposi-
tion. List the finite set of vertex surfaces in M which are disks and test each
such disk D to see if it is essential. This can be done by calculating the Euler
characteristic of the components of 0M- OD. The knot K is nontrivial if
and only if all the vertex disks D tested are inessential.
The first significant result involving vertex surfaces was obtained in [JO].

Suppose F is a least weight, two-sided, incompressible surface in a closed
irreducible 3-manifold M. It is shown that if F and F2 are normal surfaces
such that F =Fx +F2 then both F1 and F2 are injective. In particular,
every vertex surface in the face carrying F is injective. In 6 this theorem is
extended to include least weight incompressible, o-incompressible surfaces in
compact irreducible, 0-irreducible 3-manifolds with boundary. If M=
F [-1, 1], where F is a closed surface, then it follows that there exists an
essential two-sided annulus which is a vertex and spans the two boundary
components. More generally, if F is an essential annulus in a compact,
irreducible, 0-irreducible 3-manifold M then each vertex surface carried by
the face ofF is either an essential annulus or an essential torus. In view of
this theorem we need no additional surfaces besides vertex surfaces to decide
whether or not a compact, sufficiently large, irreducible 3-manifold is a
product or Seifert fiber space M and for the decomposition of M into its
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characteristic fibered submanifold and a simple 3-manifold. Complete details
of these algorithms are given in 8 and 9.

In 1 we review the basic definitions of normal surface theory. Some of the
combinatorics of normal surfaces are discussed in 2. Throughout it is to be
understood that a 3-manifold M always comes equipped with a fixed triangu-
lation -and that a normal surface under consideration is embedded in M
and defined relative to this fixed triangulation.

1. Normal surfaces and the projective solution space

Let M denote a compact 3-manifold with a fixed triangulation Y-in which
there are tetrahedron. A surface F properly embedded in M is called a
normal surface (relative to Y-) if F meets the 2-skeleton (2) transversally and
meets each tetrahedron A in a collection of pairwise disjoint elementary
disks. An elementary disk in a tetrahedron A is a disk that is properly
embedded in A and is only allowed to intersect a 2-face of A in an arc
spanning distinct edges of the 2-face as shown in Figure 1.1. A normal isotopy
of M (relative to -) is an isotopy which is invariant on each simplex of. We
call the normal isotopy class of an elementary disk a disk type. The normal
isotopy class of the boundary of an elementary disk is called a curve type. The
normal isotopy class of an arc in which an elementary disk meets a 2-face of
A is called an arc type.

In each tetrahedron A there are seven disk types, four of which consist of
triangles and three consisting of quadrilaterals. If we fix once and for all an
ordering dl,...,,..., dvt of the disk types in -then we can assign a 7t-tuple
AF -(xl,..., x7t), called the normal coordinates of F, to a normal surface
F by letting x denote the number of elementary disks in F of type di.
The normal surface F is uniquely determined, up to normal isotopy, bYF.
Among all 7t-tuples of non-negative integers (xl,..., x7t), those corre-

sponding to normal surfaces are characterized by two constraints. The first
constraint is that it must be possible to realize the required 4-sided disk types
d corresponding to nonzero xi’s by disjoint elementary disks. This is equiva-

FIG. 1.1 The seven elementary disk types
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lent to allowing no more than one 4-sided disk type to be represented in each
tetrahedron. The second constraint concerns the matching of the edges of
elementary disks along incident 2-faces of tetrahedron. Consider two tetrahe-
dron meeting along a common 2-face and fix an arc type in this 2-face. There
are exactly two disk types from each of the tetrahedron whose elementary
disks meet this 2-face in arcs of the given arc type. If the 7t-tuple is to
correspond to a normal surface then there must be the same number of
elementary disks on both sides of the incident 2-face meeting it in arcs of the
given type. This constraint can be given as a system of 6t matching equations,
one equation for each arc type in the 2-simplexes of J interior to M.

Matching Equations

X -]- Xj Xk -- XO <xi,1 < < 7t.

(1)

The non-negative solutions to the matching equations (1) form an infinite
linear cone c7t. A normalizing equation is added to form the system of
normal equations for .. The solution space cSr becomes a compact,
convex, linear cell and is referred to as the projective solution space for ..

Normal EquationsforY-
X + Xj Xk -]- X

7t

xi= 1
i=l

0 <xi, 1 <_i <_ 7t. (2)

The projectiue class of F, denoted by F, is the image of F under the
projection -sr. If F is a connected normal surface, a typical normal
surface corresponding to F sr may consist of normal isotopic copies of a
one-sided surface G and normal isotopic c_opies_of a two-sided surface H
(where H= 2G if G exists)such that =//_/ =F. A rational point
Z r is said to be an admissible solution if corresponding to each tetrahe-
dron there is at most one of the quadrilateral variables which is nonzero.
Every admissible solution is the projective class of an embedded normal
surface.
The carrier of a normal surface F, denoted by g(F), is the unique

minimal face of that carries F- A normal surface G is said to be
supported by ge(F) if gr(F). Every rational point in g(F) is an
admissible solution. In particular, if ’ is a vertex of er(F) then b" is an
admissible solution since it has rational coordinates which are zero in any
variable corresponding to a disk type not represented in F. If k is the
smallest non-negative integer such that k’ is integral then we call k’ a vertex
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solution of . An integral solution ’ is a vertex solution if and only if
integral multiples of " are the only integral points ’, f 5 satisfying an
equation of the form nZ ’ + y’ for n a positive integer. If F is a connected,
two-sided, normal surface such that F is a vertex of , then we call F a
vertex surface. Hence F will be either a vertex solution or twice a vertex
solution of . The finite set of vertex surfaces can be explicitly constructed
from the system of normal equations using elementary methods of linear
algebra.
The vertex surfaces are the basis for numerous algorithms for 3-manifolds

since they include so many important and interesting surfaces. For example,
a corollary to the following theorem is that if F is a least weight, two-sided,
incompressible surface then every rational point in (F)(including the
vertex points) is the projective class of an injective normal surface in M.

THEOREM 1.1 [JO]. Let M be a closed, irreducible 3-manifold with a
triangulation .. Suppose that F is a least weight (or least complexity) normal
surface and F F + F2. IfF is two-sided and incompressible then both F and
F2 are injective.

A consequence is that in order to decide whether or not M contains
injective surfaces one has only to check a finite number of vertex surfaces for
injectivity.

2. Some combinatorics of normal surfaces

Our model for a normal surface F is one in which F intersects the
2-skeleton of Y-transversely and intersects each tetrahedron A in linear
triangles or quadrilaterals which are the union of two linear triangles. In
practice, we often vary from this model up to normal isotopy. Since each
elementary disk is determined up to normal isotopy by its vertices in ), a
normal surface F is determined by the finite set of points F q 1). The
weight of a normal surface F, denoted by wt(F), is defined to be (F n 1)),
the number of intersection points between F and the 1-skeleton of .. The
notion of least weight in normal surfaces has played a key role in the work of
[JO] and [JR]. We say that a normal surface F is least weight if wt(F) is a
minimum value for values of wt(F’) where F’ ranges over normal surfaces
isotopic to F. (The range of F’ may vary in certain contexts.) Another
important measure in working with vertex surfaces is the number of disk
types represented by the elementary disks present in F. The size r(F) of F
is the number of nonzero coordinates in F, that is, the number of distinct
disk types represented in F. Vertex solutions correspond to local minima
relative to size.
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When we say that two elementary disks E1, E2 in a tetrahedron A
intersect transversely we have in mind the above models with straight edges
and linear triangles. In particular, each component of E c E2 should be an
arc a properly embedded in A that spans the. interiors of distinct 2-faces of
A. The intersection E c E2 is always connected except possibly when E
and E2 are both quadrilateral disks of the same type, in which case there
may be two components. We say that a is a regular arc of intersection if
there exists a pair of disjoint elementary disks having the same disk types as
E and E2, or equivalently, if the union of the vertices of E1 and E2 span a
disjoint pair of elementary disks. This is always the case except when E and
E2 are quadrilateral disks of different disk types. Two normal surfaces F and
G are said to intersect transversely if each pair of elementary disks from F
and G, respectively, intersect transversely. Suppose, in addition, that each
intersection curve of F G is regular in the sense that it is a union of
regular arcs. In this case it follows that there is a unique (embedded) normal
surface F + G, called the geometric sum of F and G, determined by the
points (F G) (1).

This geometric sum of two normal surfaces can also be approached by
standard cut-and-paste operations along the regular curves of intersection.
Let /71 and F: be two normal surfaces intersecting transversely. We consider
the possible cut-and-paste operations along F 3 F: as viewed locally in a
single tetrahedron along the intersections of the elementary disks of the two
surfaces. A component a of F f F2 is composed of a union of elementary
arcs arising from the pairwise intersection of elementary disks in F and F2.

We call a a singular curve if at least one of the elementary arcs along a
arises from the intersection of a pair of 4-sided disks of different disk types.
Otherwise, a is called a regular curve.

Regular

Irregular
Exchange

fold

FIG. 2.1 Regular and irregular exchanges
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Suppose a is a curve of intersection between F and F2. Then a meets
the 2-skeleton of Y-in a finite set of points, each of which can be viewed as
the point of intersection between two straight spanning arcs hi and h2 in a
2-simplex o-. A component of r- (h U ’2) disjoint from the vertices of r
is called a face-fold (for a) between ,a and h2. Let E, E2 be elementary
disks in a tetrahedron A such that Ea n E2 contains an arc a of a. A fold
between E1 and E2 (along a) is a component V of A (Ea U E2) containing
a face-fold. If the intersection arc a is regular then each fold V contains two
face-folds. If E and E2 are 4-sided disks of different types then each fold V
contains only one face-fold.
Suppose a is a regular intersection curve. As one moves along a, folds

between pairs of disks in adjacent tetrahedron must be compatible in that the
face-folds created by the edges of the elementary disks in the incident 2-face
must coincide. By using the folds to keep track of orientation, one can see
that a regular curve a is always orientation preserving in M and there-
fore has a solid torus or 3-cell regular neighborhood N(a). If we let A
N(a) n F then it follows that A and A2 are both annuli, both moebius
bands, or both disks. There are always two possible ways to define a
cut-and-paste operation between F and F2 along a, although only one of
these will preserve (locally) the existing disk types present in F1 F2. If a is
orientation preserving in F, then we replace A A2 in F F2 by B,
where B is the union of one of two pairs of annuli. In either case, this
cut-and-paste operation replaces Fa F2 by

(F-Aa) 3 (F2-A2) B.

Viewed locally along an arc a of a in a tetrahedron this corresponds to a
normal isotopy defined by pulling one of the elementary disks across a fold
along a and thus eliminating a as an arc of intersection. This unique
cut-and-paste operation is called a regular exchange along a (see Figure 2.1).
A regular exchange does not alter the number of elementary disks of each

type in F U F2. If every component of F1 c F2 is a regular curve then
performing a regular exchange along each component produces the normal
surface F + F2, where F1 +F2 --F1 --F2" A useful observation, which fol-
lows immediately from our first description, is that the geometric sum on
compatible normal surfaces is an associative and commutative operation [JR].

+

FIG. 2.2 Intersection curve a, trace curves a’, a" and exchange annulus A
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Consider a normal surface F F + F2, where F (q F2 :/= ). Each compo-
nent a of F n F2 is a regular curve of intersection along which we perform
the above cut-and-paste operation in the formation of F. The identified cut
curves along which the components of (F t3 F2) -(F n F2) are pasted
together are referred to as trace curves. Corresponding to each component ce
of F c F2 is a single trace curve a’ if a is one-sided in both F and F2, and
two trace curves a’, " if a is two-sided in both F and F2. One can define
an identification map

p" F + F2 -- F LJ F2

which identifies the trace curves in a (locally) two-to-one fashion. There is a
0-weight annulus, moebius band, or disk band A c N(c) spanning the trace
curve(s) corresponding to c such that p-l(a) A (assume the identification
p is defined carefully). The union p-l(F F2) of all such 0-weight
surfaces is called a proper exchange system of surfaces for the sum F + F2.

Given a proper exchange system spanning a normal surface F one can always
reconstruct the normal surfaces which sum to F and give rise to the proper
exchange system.
Our characterizations of vertex surfaces in Section 4 are formulated in

terms of the less restricted notions of exchange surfaces and systems. The
simplest example is a component of a proper exchange system for a sum
F F + F2. More generally, we say that an annulus, moebius band or disk
A embedded in M is an exchange surface for the normal surface F provided:
(1) fr(A)=A F, (2) A has an orientable regular neighborhood N(A),
and (3) for every tetrahedron A, each component of A A is a 0-weight disk
L spanning two distinct elementary disks El, E2 of F such that 0L L
(E t3 E2 k) 0A) and L C E is an arc joining the interiors of two distinct
2-faces of A. An exchange system is a finite union of a pairwise disjoint
collection of exchange surfaces.

If s is an exchange system for a normal surface F then we can construct a
normal surface S (possibly connected)with one self-intersection curve for
each component of . Each intersection curve is composed of a union of
elementary arcs arising from the pairwise intersection of elementary disks in
S and such that "regular exchanges" produce F. Two elementary disks in S
may intersect many times since we do not necessarily have transverse inter-
section among the elementary disks. In particular, S (F F C3 N()) t3 s’
t3 s", where e’," are two copies of in N() spanning fr(F c N())
and intersecting transversely such that for each component A of , A’ n A"

a is the core of A. Thus, as for a proper exchange system, we can define
an identification map p" F S which identifies the trace curves in a (locally)
two-to-one fashion and such that p-l(3 f"l’)--Sg’. The construction of S
can be carried out locally in each tetrahedron A along one component of

A at a time and is independent of the order in which it is done. At each
step in the construction of S c A, a cut-and-paste operation is performed on
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two elementary disks to obtain two new elementary disks of the same disk
type(s). Thus, the inverse operation of performing "regular exchanges" on
S n A along n" q A to produce F A can also be carried out along
one arc of " " A at a time. Clearly this is independent of order and
each such "regular exchange" between two elementary disks produces two
new elementary disks of the same type. Indeed, the final outcome is already
completely determined by S n ya).

Let e’ be an exchange system for the normal surface F. A patch relative to
is a connected subsurface P c F whose frontier fr(P) consists of trace

curves from 0 but otherwise P is disjoint from . One can think of a patch
minus its frontier as one of the components of S- ( n S). Let A be a
component of and consider patches P’, P" each containing a component
of 0A in their frontiers. Let N(A) denote a small regular neighborhood of A
such that the closure W of the component of N(A) F containing A is an
I-bundle over A. We say that P’ and P" are adjacent alongA if P’ f3 W and
P" n W both meet the same side of A in W. We say that a patch P’ lies on a

face-fold along A if there exists a 2-simplex r in :Y-such that p(P’ r) lies
on an innermost face-fold of S q o- in r. That is, there exists another patch
P" such that arc components p’, p" of P’ r, P" n o’, respectively, each
span Acqo- and one edge 3’ of o-, so that Op’u 3p"=(p’up")fq
(A U 3’).

Suppose that the disk D c F is a patch for F relative to the exchange
system . If 3D is a simple closed trace curve then D c f and we say that
D is a disk patch. If D n 0M :/: )0 then we will only call D a disk patch if
D n 8M is an arc. This is equivalent to the existence of only one trace curve
for D. The following elementary Euler characteristic argument is given in
[JR] to show that disk patches cannot have 0-weight. Suppose that D is a
patch. The trace curves cut the elementary disks into 2-cell pieces which
define a cell decomposition for each patch. Since a 0-weight patch D is the
union of such 2-cell pieces not containing any vertices of the elementary
disks, we have a cell decomposition of D into 4-, 5-, and 8-sided disks. Using
this decomposition to compute the Euler characteristic, it follows that
x(D) -f8 -f6 + 7b, where fi denotes the number of /-sided disks in
the cell decomposition of D and b is the number of components of D q

O(M). Thus if b is 0 or 1 we must have x(D) 4: 1.

3. Examples

The normal 2-spheres and disks obtained by taking the link of a vertex in Y-
are the simplest examples of vertex surfaces. Although a vertex surface is a
fundamental surface, the converse is not true. The next two examples
illustrate a method to construct fundamental surfaces that are not vertex
surfaces.
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FIG. 3.1 (a) F a S (b) 2F 1 X S1) + 2 X S1)

Example 3.1. A normal surface F of genus g in M Tg S that is a
fundamental surface but not a vertex surface.

Let M =Tg S1, where Tg is a triangulated surface of genus g. Let
zl, z, 72, and - denote four triangles in the triangulation such that the only
pairwise intersection among them are the disjoint 1-simplexes ea -a -and e2 z2 c z. Let a denote an essential, normal, simple closed curve in
Tg that is the union of elementary arcs as depicted in Figure 3.1(a). We
require that a meet each of the triangles 71, -, z2, and - in two elementary
arcs of distinct arc types with each having one end point on e or e2 and that
these are the only triangles in the triangulation meeting a in more than one
arc. View M Tg S as the union of two copies of Tg I and let .-be a
triangulation of M obtained by triangulating the induced cell complex
structure without introducing new vertices. Let F denote the normal surface
a S in M. With a properly chosen order of the disk types we have

A (1,..., 1,0,...,0).
A key property possessed by F is that it meets each 2-simplex in in a

single elementary arc except for those 2-simplexes which lie along the two
annuli A e S, 1,2. Observe that F meets each 2-simplex of

A1 A A in two arcs of the same arc type. Each tetrahedron having a face in
A LA A2 intersects F in one elementary 3-sided disk and one elementary
4-sided disk. Substituting A into the matching equations gives equations of
the forms 0 0, 1 1, and 2 2. To see that A is a fundamental solution,
observe that if any nonzero coordinate in A is changed to 0 then the
matching equations force the remaining l’s to be 0.
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FIG. 3.2 A disk D with 2D X + Y

The normal surface 2F can be expressed as the sum of two surfaces F and
F2 carried by proper faces of r(F). To construct F and F2, take two
normal simple closed curves /31,/2 as shown in Figure 3.1(b). If we let
F/ /3 S then we obtain normal surfaces with the property that 2F

F1 + F2. Therefore F is a fundamental surface but is not a vertex surface, vq

Example 3.2. A least weight essential compression disk D that is a
fundamental solution but is not a vertex solution.

Using the method of Example 3.1, Figure 3.2 suggests how to construct
examples of least weight essential compression disks D where 2D X + Y.

4. A characterization of disk and 2-sphere vertex surfaces

We assume throughout that all surfaces are embedded in a 3-manifold-M
with a fixed triangulation .. Recall that a vertex surface is a connected,
two-sided normal surface F where either F is a vertex solution or there
exists a one-sided normal surface X such that Ax is a vertex solution and
F 2X. The goal in this section is to find a relatively simple property related
to exchange surfaces that characterizes vertex surfaces when they are disks or
two-spheres. Let d be an exchange system of F and let P1, P2 be two
patches relative to z’. We say that Pa and P2 are normal isotopic along if
there exists a sequence of compatible normal isotopies of the elementary
disks of P1 leaving invariant and carrying P1 to P2. It is apparent that P1
and P2 must be adjacent along each component of . At intermediate stages
in the deformation of P1 onto P2 there may be self-intersections of OP in
’.

THEOREM 4.1. A normal two-sphere F is a vertex surface if and only ifF has
the property that whenever there exists an annulusA which is an exchange surface
for F then the two disjoint disks in F bounded by OA are normal isotopic alongA.
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COROLLARY 4.2. If a normal two-sphere F is not a t)ertex surface then
2F X + Y, where neither X nor Y is a multiple of F.

THEOREM 4.3. A properly embedded, normal, compression disk F is a uertex

surface if and only if F satisfies the following properties:
(a) If there exists an annulus A which is an exchange surface for F then OA

bounds disjoint disks in F which are normal isotopic along A.
(b) If there exists a diskA which is an exchange surface for F then the disjoint

disks in F with frontiers in fr(A) are normal isotopic along A.

Since the proof of Theorem 4.3 is parallel to the proof of Theorem 4.1, we
shall omit it.

Example 4.4. A two-sphere F expressed as the sum of two projective
planes Po and Pe.

Consider a two-sphere F for which there exists a moebius band exchange
surface A* spanning F. Let D and E denote the disjoint disks in F bounded
by 0A*. We have the two projective planes PD D U A* and Pe E U A*.
Observe that A* is an exchange system for the sum F PD + PE and we can
regard OA* as the trace curve in F corresponding to the one-sided intersec-
tion curve PD P (assume that PD and P have been normal isotoped to
intersect transversely along a one-sided curve in A*).

Let us assume that A* can be chosen such that the two disks D and E in
F bounded by OA* are not normal isotopic along A*. Under this assumption
we can show that PD is not normal isotopic to PE and thus F is not a vertex
surface. Suppose there does exist a normal isotopy from PD to P. Consider
a tetrahedron A meeting PD n PE. A normal isotopy between connected
surfaces must preserve the relative arrangement in A of the elementary disks
from PD A. Since PD q Pe is a single simple closed curve, it follows that
either (i) the normal isotopy can be chosen to leave the intersection curve

PD P invariant or (ii) there exists a component D* of PD (PD P)
that is sandwiched between two families of parallel elementary disks which
are related in pairs by the given normal isotopy. Whenever the latter case
occurs, we can define a normal isotopy between D* and a component E* of

FIG. 4.1 Po + PE
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O’ E’

FIG. 4.2 Se + SO where So 2PD and Se 2Pe

PE- (Po PE)which fixes P9 Pe. But D* is the only component and
hence we have that D and E are normal isotopic along A* to D* and E*,
respectively. This implies that D and E are normal isotopic along A*, a
contradiction.
There are normal two-spheres arising as the boundaries of regular neigh-

borhoods of the projective planes, namely Fo 2PD and FE 2Pe. We
have 2F FD + Fe and we may assume that there are two intersection
curves in Fz q Fe, say a and /3 as shown in Figure 4.2. Both a and /3
intersect each 2-simplex of -in an even number of points. There is an
exchange system consisting of two disjoint annuli, denoted by A and B,
such that A q 2F OA a’ u a" and B 2F oB =/3’ U/3" are the
trace curves corresponding to c and /3, respectively. One of these annuli, say
B, is the closure of a component of O(N(A*))- F for some solid torus
regular neighborhood N(A*) of A*. The disjoint disks D’, E’ in F bounded
by OB are contained in D, E, respectively, and cannot be normal isotopic
along B. Hence, it follows from Theorem 4.1 that F is not a vertex. []

LEMMA 4.5. Suppose that A is an annulus or disk exchange surface for the
normal surface F and let D1, O2 denote disks in F which are adjacent along A
and bounded by fr(A). If D c D2 then wt(D2 D1) > 0 and hence wt(D1)
< wt(D2).

Proof Let X-- D2 D and assume that wt(X) 0. Then A t3 X is a
0-weight torus, Klein bottle, annulus or moebius band. Let o- be a 2-simplex
and suppose C is an oriented component of r (A U X). Observe that C is
a simple closed curve which is a union of oriented arcs from A q r and
X r joined together in an alternating fashion. Let {aa,..., an aa} denote
the components of A o- C and let {Xl,..., x x1} be the components
of X n o- C. Choose notation so that a joins the head of x to the tail of
xi+ as shown in Figure 4.3. Since D and D2 are adjacent along A it follows
that xi and xi+ are not adjacent along ai. Let A be the elementary arc
component of F o- containing xi. The orientation on x induces an
orientation on Ai. Observe that each pair of elementary arcs Ai, Ai+ have
either both tails or both heads on a common edge of 0o-. Think of the
direction of x as the edge of 0o- on which the head of A lies. As one goes
around C one complete revolution, the direction of the x must change three
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FIG. 4.3 x and xi+l have different directions

times. However, it is easy to see that there can be at most one adjacent pair
’i, ’i+a which do not have the same direction. Thus it is impossible for
wt(X) 0. t2

LEMMA 4.6. Let A be an exchange surface for the normal surface i, where
each component of is a two-sphere. Let Da, D2 denote disks with disjoint
interiors in , bounded by OA. IfDa, O2 are normal isotopic alongA then there
exists an I-bundle W in M such that Wdoes not contain any vertices, D tO D2 is

the O-bundle of W, and both A and 2) N W are vertical in W.

Proof It is sufficientto observe that there exists a suitable local product
structure in each tetrahedron A. The normal isotopy in A between D N A
and D20 A along A A allows one to construct the desired I-bundle
structure for W n A. El

Proof of Theorem 4.1. Suppose there exists an annulus A which is an
exchange surface for F such that 0A o U 2 and am, o2 bound adjacent
disks Da, Dz, respectively, in F that are not normal isotopic along A. If
D c D2 then we can form the normal surfaces

X=DIA(F-D2) and Y=(D2-Da) A.
The annulus A is a proper exchange system for the sum F X + Y. In this
case, illustrated in Figure 4.4(a), it is clear that neither X nor Y can be
normal isotopic to F since both have a smaller weight than F.

If D n D2 0 then let F I be a small collar on F in M with
F F {0}. We have two cases to consider which are illustrated in Figure
4.4(b) and (c).

First suppose that A meets only one side of F, say A n (F I) c F {0}.
Let B be a collar neighborhood of OD in F- (D t3 O2) and let /3
OB OD1. Let A’ =/3 I c F I. We form the normal surfaces

X= [(F- (B tO Da) ) X {1}] U A’ tJA tO [(B U D2) X {0}]
and

Y= [(F- (B tO D2) ) x (0}] U A’ U A tO [(B tO D1) x (1)].
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(a) F X+Y (b) 2F X+Y (c) 2F X+Y

FIG. 4.4 F is not a vertex surface

Then A U A’ is a proper exchange system for the sum 2F X + Y. We may
assume, after a normal isotopy of X along A, that X n F 8D and argue
as in Example 4.4 that if X and F were normal isotopic then it would follow
that D and D2 are normal isotopic along A. This shows that F is not a
vertex.
Now suppose that A meets both sides of F. Let A’ A -A n (F I)

and suppose that

8A’= 8D X {0} U aD X {1}.

Form the normal surfaces

and

X= [(F-D,) X {0}l U A’U [D X {1}]

Y= [(F-D2) X {1}] U A’U [D X {0}1.

Then A’ is a proper exchange system for the sum 2F X + Y. We may
assume, after a normal isotopy of X along A’U (OA’ x I), that X r F
OD U OD2 and argue as above that if X and F were normal isotopic then it
would follow that D1 and D2 are normal isotopic along A.
We now turn to the proof in the other direction. We assume that F is not

a vertex surface and show that there exists an exchange annulus A such that
A F 8A and the disks with disjoint interiors in F bounded by OA are not
normal isotopic along A. Since F is not a vertex surface, some multiple of F
can be written as the regular sum of normal surfaces which are not multiples
of F. Let M be a proper exchange system for such a sum.

Suppose there exists a moebius band component A of . Let c’= OA
where c’ A r F and let Da, D2 denote the two disks in F bounded by c’.
If D and D2 are not normal isotopic along A then we can find an annulus
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exchange surface B in the boundary of a regular neighborhood of A, as in
Example 4.4, with the disjoint disks D], D bounded by OB not normal
isotopic along B.
So assume that D and D2 are normal isotopic along A. Then the

projective planes P1 D u A and P2--D2 t,)A are also normal isotopic
along A and we can write F P + P2 2P where P Pi. In this case we
show that F can be expressed as a nontrivial sum involving only two-sided
intersection curves.
The assumption that F is not a vertex surface, when F 2P for some

one-sided projective plane P, means that we can write nP X + Y where
neither X nor Y are normal isotopic to a multiple of P. We may assume that
the number of intersection curves in X c Y is minimal relative to all such
possible choices of X and Y. Observe that we may further assume X and Y
are both connected. For example, suppose nP= X + Y and Y is the disjoint
union of Y’ and Y". If X Y’ D then Y’ is normal isotopic to a multiple
of P and can be canceled off. If both X c Y’ 4: and X Y" 4: ) then we
can form W X + Y’ and we have nP W + Y". If Y"= kP then (n-
k)P W X + Y’. If Y" is not a multiple of P then we use nP W + Y".
In either case, we have a contradiction to the minimality of the number of
intersection curves in X c Y. Thus, without loss of generality, we may
assume that X and Y are connected.

It follows from Euler characteristic considerations that n < 4. The Euler
characteristic is also helpful in analyzing the possible cases. If n 4 then
2F 4P X + Y, where X and Y are two-spheres both distinct from
F 2P. If n 3 then one summand, say X, is a two-sphere not equal to
F=2P. Hence3F=6P=X+(X+2Y) where Xg:F. Ifn lor2then
one summand, say X, must be a two-sphere or a projective plane. If X is a
two-sphere then we have F 2P X + Y where X 4= F. If X is a projec-
tive plane then we have 2F 2X + 2Y, where 2X is a two-sphere distinct
from F 2P. Notice that X is a one-sided projective plane since it is
contained in the orientable regular neighborhood of F. In all cases there are
only two-sided intersection curves between the summands.
We have established that there exist normal surfaces X and Y which are

not multiples of F such that nF X + Y and all intersection curves in
X n Y are two-sided. We assume that the number of intersection curves
in X Y is minimal relative to all possible choices of X and Y in which
neither X nor Y is normal isotopic to F and all intersection curves in X n Y
are two-sided. It follows as before that we may assume X and Y are
connected. We let denote the proper exchange system for the sum
nF X + Y. Our goal is to show that there exists a component A of
which has the following property: If A F 0A then the disks with disjoint
interiors in F bounded by 0A are not normal isotopic along A. If A
OA A (F U F’), where F’ is a copy of F, then there exists an extension
A’ of A across the product region bounded by F u F’ such that A’ F OA’
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D1
D2D

2,D D
D4 D

FIG. 4.5 The intersection of a sequence of disk patches with a 2-simplex r

and the disks with disjoint interiors in F bounded by 0A’ are not normal
isotopic along A.

Let D c F be a disk patch in nF and let a’ denote the trace curve 0D.
Let A denote the annulus in z’ such that a’ c OA. Let F’ be the component
of nF containing c" OA a’ and let D’ c F’ denote the disk bounded by
a" and adjacent to D along A.

Case (1). Suppose that D c D’c F. It follows from Lemma 4.5 that
wt(D)<wt(D’). Hence neither D and D’ nor F-D and F’-D’ are
normal isotopic along A.

Case (2). Suppose that DtqD’=) and neither D and D’ nor F-D
and F’-D’ are normal isotopic along A. If F F’ then there is nothing
more to show and so we assume that F and F’ are distinct components of
nF. In this case A cannot be contained in the product region between F and
F’, for otherwise D would be normal isotopic to D’. Since F’ is a copy of F
and A does not cross the product region between F and F’, it follows that
this product region lies on the side of F opposite that of A. The annulus A
can be extended from a" to a surface A’ such that A’N F OA’ and
A’ c3 F’ a". Now A’ cannot be a moebius band since this would mean that
the surface A’ A, which spans F and F’, is also a moebius band. Hence A’
is an annulus and OA’ bounds a pair of disjoint disks in F. These disks
cannot be normal isotopic along A’ for otherwise we would have either D’ or
F’ D’ sandwiched in between, thus forcing either D and D’ or F D and
F’ D’ to be normal isotopic along A and contradicting our assumption for
this case.

Case (3). In view of Cases (1) and (2), we may assume that if D is a disk
patch then D n D’= ) and either D is normal isotopic along A to D’ or
F- D is normal isotopic along A to F’-D’. Since wt(F)= wt(F)’, it
follows that wt(D) wt(D’) in either case. Our first objective is to show that
a disk patch D can be chosen such that D’ is also a disk patch.
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We begin by choosing a disk patch D that has the least weight among all
disk patches for the sum nF X + Y. Consider the disk D’ adjacent to D
along a component A of ’, where OA1 OD1 U OD2. If D] is not a patch
then we will construct a sequence {D c D_I, D, Ai} such that A is a
component of with OA c c’, D is a disk patch with c 0Di, D is
the disk bounded by c’ and adjacent to D along Ai, and wt(Di)
wt(D) wt(D1) (one possible configuration is shown in Figure 4.5). We will
show that a disk patch D must eventually be reached such that D’ is also a
disk patch, as desired.
Suppose the sequence D1,..., D of least weight disk patches has already

been constructed. Let D denote the disk in nF adjacent to D with A
spanning the boundary curves c OD and c’ ODI. As before, wt(D)
wt(Di) wt(D1). Then either D is the desired disk patch or there exists an
annulus Ai+1 in with c+ bounding a least weight disk patch Di+ D.
Since there are only finitely many disk patches, eventually the sequence must
either terminate with the desired pair of disk patches or else cycle. We show
that it cannot cycle.
Assume the sequence cycles. After relabeling, we may assume that D D

for some n. We view the sequence in reverse order in a 2-simplex r for
which there exists an arc component do of D 0 o" with one endpoint in Oo-
and the other in A n r. Because wt(D Di+ 1) 0, we have (D Di+ 1)
n o-= and hence the possible configurations in cr are limited. Define d]
to be the component of r D’n_ containing do and adjacent in r to a
component of Dn_ r, denoted by d1. Continuing in this way, let d
denote the component of Dn_ r adjacent in r to d’ and let d’i/ denote
the component of D’n_i_ r such that d c dPi+l. When we reach dn_
D fq o-= D n o- then we find a component d’ of D r and this con-
struction of the di, d’ begins to cycle. But this can be shown to be impossible
by using an argument similar to that in the proof of Lemma 4.5.

Therefore there exists a pair of disk patches D, D’ adjacent along an
annulus component A of . It follows from our assumption on the minimal-
ity of the number of intersection curves in X Y that D is not normal
isotopic along A to D’. If F F’ then we are done, so suppose that F and
F’ are distinct components of nF. Since A fq nF OA A q (F t3 F’) and
D is not normal isotopic to D’, the product region between F and F’ is
disjoint from A. Hence A can be extended to an annulus A’ such that
A’ F 0A’. If the two disks D, D" in F with disjoint interiors bounded by
OA’ were normal isotopic along A’ then D and D’ would be normal isotopic
along A since D" lies between D and D". This completes the proof.

Let A be an orientable exchange surface for a normal surface such that
there exist disk patches D1, O2 adjacent along A bounded by OA and having
disjoint interiors. A bad disk relative to D is a disk C in a 2-simplex o- such
that (i) OC C (A ) and is the union of four arcs Yl, T2, o1, o2 with
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pairwise disjoint interiors, (ii) C A a t3 a2, (iii) C D
C D2 3/2, (iv) (’)/1 I,.) 72 ) O A o0 I oa2 and (iv) 72 c D1.

and

LEMMA 4.7. Let A be an annulus or disk exchange surface for a normal
surface , in which either each component is a 2-sphere or each component is a
disk. Suppose that there exist disks D1, O2 c with disjoint interiors, bounded
by fr(A), adjacent along A, and not normal isotopic along A. If wt(D1) is
minimal relatiue to all possible choices of such an exchange surface A then there
does not exist a bad disk relative to D1.

Proof If there exists a bad disk C relative to D1 then we can perform the
following cut-and-paste operation on A. Cut A along the arcs A C and
paste copies of C on both sides of o-. Use an isotopy that leaves
invariant and removes any newly created spanning disks which meet only one
2-simplex. More precisely, there is an embedded product Nc C [-1, 1]
such that Nc ( .(1) , C C x {0}, (71 I,.) Y2) [-1, 1] Nc ( i,, and
(al t3 a2) [-1, 1] Nc A. We may assume that Nc is chosen such that
the number of components of Nc n 2) is as large as possible. Each such
component of Nc n -2) is a bad disk relative to D1. Because 71 C D1, it
follows that this cut-and-paste operation on A produces a surface (A -A
Nc) u (C {- 1, 1}) having two components, say A’ and A", which are either
both annuli or one is an annulus and the other a disk.

Because our choice for Nc contains a maximal number of bad disks
relative to A, it follows that both A’ and A" are exchange surfaces. To see
this, consider a tetrahedron A and a component L of A A’ containing the
disk(s) C {i} which are pasted on to form A’. If L meets only one 2-face of
A, say tr’ then (L t3 A’) r’ contains the boundary of a bad disk C’ in
and Nc could be enlarged to include C’. Thus each such component L must
span two distinct 2-simplexes.

Let D], Dz denote the disks in D bounded by fr(A’) and let D’, D’
denote the disks in O2 bounded by fr(A"). Since D --D’ D’
[-1, 1]), both D] and D’ have smaller weight than D1. If there exists a
normal isotopy along A’ between D’ and D and a normal isotopy along A"
between D’ and D’ then one can easily construct a normal isotopy along
A 3 C between D and D2. Thus, for at least one of A’ or A", say A’, the
associated disks D, D are not normal isotopic along A’. But this contra-
dicts the assumption that the weight of D is minimal.

We next establish some properties related to an exchange surface A for a
normal surface E when either (1) A is an annulus and E a disjoint union of
normal two-spheres or (2) A is a disk and a disjoint union of properly
embedded normal disks. First we set some notation. Let F and F2 denote
the components of Y_, containing fr(A) and let D c F be a disk patch
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relative to A. Assume that the disk D2 c F2 adjacent to D along A is not
normal isotopic along A to Da. Let fr(Di) ol and E F Di.

If F 4: F2 we form the normal surfaces

X=ExUAuD2 and Xz=(Y-.,-(FUF2))U(EzUAUD).

Then E Xa + X2 and we let p: E X U X2 denote the usual identifica-
tion map with p-a(X c3 X2) =A (after adjusting X1, X2 by a normal
isotopy near A). We can also form the normal surface E’= (E- F2)u
(E2 U A u D]), obtained from E by replacing D2 in F2 with D’a, a copy of
Da. Let E" denote the normal surface obtained from E by replacing all
copies of D2 in E with copies of DI.

If F F2 and D A D2 ) then we can form F from F by replacing
D2 by a copy D] of D and we can form F’ from F by replacing D by a
copy D of D2. Then 2F F + F’. Hence we can write 2E- X + X2

where X (E F1) U F and X2 (E F1) U F’. Here we have the
identification p: 2E X u X2. If we let E and E* denote the two copies of
E in 2E then we may assume the construction is done such that the exchange
system p-a(E A E*) consists of two annuli (or two disks): A with fr(A) c E
and A’ spanning E and E*. As in the previous case, replacing D2 with a
copy D’ of D we obtain the normal surface E’ (E F1) + F X and
we obtain E" by replacing all copies of D2 in E with copies of D1.

LEMMA 4.8. Let E be a disjoint union either of normal two-spheres or of
properly embedded, normal disks. Suppose A is an exchange surface for E such
that fr(A) bounds disk patches D and D2 which are adjacent along A but not
normal isotopic along A. If consists of disks then assume A is an exchange
disk. Let F1, F2 denote the components of containingD and Dz, respectively.
Assume wt(Da) is minimal relative to all possible choices of the exchange surface
A for !, where A spans the same surfaces F1, F2. Then:

(1) A is an annulus or a disk.
(2) D does not lie on a face-fold along p(A) and hence both E F D

and E2 F2 D2 lie on a face-fold along p(A).
IfD c D2 then wt(Da) < wt(D2).
Suppose D (3 D2 ).
(a)

(3)
(4)

(b)

(c)

If E is not normal isotopic along A to E2 then wt(Da) < wt(Ei)
fori 1,2
If wt(D1) wt(D2) then for each 2-simplex r, no component of
A cr has end-points in two elementary arcs of E r of the same
type in

If wt(Dl) wt(D2) and r (E" ) cr (E) then there exists an exten-
sion ofA to a O-weight annulus or disk A’ such that fr(A’) bounds
D and a disk D in E" adjacent to D along A’ and each
component of (A’
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Proof (1) Assume that A is a moebius band and let F be the component
of containing 0A. Let r be a 2-simplex meeting A. There exists an
innermost face-fold for p(F) q r in o" on which both D and D2 lie. Let
N(A) be a solid torus regular neighborhood of A such that N(A) c3 , is an
annulus. Then there is an annulus A’ c ON(A) that is an exchange surface
for E with 0A’= O(N(A) q F). The disjoint disks D’1, D in F bounded by
3A’ are contained in D1, D2, respectively, and are clearly not normal isotopic
along A’. Moreover, there is an innermost face-fold in r relative to A’ on
which they both lie.

Push A’ across the^l-simplex 2’ of r on which this face-fold lies to a new
annulus where 0A bounds disks D1 c D and D’̂2 C D2. If is not an
exchange annulus then we have the disk B A -A A’ contained in one
tetrahedron such that one face 6- contains 0B- (Da u D2). This process
can be repeated as long as the annulus is not an exchange surface as shown
in Figure 4.6.
At each stage, the adjacent disks bounded by the boundary curves of the

annulus are not normal isotopic along the annulus since D and D2 are not
normal isotopic along A. Thus, this process must terminate with an exchange
annulus A" and disks D’ c D and D’ c D2. However wt(D’) < wt(Da),
contradicting our choice of A.

(2) Let tr be a 2-simplex meeting A. There is an innermost face-fold for
p(F) tr relative to A in tr. If Da, and hence D2, were to lie along the
face-fold then the weight of D could be reduced as in (1) by pushing A
across the 1-simplex on which the face-fold lies to obtain a new spanning
surface A’, contradicting the minimality of wt(D1). Therefore, the patches
along this face-fold must be contained in E1 u E2.

(3) This follows from Lemma 4.5.
(4) Assume that D O2 --). For (a), suppose that wt(E1) < wt(Da).

Either Ea is itself a disk patch or contains D2. Since the disks E and E2 lie
along a face-fold, we can reduce the weight of E by pushing A across the
1-simplex on which the face-fold lies as in (1). BUt this would produce a new

(a) (b)

FIG. 4.6 View in F of the push of an exchange annulus A across an edge containing a fold to a
new exchange annulus A’
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(a) (b) (c)

FIG. 4.7 Components d of D o- and d of D (q o- contained in arcs of different types.

disk patch (the image under this push of either Ea or D2) of weight less than
that of D1, which is impossible. Thus wt(E) > wt(D1). Similarly, one shows
wt(E2) > wt(D1).

For (b), assume that wt(Da) wt(D2) and consider an arbitrary 2-simplex
tr meeting A. Assume there exist components da, d2 of D
respectively, which are adjacent along an arc of A tr and contained in
elementary arcs Z1, A2 of the same type in tr. Since both disk patches are
least weight neither can lie on a face-fold. It follows that at least one of the
arcs d or d2 does not meet fr(tr). But any component of A N o- meeting d
must lie between /1 and A2 since fr(Da) meets just one component of fr(A).
There are only two possibilities, eitheor d cI d2 lies on a bad disk relative to
D (Figuroe 4.7(b)) or else fr(A) N d2 4: ). If 3’ is a comoponent of A
meetiong d2 then 3’ cannot lie between )t and A2 since d A ). Hence
3’ d2 c fr(D1) (as illustrated in Figure 4.7(c)), which implies that D c D2

and contradicts our assumption that D D2
For (c), assume that wt(Da) wt(D2) and o-(")= o-(). We already

know that (i) components of A C o" can only span elementary arcs of 5; n o-

having different types, (ii) there does not exist a bad disk relative to Da, and
(iii) D does not lie on a face-fold. It is easy to display all possible
configurations in an arbitrary 2-simplex o- meeting A and these are shown in
Figure 4.8.

(a) (b)

(c) (d)

FIG. 4.8 Components of D (’1 o- and D (q tr adjacent along
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We can immediately rule out the situation shown in Figure 4.8(d) since
neither D nor D2 is adjacent to itself. Let A denote an elementary arc of
E n tr containing a component of D2 n o- meeting A o-. In the remain-
ing cases, observe that each time we replace a copy of D2 by a copy of Da,
one elementary arc of E tr of the same type as A is eliminated. Since
o-(E) o-(E"), each disk type occurring in E must also occur in E". It
follows that there remains an elementary arc A’ of E" tr which is of the
same type as A. Thus there is an extension of the exchange surface A to a
0-weight annulus or disk A’ with fr(A’)=fr(D1) U fr(D3) where D is a
disk in E" adjacent to D along A’. t3

5. A complete system of 2-spheres at the vertices

Let M be a non-irreducible closed 3-manifold with a given triangulation .
Kneser [K] proved that every closed 3-manifold admits a reduction to
irreducible 3-manifolds in the following sense. There exists a finite collection
E {F1,..., Fn} of pairwise disjoint 2-spheres in M, called a complete system
of 2-spheres, such that each component of the 3-manifold (M- E) which is
obtained from M- E by capping off the boundary 2-spheres with 3-balls, is
irreducible. We say that E is a minimal complete system if none of the
components of (M E) are 3-spheres. In [JR] it is shown that there exists a
complete system such that each 2-sphere is a normal surface. In this section
we show the existence of a complete system of 2-spheres among the vertex
surfaces. More precisely, we prove that there exists a minimal complete
system E of normal 2-spheres such that the unique face in :r carrying E is
an (n 1)-dimensional simplex with vertex set E.

Let E {F,..., F} be a pairwise disjoint collection of 2-spheres in M.
We say that a 2-sphere F M E is dependent on E if F bounds a 3-cell in
(M E)^. The collection E {Fa,..., Fn} is an independent set if no 2-sphere
F/ E is dependent on E- {Fi}. Thus a minimal complete system is a
maximal independent set of pairwise disjoint 2-spheres. If D and E are disks
such that D E 0D 0E then we write D E if D U E is a 2-sphere
bounding a 3-cell in (M- E)^. Suppose E is an independent set and D is a
disk such that D n E D q F D and 0D splits F into two disks E’
and E". Then D E’ if and only if the 2-sphere D E’ is dependent on
{Fe,..., F}. It follows that if D E’ then {E"t D, Fe,..., Fn} is an inde-
pendent set of 2-spheres. In other words, we can modify F by replacing E’
with D and not affect the independence of the set E (see Figure 5.1).

Consider a system of pairwise disjoint, normal, independent 2-spheres
E {F1, F2,..., Fn} and let E denote the subcollection {El, F2,... F/}. We
say that the system E is efficientif the following properties are satisfied:

(a) Each F is a vertex surface.
(b) Suppose A is an exchange annulus for E such that A q E OA

a t2 %, a A q F and %. A F, where F and F are distinct compo-
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F F6 @

FIG. 5.1 An independent set {F F6} of 2-spheres in M

nents of E. Let Di, E denote the disks in’F bounded by a and let D., E.
denote the disks in Fj. bounded by %., where notation is chosen such that D
is adjacent to D.. Then either D is normal isotopic to D. along A or E is
normal isotopic to E. along A.

(c) For each Ei_l, the 2-sphere F has the property that
(wt(Fi), o-(Ei), tr(Fi)) is minimal relative to all possible choices of 2-sphere
vertex surfaces F for which i satisfies (b), where the triples
(wt(Fi) o’(Ei) o’(Fi)) are ordered lexicographically.

LEMMA 5.1. Let n {Fa, F2,..., Fn} be an independent system ofpairwise
disjoint 2-spheres in M defined inductively as follows: If there exists a 2-sphere in
M i that is independent of i then let Fi/1 be a normal 2-sphere in M i
such that F + is independent of i and (wt(F + ), tr (i U {F + }), o" (F + )) is
minimal among all such 2-spheres. Then ,n is an efficientsystem.

Proof The proof is by induction on n. Assume that we already have an
independent set of pairwise disjoint 2-spheres n constructed in the pre-
scribed manner and that n is efticientet F be a 2-sphere in M Zn which
is independent of , and chosen such that (wt(F), r( U {F}), o’(F)) is
minimal. We show that , u {F} satisfies conditions (a) and (b). Keep in
mind that wt(F) > wt(Fi)for 1,..., n.
We first show that condition (b) holds for . Suppose, to the contrary, that

there exists an exchange annulus A for Z for which condition (b) fails. Let
A F a and A cq F/= ai, where F 4: F/. There exists adjacent disks
D F and D F bounded by OA such that D is not normal isotopic to D
and E F D is not normal isotopic to E F Di. We may assume that
A and D are chosen such that wt(D) is minimal relative to all possible
choices for A and D. It follows from Lemma 4.8 that wt(D) < wt(E).
Suppose that wt(Di) < wt(D). Then wt(Di) < wifE). The 2-sphere D u A

U D has smaller weight than F and can be moved into normal form, if it is
not already in normal form, without increasing its weight. It follows from the
minimality of wt(F) that D A D is dependent on n and thus D D



382 WILLIAM JACO AND JEFFREY L. TOLLEFSON

u A. If we take F’ E A D then F’ is a 2-sphere in M- n indepen-
dent of n and such that wt(F’) < wt(F), contradicting the minimality of
wt(F).

Suppose that wt(D) < wt(Di). Then wt(Ei) < wt(E) and hence wt(Ei
A u D) < wt(Fi) < wt(F). By the minimality of wt(Fi), the 2-sphere E A
u D is dependent on Y-,i-1. Since E and D lie on opposite sides of
D A Ei, one of these disks must lie in a 3-cell component of (M-
Y-,i-1) This is impossible since otherwise it would follow that either F or F
is dependent on 5;i_ 1.

Suppose that wt(D) wt(Di). Again wt(D A Di) < wt(F) and as
before D D 1.3 A. Since D is not normal isotopic along A to Di, each copy
of D in 5; must lie on the side of D opposite that of Di. We have a product
DIcM containing all copies of D in such that D OIci,. If

F. C (D I)4: for some j, then there exists a nearest disk component

D c F. of X C (D I) to which we can extend A to A’ such that OA’=
A I"1 n ODi D}. Then A’ is an exchange annulus for n bounding the
adjacent disks D and D}. Now D and D cannot be normal isotopic along
A’ since D lies between them. Similarly, E lying between E and F.-D
prevents them from being normal isotopic along A. This gives a contradiction
to either (a) or (b) and so we have X O D I 0. In particular, there are
no copies of D in n" We can form the 2-sphere F" from F by replacing
each copy of D with a copy of Di. Now F" is independent of n and
wt(F") wt(F). By our choice of F we must have o-(N U F") tr(E). By
Lemma 4.8, the exchange annulus A can be extended to a 0-weight annulus
A’ which, in this case, is an exchange annulus for En" Thus OA’ bounds disks
D and D, c F adjacent along A’. But this gives us a contradiction as before
since (a) or (b) implies either D and D, are normal isotopic along A’ or
their complementary disks are. This completes the proof that condition (b)
holds.
Now, in order to show F is a vertex surface, we assume that it is not and

reach a contradiction. There exists an exchange annulus A spanning F such
that disjoint disks C, D and in F bounded by OA are not normal isotopic.
Among all such instances, we assume that A and the labeling have been
chosen such that wt(D) is minimal.

Case (1). A I’ Xn 0"
It follows from Lemma 4.8 (2) that wt(F- (C J D))> 0 and hence

wt(C JA D) < wt(F). If C is not adjacent to D then the 2-sphere
F’ C u A LJ D is nonseparating in M X, and wt(F’) < wt(F), contra-
dicting our choice of F. Thus C is adjacent to D. The 2-sphere C A D is
inessential in (M- X,) since it’s weight is less than that of F and so
C A D. The 2-sphere F’ (F D) C’, where C’ is a copy of C with
OC’= OD, is independent of 5;n. Thus we must have wt(C)= wt(D) for
otherwise F’ would be a 2-sphere having less weight than that of F.
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Let C I, D I be products in M containing all copies of C, D, respec-
tively, in 5; and such that (C w D) I E. Suppose that n n C X I )
and n O D I #: ). Then we can extend A to an exchange annulus A’ for
n with oA’ bounding the disks D F and D’ Fk adjacent along A’ and
adjacent to D. Since C and D are not normal isotopic along A’, it follows
from conditions (a) and (b) that F. D. and F, D, are disjoint disks which
are normal isotopic along A’. But this gives us an /-bundle F.-D I in
which the annulus F (C W D) is embedded transverse to the fibers, which
is impossible.

Since wt(C) wt(D) and from what we have just shown, we may assume,
without loss of generality, that n D I 0. This allows us to form the
2-sphere F" M , from F by replacing every copy of D in F by copies of
C. Now wt(F") wt(F) and hence tr(En w {F"}) tr(E). Using Lemma 4.8
again, it follows that there exists an extension of A across 8D I to a
0-weight annulus A’ containing the boundary of a disk D. in some F. n
such that D. is adjacent (but not normal isotopic) to the last copy D’=
D 8I- D of D along an exchange annulus B A’ for E. Consider the
other end of A. We can show that there is a component Fk to which A’ can
be extended across 8C I to obtain an exchange annulus A" for n with
A" bounding disks D F. and D, Fk which are adjacent along A" and
both adjacent to C and D. If n O C X I #: ) this is immediate, and if this
fails we can apply the same argument used earlier to find D. Since C and D
are not normal isotopic along A it follows that D and D, are not normal
isotopic along A". But because satisfies conditions (a) and (b), we must
have that F. D and Fg D, are disjoint disks normal isotopic along A". As
before, this gives us an /-bundle F.-D. I in which the annulus
F (C w D) is embedded transverse to the fibers, which is impossible. Thus
we are led to a contradiction in all situations when A n n O.

Case (2). A n Xn :#: 0.
We set the following notation which is illustrated in Figure 5.2. Let

A n cg U O2 U U Om+

where 3A A n F a U am+ and A is the union of annuli A with
mutually disjoint interiors and 3A ol U Oli+ 1"

Let D D c F and assume notation is chosen such that 3D a1. We
inductively define Di+ to be the disk in E bounded by ai+ adjacent to the
already labeled disk Di. If D Fk then we define E Fk Di. With this
notation the disk C c F is denoted by either Dm/ or Em+ 1" By analyzing
what can happen along consecutive exchange surfaces A and Ai+1, we will
show that either Di, Di+I, Di+ 2 are normal isotopic disks or Ei, Ei+I, Ei+2

are normal isotopic disks. Using this, along with the facts that no two distinct
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E1 D1
E2 A1 D2

Ei D

Ei+ Ai Di+
Ei+2 A i+l Di+2

En Dn

Em+l Am+l Dm+

Ft
Fu

FIG. 5.2 Intersection of E with an exchange annulus A t3A

F[’s are normal isotopic and Din+ C El, it is easy to show that D is normal
isotopic to Di+ for 1 < < m. This is our desired contradiction.
Each 2-sphere in n is a vertex surface and we have already established

that condition (b) holds for E. Thus, for each we have a normal isotopy
along A between either D and Di+ or E and Eg+x. We make two more
observations that will be used in this proof. By Lemma 4.8, E and Era+ lie
on a face-fold along A in some 2-simplex r. This forces all the E to lie
along a face-fold in tr. From this it follows that the patch P contained in E
with a boundary curve ag has non-zero weight.
We are now ready to show that either Di, Di+a, Di+ 2 or Ei, El+l, Ei+ 2 are

disks normal isotopic along A and Ai+ 1. We set notation so that D c F,

E Di E D

(Ei+ IAi Di+l Ei+l IAi Di+l

Ei+2 [Ai+l Di+2 Ei+2 IAi+l Di+2
(a) (b)

E Di

(Ei DI S Ei+a
Ai

Di+a

/A -E Ai+l
Di+El+ Di i+2

(Ei+2 i+l Di+2 )
(c) (d)

FIG. 5.3 Possible configurations along consecutive exchange annuli A’, A" when F F F
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Di+ c V and Di+ 2 c Fu and consider the various possibilities for the
2-spheres Fs, Ft, Fu in X.

(i) Suppose Fs F Fu. We claim this cannot occur. For both j and
j i+ 1, either the pair Ej, gj+ or the pair Dj, D.+I are disjoint disks
which are normal isotopic along A. Since wt(E.)= wt(Fs) -wt(D), itJ"
follows in any case that wt(Di) wt(Di+ i) wt(Di/2). We may assume that
D is a component of F (a td ai+ 1) as the argument for the case when E
is a component is the same. Under this assumption there are four possible
configurations as shown in Figure 5.3. Observe that in each case we have

Di c Dk for some pair of the three disks {Di, Di+I, Di+2}. We have pointed
out that the patch P. in E. along a. has nonzero weight. Since P. c Dk Di
and wt(D D.) 0, we have a contradiction.

(ii) Suppose F F =/= Fu. We show that either D, D + Di+ 2 or
Ei, Ei+I, Ei+ 2 are normal isotopic disks. If D and Ei+ were disk compo-
nents of F 3A then we could replace F by the nonseparating 2-sphere
D I,.3 A t.A E + 1" Since Pi c_ F (D t,3 E + ), we have wt(Fs (D k3 E + ))

0 and the new 2-sphere D t.A A u Ei+ would have strictly less weight
than that of F, which is impossible. Similarly, we cannot have Di+ and E
as the disk components of F OAi. First assume that D and Di+ are the
disk components of F 3Ai. We must have that D is normal isotopic to

Di+ along Ai. For if E were normal isotopic to Ei/ along A then the
subdisks D and Di+ would also be normal isotopic along Ai. If Ei/ is
normal isotopic to El+2 consider the 2-sphere

F’ Di+ I,..) Ai+2 k3 Oi+ 2

It follows that wt(F’) wt(Di+ ) + wt(Di/2) wt(Di) + wt(Di/2) < wt(Fu)
since F D / : + Ei/ :z Ei / 2 contains Di_ which is normal isotopic to Di,

and wt(Ei/2 (Di- Di+2)) > 0. Therefore F’ must be dependent on

Eu-1 and hence it follows that F and Fu are dependent relative to Eu-1, a
contradiction. Thus we have Di/ is normal isotopic to Di/:z as desired. For
the case when Ei, Ei+ are the disk components of F oA it follows by a
similar argument that the disks Ei, Ei+I, Ei+ 2 are normal isotopic.

(iii) Suppose F =/= F Fu. The same argument as in (ii) leads to the same
conclusion.

(iv) Suppose Fs =/= F =/= F =/= Fs. First assume that D is normal isotopic to
Di/l. We want to show that Di+ is normal isotopic to Di+ 2. Suppose that
this is not the case and hence Ei+ is normal isotopic to E+2. Consider the

F’2-sphere F’ E t,,j A Ei+ 1. Since D is normal isotopic to Di+ 1, can
replace F in E. This, together with the fact that F’ lies on a face-fold
implies that wt(F’) > F. Thus wt(E+ 1) > wt(Di) wt(Di+l). On the other
hand, the 2-sphere F" Di/ td Ai/ Di / 2 can replace F in E and hence
wt(F") > Fu. From this we obtain wt(D / ) > wt(E / 2 ) wt(E / ), which is
a contradiction. A symmetric argument shows that if E is normal isotopic to

Ei+ then Ei+ is normal isotopic to Ei/:z. ra
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THEOREM 5.2. Suppose M is a non-irreducible closed 3-manifold with a
given tdangulation . Then there exists an efficient minimal, complete system of
2-spheres Y., {F1,..., Fn} for M such that the unique face (,) of r
carrying , coincides with the (n 1)-dimensional simplex having vertex set ,.
Proof Let {F1,... Fn} denote the eftient, minimal, complete system

of vertex 2-spheres obtained by using Lemma 5.1. Let [] denote the convex
subset of r spanned by the vertex 2-spheres in . We want to show that E
is affinelyindependent and that [] ’(). It sufficesto show that whenever
we have X + Y-- Ei kniFi then X and Y are each a disjoint union of F/’s or
one-sided projective planes Pi with 2P Fi, <_ k. So suppose that X + Y
E < kniFi
If there exists a one-sided intersection curve a in X n Y then there exists

a solid torus neighborhood V of a such that (X Y) V is a pair of
moebius bands intersecting in a 1-sided curve. We can form the sum
2X + 2Y -,i <_ k2niFi with 2X n V an annulus and (2X 2Y) V a pair
of annuli intersecting in two boundary parallel curves. If we show that 2X
consists of copies of the F’s then it follows that X consists of copies of the
F/’s and P;’s. Thus, without loss of generality, we may assume that all
intersection curves are two-sided. We may also assume that the number of
intersection curves in X Y is minimal relative to normal isotopy of X and
Y. We suppose that X c Y 4: ) and reach a contradiction.

Let D’ c F[ denote a least weight disk patch in Eg knFi, with respect to
the sum X + Y, where F/’ is a copy of F and boundary OD’ a’ is a trace
curve corresponding to the intersection curve a. Let D"c F." denote the
adjacent disk with boundary a", where F." is a copy of F.. There is an
exchange annulus A with A EnF/= OA.
We first observe that wt(D’) wt(D"). Since E is efficient, either D’ is

normal isotopic to D" or F;- D’ is normal isotopic to ."-D". If D’ is
normal isotopic to D" then clearly wt(D’) wt(D"). Suppose that F/’ D’
is normal isotopic to F."- D". If j then D’ is again normal isotopic to
D". If 4: j then D’to A to D" is a 2-sphere independent of Ek --{Fj.} and
hence wt(D’ to A to D" > wt(F.). Since wt(D’) < wt(F; D’) wt(F]’ D")
it follows that

wt(D’ A D") _< wt(F.").

Thus

wt(D’ to A to D") wt(F:.") and wt(D’) wt(F:." D") > wt(D").

But D is a least weight disk patch and so we have wt(D") wt(D’). Thus, in
all cases, the weights of D’ and D" are equal.
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In the next lemma we show that there exists a least weight disk patch
D’c F/’ as above with the additional properties that the disk D"c F’.’
adjacent along the exchange annulus A is also a least weight disk patch and
the 2-sphere D’ U A D" lies on a fold. By the previous analysis, either D’
is normal isotopic to D" or the 2-sphere D’ t2 A D" has weight equal to
that of Fj" and is independent of X {F."}. The latter is impossible since an
isotopy removing the fold would create a 2-sphere of less weight than that of

F.". But if D’ and D" are adjacent disk patches that are normal isotopic along
A, then the number of components of X f3 Y can be reduced by a normal
isotopy. This shows that we had X ( Y to begin with. El

For future convenience, we broaden the context for next lemma by
allowing F to be a properly embedded disk in M, as well as a 2-sphere.
Remember that a disk patch D for a sum X + Y is a disk which is a not only
a patch but also has the property that D meets 9M in at most an arc.

LEMMA 5.3. Let nF X + Y be a sum such that (i) all intersection curves
are two-sided and (ii) every component A of the proper exchange system
relative to this sum, where fr(A) a’ a", has the property that if a’ is the
frontier of a least weight disk patch D’ then a" is the frontier of a disk D" in nF
adjacent to D’ such that wt(D")= wt(D’). Then, if there exists a disk patch
relative to 5v’, there exists a pair of least weight disk patches E’ and E" adjacent
along a component B of ’. Suppose additionally (iii) for the disks in (ii), if
F[ l" are the components of nF containing D’, D", respectively, then wt(D’),-/"
wt(F[ D’) and wt(D") wt(F:’ D"). Then E’ t3 B E" lies on a fold.

Proof. We let {F1,..., Fn} denote the pairwise disjoint copies of F in nF.
Each component of the proper exchange system is an annulus or a disk.
Let D be a least weight disk patch relative to and let A denote the
component of 5’ containing fr(D). Assume D c F1. Let D nF be the
disk with OD’ c OA1 and adjacent to D along A1. By assumption, wt(D)
wt(D’). If D’ is not a disk patch then we will construct a sequence of least
weight disk patches leading to a pair of adjacent disk patches.

Suppose we have already found the sequence D’1, D’2 D’,. D D7_
where each Dj is a least weight disk patch adjacent along the exchange
surface Aj to the disk D. Let D7 be the disk in nF with fr(D7) c h and
which is adjacent to D along Ai. By hypothesis, wt(D)= wt(D). If D’ is
itself not a disk patch then there exists a disk patch D+ c D’. Since
wt(D/ 1) < wt(D7) wt(D’i) wt(D), it follows that D’/ is also a least
weight disk patch and hence wt(D7 -D’i/I)= 0. This construction either
terminates with a pair of adjacent least weight disk patches r’ r,,

._.p, ._.p or else it
cycles. But the same kind of argument used in Case (3) of the proof of
Theorem 4.1 shows that it does not cycle.
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Now assume that condition (iii) holds and the least weight disk patches
D’ c Fi, D" F. constructed above do not lie on a fold along A. Choose a
2-simplex tr for which an arc component do of D’ tr has one endpoint in
an edge y of 0r and the other endpoint in A N r. Let e denote the
component of D’ r containing d0. Since D’ and D" do not lie on a
face-fold in r adjoining y, it follows that there exists a disk patch contained
in F D’ such that D’ e y 4: ). D] is also a least weight disk patch
because wt(D’) _< wt(F D’) wt(D’). Repeat the earlier construction, but
this time begin using this choice for D’, and observe that D’ A D" acts
as a barrier which forces all the disks D, D’ constructed to meet the edge 3’.
The construction will end with adjacent least weight disk patches D, D
both meeting the edge 3’. rq

6. Boundary compression disks and injective surfaces

Let M be a compact irreducible 3-manifold. A collection {D1,..., Dn} of
pairwise disjoint, properly embedded, essential compression disks in M is
called a complete system of disks for M if each boundary component of the
3-manifold obtained by splitting M along to ’=lDi is incompressible. In this
section we prove that there always exists a complete system of essential
compression disks occurring as vertex surfaces. We also extend Theorem 1.1,
the key result in [JO], by proving that if F is a least weight, incompressible,
-incompressible, two-sided normal surface in a compact, irreducible, 0-irre-
ducible 3-manifold M, then all summands of nF are also incompressible and
0-incompressible. This provides the necessary essential annuli and tori vertex
surfaces which, along with the essential compression disk vertex surfaces,
allow us to give algorithms for deciding if a 3-manifold is a product F I, if
two normal surfaces in M are parallel, if a 3-manifold is a Seifert fiber space,
and an algorithm for splitting an irreducible 3-manifold along essential annuli
and tori into its characteristic Seifert submanifold and simple 3-manifolds.
We also use the existence of essential compression disk vertex surfaces to
improve on Haken’s algorithm (see [JO]) to decide if a surface is injective.

If F is a two-sided surface properly embedded in a 3-manifold M, we let
rF(M) denote the 3-manifold obtained by splitting M along F. We will
usually refer to a disk D properly embedded in M such that OD does not
bound a disk in OM as an essential compression disk. However, in the context
of a product M F [- 1, 1], where F is a compact surface with nonempty
boundary, we impose an additional, restriction on D. Let

and

O-M= (F X {-1}) tO (OF x [-1,1 1)

O+M= (F {1}) to (OF [1-,11)
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for some small e > 0. In this context we say that a disk D properly
embedded in M is an essential compression disk if O-M N D is an essential
arc in 3-M and O+M n D is an essential arc in O+M.

THEOREM 6.1. Let M F [-1, 1], where F is a compact surface with
nonempty boundary. Assume that F {1} is contained in the 1-skeleton of the
given triangulation . Then there exists a system E {D1,..., Dn} of pairwise
disjoint, properly embedded, normal, essential compression disks such that each
D is a vertex surface and trr.(M) is a 3-cell.

THEOREM 6.2. Let M be a compact, irreducible 3-manifold with a compress-
ible boundary. There exists a complete system E {D1,... Dn} of normal,
essential, compression disks such that each disk is a vertex surface.

Since the proofs of these two theorems are similar and follow closely the
proof of Theorem 5.2, we will give only an outline for the proof of Theorem
6.1. We need some addition definitions parallel to those used in Section 5.
Let E {G1,..., Gn} be a pairwise disjoint collection of essential compres-
sion disks in M. If G is a properly embedded essential compression disk in
M such that G c M- E, we say that G is dependent on E if G is the
frontier of a 3-cell in tr:(M). The system {G1,..., Gn} is independent if
no disk G is dependent on E- {Gi}. We say that E is a minimal
complete system if every component of try(M) is a 3-cell and no proper
subcollection of E achieves such a decomposition into 3-cells. Thus a
minimal decomposition system is a maximal independent set of pairwise
disjoint compression disks. Consider a system of pairwise disjoint normal
compression disks E {G1, 62,..., Gn} and let Ei denote the subcollection
{G1, G2,...,Gi}. We say that the system is efient if the following
properties are satisfied:

(a) Each G is a vertex surface.
(b1) Suppose A is an exchange annulus for E such that A N E OA

aiUaj, ai=A nGi, and a.=AG, where, G and G are distinct
components of E. Let Di, Dj denote the disks in Gi, Gj bounded by ai,

respectively. Then D is normal isotopic to D. along A.
(b2) Suppose A is an exchange disk for E such that A E fr(A)=

Ol I,.,J .Olj, Ol --A G and a. A G, where G and G. are distinct com-
ponents of E. Let Di, E denote the disks in Gi bounded by o and let D, E.
denote the disks in Gi bounded by %., where notation is chosen such that D
is adjacent to D along A. Then there is a normal isotopy along A between
either D and D. or E and E..

(c) For each i, the disk G has the property that (wt(Gi), tr(,i), tr(Gi)) is
minimal relative to all possible choices of compression disk vertex surfaces G
for which Ei satisfies (b) and (b2).
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LEMMA 6.3. Let n {G1, G2,’", Gn} be an independent system ofpair-
wise disjoint essential compression disks in M defined inductively as follows: If
there exists a compression disk in M i that is independent of i then let G +
be a normal compression disk in M- Ei such that Gi+ is independent of ,i
and (wt(Gi+l), tr( U {Gi+I}), tr(Gi+l)) is minimal among all such compres-
sion disks. Then ’n is an efficientsystem.

Outline ofproof. The proof mimics that of Lemma 5.1, using the charac-
terization of disk vertex surfaces of Theorem 4.3 in place of Theorem 4.1.
However, several aspects of the argument are simplified since M is irre-
ducible and because of the following observations. Any disk properly embed-
ded in M whose boundary is disjoint from y- 0-M N 0+M is necessarily
the frontier of a 3-cell in M. Since all exchange disks have zero weight, they
are disjoint from the 0F {1} c1). Thus, if e is chosen small, we may
assume that any exchange disk is disjoint from 3’. Moreover, any properly
embedded disk must intersect 3’ in an even number of points.

In the inductive step, an essential compression disk G is chosen such that
G c M- E, G is independent of E, and (wt(G), tY(n 1 {G}), o’(G)) is
minimal. In particular, we have that wt(G) > wt(Gi), 1,..., n. It remains
to show that E E t {G} satisfies conditions (a), (b1) and (b2). One first
shows that condition (b) is satisfied by following the argument in the proof
of Lemma 5.1. Since the cutting and pasting is along simple closed curves and
does not affect the boundaries of the compression disks, there is little to add
to that argument. For condition (b2), the general argument is the same but
one must pay attention to the way the disks constructed intersect O-M and
O+M.
To show that the new compression disk G is a vertex surface, we must

consider the two cases in the characterization of disk vertex surfaces from
Theorem 4.3.

Case (a). A is an exchange annulus. The argument in this case is very
close to the corresponding part of the proof of Lemma 5.1 with the simplifi-
cation that only the one component D is a disk and the other component C
is an annulus.

Case (b). A is an exchange disk. The argument follows the outlines of the
proof of Lemma 5.1 using intersection arcs instead of simple close curves.
Each time a newly constructed disk is claimed to be a compression disk, the
various possibilities for its boundary meeting 3’ must be checked. Aside from
this detail, the argument is the same as that for 2-spheres. rq

COROLLARY 6.4. Let M be a compact, irreducible 3-manifold and suppose D
is a normal surface that is an essential compression disk for OM. Assume that
(wt(D), or(D)) is minimal among all such essential compression disks in M.
Then D is a vertex surface.
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This last result is applied in Section 8 to obtain an elementary algorithm to
determine whether or not a knot K is the unknot.
Our next goal is to prepare the way for a series of related algorithms,

based entirely on normal vertex surfaces, which will allow us to recognize
two-sided incompressible, 0-incompressible surfaces as well as products,
regions of parallelity, and Seifert fiber spaces. The cornerstone of these
algorithms is the following extension of Theorem 1.1 to 3-manifolds with
boundary.

THEOREM 6.5. Let M be an irreducible, O-irreducible 3-manifold. Suppose F
is a least weight normal surface properly embedded in M such that F is not a disk
and nF F + F2. If F is two-sided, incompressible and O-incompressible then
F and F2 are each incompressible, O-incompressible and not a disk.

For the proof of the incompressibility of F/we will closely follow the proof
of Theorem 2.2 in [JO], adapting it to normal surfaces relative to a triangula-
tion of M and using weight instead of complexity for the measure on our
normal surfaces. The argument for the 0-incompressibility of F proceeds in
the same spirit. Without loss of generality, we may assume that the proper
exchange system contains no moebius bands. For if so, then we may just as
well consider the sum 2nF 2F + 2F2 which can be arranged to have no
one-sided intersection curves (see Example 4.4). This is a local construction
in a solid torus regular neighborhood of each component of F q F2. Since
2F is the boundary of a regular neighborhood of Fi, showing that 2F is
.incompressible and 0-compressible implies that Fi is also. We may also
assume that the sum F + F2 is in reduced form. By this we mean that
F + F2 cannot be written as a sum F + F where F[ is a normal surface
isotopic to F/ in M (i 1,2) and F q F has fewer components than
F OF2.

The first step is to prove that each patch is incompressible and 0-com-
pressible.

LEMMA 6.6. Let M be an irreducible, O-irreducible 3-manifold. Suppose F is
a least weight, incompressible, O-incompressible, two-sided normal surface prop-
erly embedded in M and F is not a disk. If nF F + F2 is in reducedform and
each intersection curve in F t’) F2 is two-sided then each patch of F + F2 is
incompressible, O-incompressible and there are no disk patches.

Proof Suppose the sum nF FI + F2 is in reduced form and let p:
nF --, Fa U F2 be the usual identification map. Once we prove there do not
exist any disk patches, it easily follows (see Lemma 1.1 of [JO]) that each path
is incompressible and 0-incompressible. The presence of patches which are
disks meeting OM in more than one component does not contradict the
conclusion of this lemma since they are not disk patches.
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We suppose there exists a disk patch and choose a least weight disk patch
D1. Let notation be chosen such that p(D1) c F and fr(D1) a. Let
A1 p-l(p(a)) be an exchange surface in the proper exchange system for
the sum F + F2. The corresponding trace curve a’ fr(A1) -a is the
frontier of a unique second disk D’I nF. It is not hard to check that the
disks D1, D’ must be adjacent along A. For suppose D1, D’I are not
adjacent along A1. If D10 D ) then we can construct a new 2-sphere or
compression disk D U A U D’ which would form the frontier of a 3-cell
into which a component of nF could be isotoped. This is impossible. If
D’ O then the surface (F- D) (D W A) obtained by replacing the
disk D’ by the disk A u D is isotopic to F but has less weight, again an
impossibility.

If Dq is also a disk patch then p(D) and p(D’a) are parallel disks which
are switched when a regular exchange is made along a. This contradicts the
assumption that F + F2 is in reduced form. If D is not a disk patch, we
observe that Lemma 5.3 can be applied to construct a sequence of least
weight disk patches leading to a pair of adjacent disk patches and the same
contradiction. To see that this lemma applies, we first consider a least weight
disk patch D with OD a and let D denote the disk in nF with frontier

a’. As above, these two disks must be adjacent. If wt(Di) < wt(D) then a
normal surface isotopic to F and of smaller weight could be constructed by
replacing D with a copy of Di. Therefore wt(Di) wt(D) and thus Lemma
5.3 applies. It follows that no patch can be a disk patch. []

Proof of Theorem 6.5. Suppose we have nF F + F2 in reduced form.
As we have already observed, we may assume that all intersection curves in
Fa c F2 are two-sided. To show that F and F2 are incompressible one can
use Lemma 6.6 and follow the proof of Theorem 2.1 in [JO]. Thus, we will
assume the incompressibility of F and F2 and show 0-incompressibility.
Suppose there exists an essential 0-compression disk for F1. Among all

such essential 0-compression disks we choose D to be transverse to F2 and
such that F2 f3 D has a minimal number of components. Let 0D =/z ,,
where/z denotes the arc D F and , D 0M. We must have F2

) for otherwise we would be able to find a disk patch of F + F2. Observe
that F2 c D has no simple closed curve components since F2 is incompress-
ible and such components could be removed by an isotopy of D. In a similar
fashion, observe that no component of F2 D can have both endpoints in, c 0M since such an arc innermost on D would be the frontier of a
0-compression disk for F and removable by an isotopy of D. Thus each
component of F2 c D is a spanning arc of D with at most one end point
in ,.
We refer to the closure of a component of D (D F2) as a region in D.

Let a be a component of D F2 and let x0 denote an end point of
Then x0 lies on a regular intersection curve in F F2. There are two
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FIG. 6.1 Corner labels

regions in D abutting a with only one meeting adjacent patches along the
intersection curve containing x0. Following [JO], we assign the label b to the
corner at x0 of the region meeting adjacent patches and the label g to
the corner at x0 of the neighboring region meeting nonadjacent patches (see
Figure 6.1). Observe that if A is a region with only g labels at corners then A
yields a compression or a -compression disk for nF.

CLAIM. There exists a region A in D such that either A contains no b comers
or A contains only one b comer and A (3 M .

First suppose that for some component a with both endpoints in tx there
is a g label at one of the corners abutting both a and the arc z in Ix which
has endpoints a q Ix. The disk D’ in D bounded by a tj - contains a region
with at most one b corner. To see this, let n be the number of spanning arcs
of F2 n D’ in D’. Observe that these arcs cut D’ into n + 1 regions with a
total of either 2n or 2n + 1 corners of type b. Thus at least one region in D’
must have less than two b corners.
Now suppose that every component a of D n F2 with both endpoints in

Ix has only b labels at the corners adjacent to both o and the arc in Ix
having endpoints o O Ix. Let D’ denote the closure of the component of
D tJ a containing v. Let n denote the number of components of D F2
with one end point in tx and ofie in v. The spanning arcs of this type cut the
disk D’ into n + 1 regions with exactly n corners labeled b. Any component
a with both endpoints in IX contributes only g corners to regions contained
in D’. Clearly there is a region with only g corners and this establishes the
claim.

Consider a region with no b corners. A corresponds to a compression or a
0-compression disk for nF, which we also denote by A. It follows that there
exists a disk A’ c nF such that fr(A’) A q nF and A tJ A’ is the frontier of
a 3-cell. The trace curves intersect A’ in spanning arcs that split A’ into
regions. Let E denote an outermost one of these regions such that the
frontier of E in A’ consists of a single trace curve /3. Let a E A, a
component of D fq F2. We have three possibilities to consider.
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(i) If p(E) c F2 and 0/3 c A nF then Oa 0/3. Let disks D’, D" denote
the two disks into which a splits D, where D’ OM D q OM. Since F is
already known to be incompressible, it follows that D" E is an inessential
compression disk for F and D D’ U E is an essential 0-compression disk
for F1.

(ii) If p(E) c F2 and 0/3 A nF, let D’, D" denote the two disks into
which D is split by a. Then either E t D’ or E t3 D" is an essential
compression disk D for F which can be isotoped so as to intersect F2 in
fewer components than in F2 D.

(iii) If p(E) F then Oa 0,8 c OD and a can simply be pushed across
E past /3 to obtain an isotopy of D reducing the number of components in
F2 D. In all three cases we have a contradiction to our choice of D, which
was chosen to meet F2 in as few components as possible.

If there does not exist a region with only g corners then there exists a
region A with exactly one b corner and which is disjoint from u D OM.
The argument in [JO] shows that there exists an exchange annulus or disk A
corresponding to the intersection curve through the b corner such that
A F bounds a parallel annulus or disk A’ c F, respectively. An isotopic
surface of strictly smaller weight can be constructed from F by taking
(F A’) t2 A. This contradicts the hypothesis that F is a least weight normal
surface and completes the proof of the theorem.

COROLLARY 6.7. Let M F I where F is a closed surface that is not a
2-sphere or projective plane. Then there exists an essential two-sided annulus A
which is a vertex surface and OA meets both F {0} and F {1}.

Proof Among all two-sided essential annuli having a boundary compo-
nent in both F {0} and F {1}, let A be one with the least weight. If A is
not already a vertex then we can write

nA +

where each V/ is a two-sided vertex surface. By Theorem 6.5, each V/ is
incompressible and 0-incompressible. If some V/ is a moebius band then
consider the lift V/* of V/ to the orientable double-cover of F I. By [W3],
the annulus V* must be 0-parallel and it follows that V/ is 0-parallel. This is
impossible since V is 0-incompressible and hence none of the V can be
moebius bands.
We show that among the V there is a two-sided essential annulus spanning

the two boundary components of M. By computing the Euler characteristics
of nA and V --ooo--Vk we obtain

k k_. b 2k ., xi,
i=1 i=1
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where b is the number of boundary components of V and x is the twice the
genus of V/ if V/ is orientable and x is the number of crosscaps in V/ if V/ is
non-orientable. Since none of the V can be spheres, disks, projective planes,
or moebius bands, either x > 2 or x 0 and b > 2.

Since Eilbi > 0, we cannot have all the x > 2. Suppose that we have
chosen notation such that x > 2 for < j and x 0 for > j. Then we have

k k

7 bi < 2k

_
x <__ 2(k -j).

i=j+ i=1

If some bi > 2 for j < < k, then there must be some V with b < 2 for
j < t < k, which cannot occur. Thus b 2 and x ---0 for =j + 1,..., k
and hence each corresponding V is a two-sided incompressible, 0-com-
pressible annulus. Such an annulus in F I cannot have both boundary
components in the same boundary component of F x I without being
boundary parallel. D

If we assume that M is orientable then we can prove a stronger result.

COROLLARY 6.8. LetA be a normal, two-sided, essential annulus or toms in
the orientable, compact, irreducible, O-irreducible 3-manifold M. If A is least
weight in its isotopy class then each vertex surface in the face (A) is either an
essential annulus or an essential toms.

Proof Assume that A is an essential annulus or torus which is least
weight relative to its isotopy class. If A is not already a vertex surface, let V
be a two-sided vertex surface in the face (A) and write nA V1 +
V2 + + Vk, where the V/ are all two-sided vertex surfaces in (A). By
Theorem 6.5, each V is incompressible and 0-incompressible. As in the
previous lemma, by computing the Euler characteristics of nA and
V -Jr-... --I-Vk, we obtain Eki=lbi 2k- 2E/k=lgi, where b is the number of
boundary components of V/and gi is the genus of V/(V/ is now orientable).
One can use an induction argument to prove the following claim: Assume

gi, bi are n pairs of nonnegative integers such that (a) b > 2 whenever gi 0
and (b) Ei"=lbi < 2n 2E’= lgi. Then for each 1,..., n, either b O,
gi 1 or b 2, gi 0. For the inductive step, observe that if

n+l n+l

Ebi <2(n+ 1) -2 Egi
i=1 i=1

then either some & 0 or for all j we have gy 1 and by O. If gy 0 for
some j then bj > 2 and we can omit the j-th and apply the induction
hypothesis.
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It follows that the chosen vertex surface V is either an essential annulus or
an essential torus.

7. Splitting a 3-manifold into irreducible submanifolds

Let M be a closed irreducible 3-manifold with a fixed triangulation .. We
describe an algorithm to decompose M into irreducible 3-manifolds. Since
this is achieved without a solution to the 3-sphere recognition problem, many
of the irreducible 3-manifolds obtained will be 3-spheres.

ALGORITHM 7.1. For the decomposition ofM into irreducible 3-manifolds.

Procedure. Let E {S1,...,Sn} denote the set of all normal vertex
surfaces that are 2-spheres. Set F1,1 $1. Construct from {F1,1, $2} a finite
collection of pairwise disjoint 2-spheres {F2,1,..., F2, k(2)} by cutting S2 along
the boundaries of innermost disks in Fa, and capping the resulting disk
pieces with copies of the innermost disks. This process is continued until we
have the desired disjoint collection {F2,1,..., F2, k(2)}. We let

Suppose we have constructed the collection

i--" {Fi,1,...,Fi, k(i)} i,.j {Si+l,...,Sn

where {Fi, l,... Fi, k(i) is a pairwise disjoint collection of 2-spheres con-
structed by this inductive procedure from {$1,..., Si}. We proceed to modify
the next vertex 2-sphere Si+l by cutting and pasting along disks in
{Fi,1,..., Fi, ki)} spanning Si/ 1. The cutting and pasting is always done along
a spanning disk that is innermost among those along which the operation has
yet to be.performed. We let {f/+l, 1,’’’, f/+l, k(i+l)} denote the collection of
pairwise disjoint 2-spheres obtained by taking the union of {F/,1,..., F/,(i)}
together with the 2-spheres obtained by our cut and paste modifications to

Si+l. We let

i+1 --{Fi+l,1,...,Fi+l,k(i+l)} i,.){Si+2,...,Sn}.

This process eventually leads us to a pairwise disjoint collection En of
2-spheres constructed from {S,..., Sn}. r

THEOREM 7.2. En decomposes M into irreducible 3-manifolds.
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Proof It follows from Theorem 5.2 that there exists a minimal complete
system {X1,..., Xr} of 2-spheres for M in the collection Z1. We separate the
collection of modified 2-spheres {Fi, a,..., Fi,i)} into two sets: let /denote
those arising from cutting and pasting on members of {X1,..., Xr} and let ’i
denote the others. Thus we have Ei = u/u {Si/l,..., Sn}, where we
assume we have chosen notation so that / contains the 2-spheres resulting
from modifications made to the set {X1,..., Sj(i) and {X.i)+I,..., Xn} c
{Si+ an}.

Define A(i) to be the set of pairwise disjoint 2-spheres we get by taking the
union of / together with the 2-spheres obtained from {Xy<i)/a,..., Xn} by
the process of cutting and capping with innermost disks from /. Thus
A(1) {X1,..., Xn}. We claim that for each i, 1 < < n, the system of
2-spheres A splits M into punctured irreducible 3-manifolds. We assume
that this is the case for m and show that the collection A(m + 1) also has
this property.
There is nothing to show if A(m) A(m + 1) and this is the case unless

Sin+ --Sj(m+l). Thus, let us assume Sm+ --Sj(m+l). The system A(m + 1)
consists of the 2-spheres in ’m, the set m+1 resulting from the cutting and
capping of Xj<m+I) along m U ’m, and finally those 2-spheres resulting
from the cutting and capping of {Xy<m+)+,...,X.} along m t m" It
follows that A(m) can be transformed into A(m + 1) by a sequence of
elementary cut-and-paste steps, each preserving the desired decomposing
properties. Each step in the sequence is one of cutting a 2-sphere S along the
boundary of a spanning disk D and capping the resulting disk components of
the split S with disjoint copies of D so as to produce a pair {S’, S"} of disjoint
2-spheres from S. It is clear that if S is a member of a collection of pairwise
disjoint 2-spheres A that decomposes M into punctured irreducible 3-mani-
folds then the collection (A- {S})t {S’,S"} (assuming it is a pairwise
disjoint collection) also splits M into punctured irreducible 3-manifolds. This
completes the proof that n decomposes M into punctured irreducible
3-manifolds. rq

8. Splitting an irreducible 3-manifold into simple
and characteristic submanifolds

Let M be an orientable, compact, irreducible, 0-irreducible, sufficiently
large 3-manifold with a triangulation .. It is shown in [JS, Jo] that there
exists a canonical system of pairwise disjoint, properly embedded, essential
annuli and tori in M which split M into a simple 3-manifold and a
characteristic submanifold V(M). The characteristic submanifold is a Seifert
fibered space and is unique up to isotopy. In this section we give an algorithm
that uses vertex surfaces which are essential annuli and tori to produce this
splitting. It is first necessary that we be able to recognize a Seifert fibered
space.
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ALGORITHM 8.1. For determining ifM is a Seifert fibered space.

Procedure. If M is a closed Seifert fiber space, it follows from Corollary
6.8 that there exists an essential torus among the vertex surfaces. We can use
Algorithm 9.6 to test each vertex torus to determine if any are essential. If an
essential torus T is found then split M along T to obtain M and proceed to
triangulate M1. In the case M already has boundary, we may assume that
each boundary component is a torus and let Ma M.
Using Algorithms 9.6 and 9.7, we look for an essential annulus among the

vertex surfaces of M1. We know from Corollary 6.8 that if one exists then one
can be found among the vertex surfaces. Assume a vertex surface A that is
an essential annulus has been found. Let M2 be obtained from M by
splitting along A1. Let O-A and O+A1 denote the traces of OA in M2. Test
each component of M2 to see if it is (i) a solid torus, (ii) S S I, or
(iii) M(K), a twisted /-bundle over the Klein bottle. We fiber each solid
torus component V1 so that each component of

is a fiber. If a component V1 is either S X S X I or M(K) then there exist
two possible Seifert fiberings of M(K) and an infinite number of Seifert
fiberings for S S I, up to isotopy. We attempt to fiber V1 such that
each component of V10 (0-A1 tA O+A1) is a fiber. If it is not possible to
fiber all such special components of M2 in this way then we are done and M
is not a Seifert fiber space.
As long as it is possible, we continue a refinement of the above process in

which we find at each step an essential annulus A among the vertex surfaces
of Mi. We only look for essential annuli in components of M that we have
not previously endowed with a fibering. If an essential annulus A is found
then we isotope the boundary of A, if possible, so it is disjoint from the
traces O-Aj U O+Aj} of the boundaries of the previous annuli. If this cannot
be done then M is not a Seifert fiber space (the component V of M
containing Z is neither S S I nor M(K)). Thus, we, may assume that
OA is disjoint from {O-A. O+A} and split M along A to obtain Mi/l.
Eventually, this process can no longer be carried out. In particular, if M has
t tetrahedra in its triangulation then its closed Haken number h(M) is less
than or equal to 61t [H4]. According to Theorem IV.7 of [Ja], no partial
hierarchy such as we are constructing here can have length greater than
h(M).
The 3-manifold M is fibered if and only if we end up with a disjoint union

of Seifert fibered solid tori, S S I’s, and M(K)’s. If M is fibered and
M is closed then it only remains to decide whether or not the fibering we are
working with, or possibly another fibering of M1, can be matched up when
forming M. Thus assume M is closed. If no component of M is a product or
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a twisted /-bundle over the Klein bottle then M has a unique Seifert
fibering and M is a Seifert fiber space if and only if the fibers in M at hand
match up along T. If M is a product S S I and no fibering in M can
be matched up in M along T, then M is a Seifert fiber space if and only if
the gluing homeomorphism is homotopic to one of the seven periodic ones in
the list on page 122 of [He]. If a component of M1 is a twisted/-bundles over
a Klein bottle, then there is a second fibering on this component that we can
employ to try for a match along T. If this fails then M is not a Seifert fiber
space. D

We now describe a procedure to produce the characteristic Seifert fiber
space of M. Let

,.-= {FI,..., Fro}

be a canonical system of essential annuli and tori in M that splits M into a
characteristic Seifert fiber space V(M) and a simple 3-manifold. We may
assume that -is a normal surface and that wt(r) is minimal relative to the
isotopy class of . It is a consequence of Corollary 6.8 that all vertex surfaces
carried by the face ’(-) are essential annuli and tori. Thus, if
{T1,..., Tn} denotes the collection of all essential annuli and tori vertex
surfaces, we clearly have -contained in a regular neighborhood N(7/’)
of WT.
While the details of the construction of V(M) from are somewhat

detailed, the idea is rather simple. One takes up one of the essential annuli
or tori T, after having already used T1,..., T_ to construct a Seifert fibered
submanifold X_I in M. We isotope N(T)so that there are no regions of
parallelity between fr(N(T)) and fr(X_l). However, in this process we only
pull them apart along disks and leave them to intersect along essential annuli
in the intersection of their frontiers. Then we look at all the pieces consisting
of N(T), the components of X_ 1, and the Seifert fiber space components of
Cl(M-(N(T) t2 X-I)). We unite those with compatible Seifert fiberings
and pull the annuli or tori frontiers apart where the fiberings are not
compatible. This pulling apart leaves products which will eventually be
simple product components in the complement of the final M. The process is
continued until we have used all the surfaces in .
ALGORITHM 8.2. The decomposition ofM into its characteristic submanifold

V(M) and simple 3-manifolds.

Procedure. If M is a Seifert fiber space we set Xl M and are finished.
Thus we may assume that M is not a Seifert fiber space and form the list
{T1,..., T,} of all essential normal tori and annuli in M that are vertex
surfaces. We may assume the T intersect pairwise in a transverse fashion.
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We construct a sequence El,... En of Seifert fiber spaces such that J(i) is
incompressible and 0-incompressible in M and -is contained, up to isotopy,
in Ei u N(T/+ U U Tn). The sequence terminates with the desired char-
acteristic Seifert fiber space V(M) En.
We begin by setting E0 ). Assume that the following construction has

been carried out using the vertex surfaces T1,..., T/_ and we have obtained
the Seifert fiber space Ei_ such that W/_ fr(Ei_l) is incompressible and
0-incompressible in M and that -is contained, up to isotopy, in Ei-1 N(T/
u u n).

Step 1. We consider the next vertex annulus or torus T from our list and
perform the following simplification. Suppose T #(i_1 ) contains an
inessential component, either an arc or simple closed curve. These are
eliminated by the following construction. We can choose an innermost disk
component D of W/_ (T/fq W/_ ) such that fr(D) (T/ W/_ ) and
fr(D) contains an inessential component of T/ fr(Ei_). Let D’ denote the
disk in T/ with frontier D T/. Form T’ (T D’) D and isotope it off
W/_ slightly along D. T/’ is isotopic to T/ and we can continue this process
until we obtain a new annulus or torus, which we again denote by T/, such
that T/ W/_ contains no inessential intersection arcs or simple closed
curves.

Step 2. We next eliminate regions of parallelity between annuli or tori in
fr(Ei_l) and corresponding surfaces in fr(N(T/)). We say that a product
F [-1, 1] c M is a region of parallelity between surfaces G- and G/ in
the following circumstance. Let 3/be a union of components of OF, possibly
empty, and assume that 3’ x [-1, 1] c OM. Let

G-= F X {-1} U (OF- ,) X [-1,0])

and

G+=FX {1} U (8F- 7) X [0,1]).

Set G(0)= N(T/), i_1(0)--i-1 and suppose we have already con-
structed the 3-manifolds G(j- 1),i_(j- 1) in M. Suppose Vj is an
innermost region of parallelity between an annulus or toms in fr(Ei_l(j 1))
and one in fr(G(j- 1)). We remove as follows, depending on how it is
situated.

(i) If G(j) c fr() then let

G(j) G(j- 1) U and Xi_I(j) ’i-l(J- 1).
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(ii) If V c G(j 1) and V c Xi_l(j 1) fr() then let

G(j) G(j 1) and i-l(J) ’i-l(J 1) tO V.
(iii) If c G(j 1) ( j-1 then let

G(j) Cl(G(j 1) Vj) and ,-l(J) ,-l(J 1).

Eventually we obtain X0 G(r), which is isotopic to N(T/), and Xti_l
i_1(r), which is isotopic to -1, and there do not exist any regions of
parallelity between annuli or tori in their frontiers.

Step 3. If no component in ti-1 intersects X0, let ’ X0 U }-1 and
proceed to Step 4. Otherwise, form a list {Y1,... ,oYq} consisting of the
components of ’i-1 which meet X0. Suppoose that X0 tq Y = }. Let K be
the closure of a component of fr(X0) Y. Since fr(X0) fr() contains
only essential curves, it follows that K must be an injective annulus. Because
of our construction, K cannot be a toms. If the fibering of cannot be
deformed so K is a union of fibers then Y is K S and a new fibering can
be chosen for so that K is fibered. This fibering of K can be extended to a
Seifert fibering of X0. Since any other such component of fr(X0) B would
be disjoint from K, it would give rise to compatible fiberings of X0 and of

Thous, we may assume that the Seifert fiberings of X0 and Y. agree on

Let X denote the union of X0 together with all components of ’-1
which are disjoint from X0. We take up the remaining components Y of
ti-1 one at a time, see how they fit together with the Seifert fiber space X1,

and either pull them apart or combine them into a fibered Seifert fiber space.
Suppose we have already considered {Y1,...,Yk-1} and constructed the

pairwise disjoint Seifert fiber spaces Xk, YI’,..., Y-1 (some of which may be
empty sets) such that {YI’,...,Y-I,Yk,...,Yq} is also a pairwise disjoint
collection. Consider the next Seifert fiber space Yk. We will construct the
Seifert fiber spaces Q, P, R and S which will be used to form X’+I and Y.
We let {b1,... bp} denote the subcollection of 2-dimensional components of
fr(Xk) c fr(Y) for which Xk and Yk lie on opposite sides. Each b is
contained in a component B. of fr(Yk) and in a component C of fr(X).
Consider collar neighborhoods g [0, 1] of B =B {0} in Yk and C
[0, 1] of C =C {0} in Xk.
We first consider the case when both Xk and Yk have unique Seifert fiber

structures. We list the possible ways in which these two fiber structures can
come together along the annuli and tori b.

(i) b is a union of fibers in both fiber structures and fibers from each are
isotopic in b. In this case b may be either an annulus or a toms.
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(ii) b is a union of fibers in both fiber structures but the two fiberings of b
are not isotopic. Here bg is a torus.

(iii) The annulus b is a union of fibers from Xk but not from Y.
(iv) The annulus by is a union of fibers from Yk but not from X.
(v) The annulus by is not a union of fibers from either Yk or Xg.
For A i,..., v, let F(A) denote the set of indices {jlby is of type (A)}.

Then let

jr’(ii) jF(iii)

jF(iv) jF(v)

jF(v)

jeF(iii) jet(v)

jer(iv)

(By X [0, 1/21 U Cy X [0, 1/21)

Now suppose one or both Xk and Yk have more than one Seifert fiber
structure. Any such Seifert fiber space must be a twisted /-bundle over the
Klein bottle or S $1 I (we cannot have a solid torus because of our
construction). We proceed as in the case when the fiberings are both unique
but now we remain flexible as long as possible as to which fibering we use
when forming the groupings F(A).
Whether we have unique Seifert fiber structures or not, we use the same

notation for the following Seifert fiber spaces. If r(i), O or 20 0 Ik : D
then we set

Xt+I=CI(XkUYk-(PUQ))URUS and Y=h.
Otherwise we let

XZ+ Cl(Xk Q) u R and Y CI(Yk P) u S.

If some essential annulus or torus F from - happens to intersect a
component by of fr(X) c fr(Y) then either F can be isotoped off by or else
j F(i). In either case, the property of keeping r inside

i-I U Xk*+l U Y; U U Y; U Yk+l U U Yq U N(T/+, U U Tn),

up to isotopy, is maintained.
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FIG. 8.1 Construction of V(M)
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After considering each Seifert fiber space Yy, j 1,..., q, we finally
construct the Seifert fiber space ’ Xq*+ Y Yq’.

Step 4. Suppose Z is a solid torus component of Cl(M Y,). Since M is
irreducible, no fiber in ’ can bound a meridian disk of the solid torus. Thus
the fibering on fr(Z) induced by that of E’ can be extended to Z. Let E’*
denote the Seifert fibered space obtained by taking the union of E’ with all
the solid torus components Z of Cl(M- ,). Observe that fr(’*) now
consists of only essential annuli and tori.

Let {Z1,..., Zr} denote the components of Cl(M ’*)which are Seifert
fiber spaces. Repeat Step 3 using the Seifert fibered spaces {Z1,..., Zr} now
in place of the {Y,..., Yq} and letting X0 ’*. We obtain the Seifert
fibered spaces Xr+l, Z,..., Z’ and let i "-Sr+l [,j Z [,J I,.) Ztr

Step 5. We do this for each verte surface T,..., Tn in the list and obtain
the desired characteristic Seifert fiber space V(M) ’n" ra

This procedure clearly gives us a Seifert fibered submanifold n in M such
that no component of Cl(M- i,n) is a Seifert fiber space other than
S S I. The only question that remains is whether or not there exist
essential tori or annuli in a component of Cl(M V(M)). However, we were
careful to ensure the existence of a canonical system of annuli and tori
.9"= {F,..., F} for M which is contained in 2n" Since splitting M along 9"
produces only Seifert fibers spaces and simple 3-manifolds, it follows that
each component of Cl(M- V(M)) is simple.
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9. Appendix: Miscellaneous algorithms

We collect together a number of useful algorithms, some of which are
needed in 7 and 8. We assume that M is a compact 3-manifold with a
given triangulation ..
ALGORITHM 9.1.

FinM.
For computing the Euler characteristic of a normal surface

Procedure. For each edge e in o-let denote the number of tetrahedron
in ,-containing ei. Set ’ij 1 if the edge e meets a disk of type and
otherwise set ei 0. Suppose that F has normal coordinates
(Xl,... X7t). Let f3 denote the total number of 3-sided elementary disks in
F. Then x(F) (1/2)f3 tr(F) + wt(F) where tr(F) Z,x and wt(F)
-i,jijxj/ti.

ALGORITHM 9.2. For deciding if a knot K in S is unknotted.

Procedure. Assume the knot K in M S3 is given so as to be contained
in the 1-skeleton of the triangulation -of S3. Let N(K) be a regular
neighborhood of K and construct a triangulation .’ of S3 -/(K). Find the
vertex surfaces of ,r which are disks. For each disk vertex surface D,
determine if 0D bounds a disk in 0M by calculating Euler characteristics.
The knot K is nontrivial if and only if all the disks D tested are inessential.

ALGORITHM 9.3.
handlebody.

For deciding if a compact, irreducible 3-manifold M is a

Procedure. Form a list of the compression disks among the vertex surfaces
and discard those whose boundary curve bounds a disk in 0M. Assume we
have constructed, from this list, a system _. {D1,..., D.} of pairwise
disjoint, independent, essential compression disks. Choose the next unused
disk D from the list. We can use cut and paste techniques to find a new disk
D’ isotopic to D and disjoint from .q.. By considering the boundary curves in
3M, we can determine whether or not D’ is independent of .q. If it is
independent then let D./I D’ and if not, we discard D’. After we have
exhausted the list of compression disk vertex surfaces and constructed the
pairwise disjoint system of compression disks "n, we check to see if the
boundary curves in -n split 3M into disks and annuli. If they do then M is a
handlebody and otherwise it is not. t
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ALGORITHM 9.4. For deciding if a normal surface F is connected.

Procedure. Consider the equivalence relation between elementary disks in
F generated by the relation obtained by saying that two elementary disks of
F meeting the same 2-simplex tr of are equivalent if their edges in tr are
identified. (Whether or not they are identified is well-determined by ordering
the sets of elementary disks in each tetrahedron that have an edge of the
given arc type.) Divide the elementary disks of F into equivalence classes.
The components of F correspond to the equivalence classes, rq

ALGORITHM 9.5. For deciding if a two normal surfaces F and G intersect.

Procedure. If F and G are not summable then they must intersect. If they
are summable, form the sum F + G. Use Algorithm 9.4 to find the compo-
nents of F + G. If the components are normal isotopic to F and G then F
and G are disjoint (up to normal isotopy). If the components are anything
else, then F and G do intersect and cannot be separated by a normal isotopy.

ALGORITHM 9.6. For determining if a surface F in a compact, irreducible
3-manifold M is injective.

Procedure. Split M along F to obtain the 3-manifold M’ and construct a
triangulation o’ of M’ by subdividing the cell decomposition induced by .
Form the system of normal equations for ’. List the finite set of normal
compression disk vertex surfaces. Test each of these compression disks D to
see if they are essential by calculating the Euler characteristics of the
components of 0M’-0D. If none of the compression disks tested are
essential then F is an injective surface, rq

ALGORITHM 9.7. To test a compact irreducible, p2-irreducible 3-manifold M
for a product structure F [- 1, 1].

Procedure. We may as well assume that OM is either connected or has
two components. We consider first the case where M has a connected
boundary that is divided into two homeomorphic pieces O-M and O/M
intersecting in their common boundary. We follow the steps of Algorithm 9.3
with the additional stipulation that we only consider disk vertex surfaces that
are essential compression disks in the context of a product F [- 1, 1]. If we
find enough essential compression disks to split M into 3-cells then we had
the desired product in the beginning. Otherwise, M was not the product
expected.
Now assume that M has two components. We look for an essential

annulus A among the vertex surfaces meeting both boundary components.
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This will require Algorithm 9.6 to decide if A is injective and the previous
case to decide if A is boundary parallel. If we find such an A then we
proceed to split M and.continue with the test as in the case where 0M is
connected and the two boundary pieces meet along the center curves of the
two copies of A. D

ALGORITHM 9.8.
sufficientlylarge.

For determining if a closed, irreducible 3-manifold M is

Procedure. Form the system of normal equations for the triangulation -of M. List the finite constructable set of normal vertex solutions, discarding
2-spheres. Test each of these surfaces for injectivity using Algorithm 9.6. If
none of the vertex surfaces are injective then M is not sufficientlylarge, t3
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