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DE BRANGES SPACES CONTAINED IN SOME BANACH
SPACES OF ANALYTIC FUNCTIONS

DINESH SINGH AND SANJEEV AGRAWAL

1. Introduction

L. de Branges has proved in Theorem 15 of [2] an invariant subspace
theorem which generalizes not only Beurling’s famous theorem [1] but also its
generalizations due to Lax [7] and Halmos [4]. The scalar version of the
theorem says:

THEOREM A. Let M be a Hilbert space contractively contained in the Hardy
space H2 of the unit D such that S(M) c M (where S is the operator of
multiplication by the coordinate function z) and S acts as an isometry on M.
Then there exists a unique b in the unit ball of H such that

M=b(z)H2.
Further,

IlbfllM- Ilflln.
In this note we characterize those Hilbert spaces M which are alge-

braically contained in various Banach spaces of analytic functions on the unit
disc D. We drop the contractivity requirement on M (no continuity assump-
tions are made on the inclusion relation). Thus even in the particular case of
M c H2, we obtain an extension of de Branges Theorem by having character-
ized the class of all Hilbert spaces which are vector subspaces of H2 and on
which S acts as an isometry. See Corollaries 5.1 and 4.1.

2. Preliminary notations, definitions and results

Let D be the unit disc in the complex plane and Hp (0 < p < oo) the well
known Hardy spaces on D. Let Lp (0 < p < oo) be the familiar Lebesgue
spaces on the unit circle T. It is well known that H" can be viewed as a space
of functions on T for each p. The Dirichlet space A2 consists of all analytic
functions f(z) such that

(If’(z)l2
dxdy < oo.
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The Bergman space B2 consists of all analytic functions f(z) on D such

that

fzlf(z)l2 dxdy < .
Let BMO be the class of all L functions f such that

]lfl], --Sup- f- -where the supremum is taken over all subarcs I of T and 1I[ denotes the
normalized Lebesgue measure of I.
BMO is a Banach space under the norm

Ilfll Ilfll, +[f(0) l.
VMO is the closure of the continuous functions in BMO.
BMOA BMO r3 H and VMOA VMO r3 H1.
It is well known that BMOA c He (p < ).
A positive Borel measure/x on D is said to be a Carleson measure if

Ix(S(I)) o(1II)

for every subarc I of T where

/ z )S(I) z" ]-- I, 1- III Izl 1

Excellent references for all that has been said above are [3], [5] and [11].
We shall also use the following result:

LEMMA 2.1. Let H be a Hilbert space and let A be an isometry on H such
that f)=0An(H)= {0}. Then

H=NgA(N) AZ(N)

where N H A(H).

Proof See page 2, Section 1.3 of [8].

3. The main result

PROPOSX:Or. Let M be a Hilbert space such that M is a vector subspace of
the vector space of all analytic functions on D. Further, suppose S(M) c M
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and S acts as an isometry (S denotes multiplication by the coordinate function
z). Then

M=NS(N) S2(N)
where N M (3 S(M).

Proof In view of Lemma 2.1, all that is required is to show that
f’) :=0Sn(M) {0}. But this is a simple consequence of the fact that any f(z)
in M has a power series expansion

f( Z ) Og0 -’k" Og Z "Jr- a2 Z2 -I-

because it is analytic in D.
On the other hand, if f is in =oSn(M) then f(z)= Zngn(Z) for each

positive n. Hence a 0 for each n and thus f 0.

4. Consequences of the proposition: the case when M is contained in B2

Note. Throughout, M is assumed to satisfy the hypothesis of the proposi-
tion in Section 3.

COROLLARY 4.1. Let M be contained in the Bergman space B 2. Then there
is a collection of unit vectors {bi} ill M such that:

(i) M Y’.ibiH2;
(ii) Ibi(z)l 2 dxdy is a Carleson measure for each i;
(iii) IIbflIM Ilfll2 for each and for each f in H2.

Proof From the proposition we conclude that

M N S(N) S2(N)
where N M e S(M).

Let b be any element of unit norm in N and let f(z)=
element of H2. Let fn(Z)= Ef=oakZ k SO that fn --* f in H 2.
Now by the above decomposition, bfn is in M for each n and

Ilbfnll2u bak zg
k=0 M
n n

k=O k=O

n

11211Sbll 2
M

k=0

n

(as S is an isometry and IlbllM 1)

be any



354 DINESH SINGH AND SANJEEV AGRAWAL

This means that bfn is a Cauchy sequence in M and so there is a g in M
such that bfn --* g. Now for any positive integer k, it is easy to see that

bfn ao + alZb + +akzkb + zk+lbhn
where h Ok+ / Olk+2Z / /Oln Zn-k-1. So bh is a Cauchy sequence
in M by the same argument and hence bh converges to some h in M. Thus

cro + alZb + +akZkb + z+lh g.

Hence, using the fact that every element above is in B2 and so has a
Taylor series expansion, we conclude that the kth Taylor coefficient of g is
the kth Taylor coefficient of ao + OlZb / /Okzkb which is the same as
the k th Taylor coefficient of the formal product of the Taylor series of b and
f. Thus we see that g bf and since f is an arbitrary element of H2, we
conclude that bH 2 c B2. In other words, b multiplies H2 into B2. It now
follows by Theorems 1.1 and 1.2 of [9] that

[b( z)12 dxdy
is a Carleson measure. Further, since IlbfnllM Ilfnlln=, it follows that
IlbfllM Ilfll2 (Since bfn bf in M).
The rest of the corollary now follows by fixing an orthonormal basis {bi}

in N.

Remark 4.2. We observe that the index set for {i} may contain more than
one element, for one can construct a space M bH2 gH2 contained in B2

where b, g satisfy the Carleson measure condition and

Ilbf + gh IIt Ilfll/z + IIh I1=.
All that is required is to choose b, g in such a way that bH2 (q gH2 {0}.
One way of doing this is as follows:
By the remarks following Theorem 1.7 in [9], each element of the Bergman

space B4 satisfies the Carleson measure condition since it is trivially (by
virtue of Schwarz’s Inequality) a multiplier of H2 into B2. From the same
remarks, H2 c B4. Hence H2 functions also satisfy the Carleson measure
condition. Now choose a B4 function b whose zeros {zn} do not satisfy the
Blaschke condition (see [6, Theorem 4.6]) En(1 IZnl) < . Hence

bH20 H2 {0}

because the zeros of any H2 function satisfy the Blaschke condition. Let g
be any H function so that gH2 is contained in H2 and hence in B2. Clearly

bH2 N gH2 {0}.
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5. The case when M is contained in Hp

COROLLARY 5.1. Let M Hp (1 <_ p <_ oo). Then

M= bH2

for a unique b"
(i) If 1 < p < 2, b H2p/2-p.
(ii) Ifp<2, b O.

Further, IlbfllM Ilflln= for all f in n2 (1 < p < 2).

Proof Case 1. 1 < p < 2. By the proposition,

M=NS(N) S2(N)

where N M e S(M). Further, by arguments identical to the proof of
Corollary 4.1, we conclude that each b in N multiplies H2 into H. Thus
using the fact that on the circle L2= H2 zH2, we conclude that b
multiplies L2 into L.

Let g Lq, for some q, be such that g multiplies L2 into L. Then,

That is,

flfgl" < o for all f L2.

flfl, lgl < oo for all Ifl L2/p.

Hence,

Ph < for all h L2/p and h >_ O.

As every h L2/p (h
we have

h 2) + i(h 3 h4) where h L2/p and h >_ 0,

IglPh L for all h L2/p.

Thus by the converse to H61der’s Inequality (see, [10, page 136]), [glp is in
the dual of L2/p; that is,

[g p L2/2-p

Hence,

g L2p/2-p
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So the set of multipliers of L2 into Lp (1 < p < 2) is the space L2p/2-p.
Thus b H2p/Z-P.
Note that 2p/2 -p > 2 as 2 > p > 1. Hence b H2.
Next we show that N is one dimensional. Suppose b and d are two

mutually orthogonal elements in N. Then it is not difficult to see that
bH2 _1_ dH 2. Further, bd db lies in bH2 as well as dH 2. This means that
bd 0. As b and d are analytic functions, one of them is zero. Hence
M bH2. Again using the same arguments as in the proof of Corollary 4.1,
we can show that

IlbfllM Ilflln=.

Case 2. 2 < p. In the decomposition of M, we shall show that N-- {0}.
This shall establish that M {0}. So let b be any element in N. Proceeding
as in the previous case we conclude that b multiplies L2 into Lp (_ L2) and
hence b is in L n Hp H=. Choose a suitable e > 0 such that E {0:
Ib(O)l > e} has a positive measure. Let g be a function such that g vanishes
on the complement of E and g is in L2 but not in L p. But bg is in Lp and
so g will lie in Lt’ since b is invertible on E. This contradiction stems from
the assumption that b 4: 0. Hence every b in N is zero and thus N {0}.
Hence M {0}.

6. The theorem of de Branges

COROLLARY 6.1 (THEOREM A). Let M be contractively contained in H2.
Then there is a unique b in the unit ball of H such that M bH2 and
IlbfllM IlfllHz.

Proof In view of Corollary 5.1, case 1, p 2, all that is required is to
show that Ilbll= < 1. Now

Ilbflln IlbfllM (as M is contractively contained in H2)

So Sup{llbfll: Ilfll= 1) _< 1; that is Ilbll 1.

7. The case when M is contained in BMOA (VMOA)

COROIIAI 7.1. Let M be contained in BMOA (VMOA). Then M {0}.

Proof Note that BMOA (VMOA) is contained in nHp and hence in Hp

for p > 2. The corollary is now obvious by applying Corollary 5.1, case 2.
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8. The case when M is contained in the Dirichlet space A2

COROLLARY 8.1. Let M be contained in A2. Then M {0}.

Proof Proceeding as in Corollary 4.1, we conclude that for any non-zero
b in N, bH2 is contained in A2 and Ilbfll- Ilfll.. Further by the closed
graph theorem, multiplication by b is a bounded linear operator from H2

into A2. Thus there exists a constant k such that

IlbfllA k llflln for all f in H 2.

Let f(z) zn’ then as n , IlbznllA o. On the other hand Ilznlln
1 for all n. This contradiction implies that b must be zero. Hence N {0}, so
M= {0}.
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