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UNIFORM AND STRONG ERGODIC THEOREMS
IN BANACH SPACES

TAKESHI YOSHIMOTO

1. Introduction

In his study of the spectral theory of bounded linear operators on a Banach space,
N. Dunford [3] gave some necessary and sufficient conditions for the convergence in
various topologies of a sequence of operator functions to a projection and established
a systematic theory of uniform and strong (i.e., mean) ergodic theorems in Banach
spaces. But the equivalence of Cesaro, Hausdorff, and Abel summability of a se-
quence of operators had not yet been considered in the concrete. In connection with
this problem, E. Hille [ 7] obtained, as applications of Abelian and Tauberian theorems
to ergodic theorems, the uniform and strong ergodic theorems as stated below with a
view to relating the (C, ) ergodic theorem for an operator 7' and the properties of the
resolvent R(A; T). In particular, the fact that the uniform (or strong) convergence of
(A—1DR(A; T)as A — 1+0implies the (C, o) uniform (or strong) convergence for T
has been established by supposing the power-boundedness of T'. It appears, however,
that the power-boundedness is not necessarily essential in the above implication. Our
investigation is motivated by this very fact just mentioned, and we deal with ergodic
theorems for operators which are not necessarily power-bounded.

THEOREM A (HILLE [7, THEOREM 6]). A necessary condition for the existence
of an operator E such that for some fixed o« > 0,

(1) (o) lim,,oo[A@T' T4_ A TH = E
is that

(2) (o) limy, 14 o(A — DR(A; T) = E
and

(3) (uo) lim,_, oo T"/n* = 6 (the null operator).

Conversely, if (3) is replaced by the power-boundedness of T , then (2) implies (1) for
everya > 0. Here, A ,n =0,1,2,..., are the (C, &) coefficients of order a.
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THEOREM B (HILLE [7, THEOREM 7]). A necessary condition for the existence of
an operator E such that for some fixed a > 0,

(1) (s0) lim,, oo [AL) ' S0 _ ATk = E
is that

(2) (s0) limy 1 40(A — DR(A; T) = E
and

(3) (s0) lim, o0 T" /1% = 6.

Conversely, if (3) is replaced by the power-boundedness of T, then (2) implies (1) for
every o > 0.

In fact, we have a particular interest in the converse statements of the above the-
orems, when the operators in question are not necessarily power-bounded, because
this case seems to have not been considered by Hille. More precisely, the question
is whether the power-boundedness of the operators in question is indispensable to
deduce (1) from (2). A partial negative answer to this question was first given by
M. Lin [9] in the case « = 1. The purpose of the present paper is to answer the
question negatively for any real order « > 0. The next section is devoted to the dis-
cussion concerning the relation between Cesaro and Abel summability of sequences
of operators in the uniform operator topology. We shall establish a multiplication
principle which reminds us of the so-called noncommuting ergodic theorems in the
usual sense. This principle provides a new (one-parameter) method of treating the
multiparameter ergodic theorems. The arguments used allow us to consider the case
(corresponding to Theorem B) of the strong operator topology. In the last section we
will deal with a similar question of relating Hausdorff and Abel summability. The
proofs given here depend essentially on the operational calculus devised by Dunford
in the spectral theory.

2. Cesaro and Abel summability

Throughout this paper, (X, | - ||) will denote a complex Banach space and B[ X, X]
will denote the Banach algebra of bounded linear operators on X to itself. For a real
o > 0 and each integer n > 0 let A be the (C, ) coefficient of order o which is
defined by the generating function (1 — p)~@+D = 3% A@u"0 < u < 1). In
particular,

AP = AP = A0 = g
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and

n

- o+n .
A;(;Y) = ZA;“_I(I) — ( i, ) = ppa-n/T@+1) ("ll)nolop,,.a = l).

k=0

In what follows we take as the basis of this consideration the general formula

CYIT] = (T € B[X, X]).

The main result is stated as follows.

THEOREM 1. Fix a real « > 0 and let T € B[X, X] satisfy the condition
IT"/n®|| — 6 when n — 00, where @ = min(l, o). Then there exists an op-
erator E € B[X, X] such that |C®[T] — E|| - 0 asn — oo if and only if
|{A—=DRMN; T)—E|| >0asA—> 1+0.

In order to prove Theorem 1 we need the following lemma which is of interest in
itself.

LEMMA 1. If||T"/n®|| > Oasn — oo then [|[(I — T)C@[T]|| — Oasn — oo.

Proof.  For every positive integer n, no matter how large, (I — T)C*’[T] can be
rewritten as

l
I =DCRITI= [A“' IR S Af:’k‘l.)r"}.
n k=1

Since the sequences {pn.a—1/pPn.«} and {1/ p, o} are both bounded, we get

I = THC@ITI) < A(“’ {A”’ “+||T"+'||+Z|A‘“ . A‘“k‘muT*u}
k=1
< {A‘“ U+ I 4 max(1, 477") max ||T"||}

A(Ol)
< — [1 + IT")| + max nT*n}
n® 0<k<n
for some constant M > 0. However, it is easily seen that | 7" /n®|| > Oasn — oo

implies maxo<x<n || T*||/n® — 0 as n — oo. Hence |(I — T)C¥[T]|| — O as
n — oo and the lemma follows. O

Proof of Theorem 1. Suppose that there exists an operator E € B[X, X] such that

ICOIT]—E| -0 as n— oo.
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We claim that
IA=DRAT)—E|| >0 as A —1+0.

Though this follows from Hille’s theorem (Theorem A), we sketch its proof in the
present situation. In view of Lemma 1 we may say that E is a projection so that,
taking into account that the functions C{*’(-) with complex variables are polynomials,
we can apply Dunford’s uniform ergodic theorem [3, Theorem 3.16] to assert that
X=NU-T)®R(UI-T),EX=N{-T),R(—T)isclosed, where N(I —T)
and R(I — T') denote the null space and range of /-T respectively. Note further that
R(I —T) isinvariant under 7 and let S denote the restriction of T to R(/ — T'). Then,
using the uniform ergodic theorem, we see that / — § is invertible on R(/ — T'). So,
all that is required is to show that

Allll‘llo A = DRA; | =0.

Now, for sufficiently small ¢ > 0, by assumption there exists a positive integer
N; = N (e) say, such that ||S"/n®|| < € for all n > N,. For the number N; so
obtained,

SIS NS e X n® 8| 2
; g Xz <2 T

n=1

Thus, using the equality (I — S)(I — §)~' = I which holds on R(I — T'), we obtain

A A k=1 A'k

A= DRI < G =DIT =7 1+Z<Ak+| ‘_k) S
I A= IIS"II
< G =DIU=8)" ‘n{; Z
_ _ 12 M k
g ”(I_S)_,"{x Il Y n+e};

whence the required one on first letting A — 1+0andthene — 0. Therefore we have
proved that ||[(A — 1)R(A; T) — E|| = 0as A — 1+ 0. Next we suppose conversely
that |[(A — )R(A; T) — E|| > Oas X — 1 +0. Lete > 0 be fixed sufficiently
small and choose a positive integer N, = N;(€) say, such that | 7" /n®|| < € for all
n > N,. As before, we get

A=l (= D2 T
A—DRM\TYI —T)| < ,
10 = DR T = T < = + = k§=lj o te
sothat E = TE = ET and E =(uo)lim,_, ;1o(A — DR(X; T)E = E?; thatis to say, E

is a projection in B[ X, X]and EX = N(I — T). Now, the series Y oo T"/A"*! being
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well defined in the uniform operator topology since ||T7"/n®|| — 0 when n — oo,
we have that

a-p T —amnu-n3 (3 ) r-a-nE iy

k=0 \n=k+1

is also well defined in the uniform operator topology. Thus, if for any x € X we write
* = x — Ex then clearly Ex e N(I — T) and x € R(I — T), because

_ ) o0 (I_Tn)

Moreover, we claim that N(/ — T) N R(I — T) = {0}. To verify this, first we
remark that there exists a constant K > O such thatsup, _, ., [(A—DRA; T)|| < K
by the principle of uniform boundedness (e.g., see [4, page 66]). If y is of the form
y=U—-T)x+z,x,z€ X, |zl <e,then

XTI —=T)x & Tz
a-vE T3] - Ja-n SIS
n=0 n=0
A—1 (= D2 & T
_{ — ; o te Il + ek

This means that forany y € R(I — T),
(A —=DRMA; T)y|| >0 as A— 1+40.

Accordingly, if x € N(I = T)NR(I —T) then x = Ex = 0 as asserted. Now,
R(I — T) is manifestly a T-invariant subspace of X and we let S be the restriction
of T to R(I — T). Then one gets

im |~ DRG: $)yl =0 forall y e ®RT-1)

which follows from what has been observed above and hence
A =DRMA; ) >0 as A—1+0.

From this we infer that for a fixed A > O close enough to 1, I — (A — 1)R(%; §) is
invertible on R(I — T'). Hence, so is the operator I — S and R(I/ — T') must be closed
because we have I — (A — DR(A; S) = (A — D' — S)R(X; S). We have therefore
proved that

X=NUI-T)®R(UI-T)

(which also means that the representation x = Ex + X is unique). In view of Lemma
1 and the fact that C\*’(1) = 1 for all n, this yields |C*’[T] — E|| - Oasn — o0
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by Dunford’s uniform ergodic theorem, since all the functions C{*'(-) of complex
variables are analytic in a fixed neighborhood of the spectrum o (T') of T. The proof
of Theorem 1 has hereby been completed.

Next we make mention of the corresponding question in the strong operator topol-
ogy. If (so) lim,_, o T"/n® = 6, where w = min(1, «) for some fixed « > 0 then an
easy observation gives

(s) lim { max ||Tkx||} /n® =0forall x € X.
n—oo | 0<k<n

In addition, it can be easily checked that as in Lemma 1, the analytic functions C{*(-)
of complex variables satisfy the condition (s0) limy_oo(I — T)C®[T] = 6.

Taking this into consideration, the corresponding theorem in the strong operator
topology can be obtained from a minor modification of the arguments used in the
proof of Theorem 1 by applying Dunford’s mean ergodic theorem [3, Theorem 3.19].
Here we state only the result without proof.

THEOREM 2. Fix a real « > 0 and let T € B[X, X] satisfy the condition
T"x/n®|| — O forall x € X when n — 00, where ® = min(l, «). Suppose
that sup,, ||C¥[T1x|| < oo for all x € R(I —T). Then there exists an operator
E € B[X, X] such that ||C{*[T]x — Ex|| — O for all x € X when n — oo if and
only if |(A — DR(A; T)x — Ex|| »> Oforall x € X when . — 1+0.

COROLLARY 1. Let ¢ > O be fixed and let T € B[X, X] satisfy the condition
IT"/n®|| - Oasn — ocowherew = min(1, «). Supposesup, | Y _;_, Af,"_’__k')T"x|| <
oo for every x € R(I — T). Then there exists an operator E € B[X, X] such that
C™[T] converges to E in the uniform operator topology when n — 0.

COROLLARY 2. Let o > 0 be fixed and let T € B[X, X] satisfy the condition
|T"/n®|| — 0as n — oo where w = min(l, o). Suppose that there is an integer
k > 0 such that T* is quasi-compact. Then there exists a compact projection E €
B[X, X]suchthat |C*[T1—E| — 0asn — oo ifand onlyifsup, ||C¥[T]|| < co.

Proof. The necessity of the condition sup,, [|C\*’[T]|| < oo follows from the prin-
ciple of uniform boundedness. Conversely, if C,‘,""[T] is uniformly (norm-) bounded
then

C[T] € B[X, X1, C”[T]x € ¢ Orbit(x) foralln > 0 and every x € X.

In accordance with Lemma 1, {C*[T]} becomes a system of almost uniformly invari-
ant integrals for the cyclic semigroup {7": n > 0}. Hence the uniform convergence
of C{*[T] to a compact projection follows from Eberlein’s uniform ergodic theorem
[5, Theorem 6.1]. O
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Remark 1. If 0 <o < 1 and T € B[X, X] is quasi-compact, then there exists a
compact projection E € B[X, X] such that |C*’[T] — E|| — 0 asn — oo if and
only if T"/n® converges to € in the weak operator topology when n — oo. This
follows from Hille’s theorem (Theorem A) and Theorem 3.1 of [13]. Incidentally,
the equation

(A= DR T) = (Lﬂ)u+l i (1)" A@ @ [T
’ - )" }\ n n

n=0

shows that [(A — 1)R(A; T) — E|| — Oas A — 1 +0 whenever [|C®[T]—E|| > 0
asn — oo.

We shall now prove the following theorem which may be regarded as an operator-
theoretical generalization of Cesaro’s multiplication formula for sequences.

THEOREM 3. Let o; > 0 and w; = min(l,;),i = 1,2,...,N. Let T; €
B[X, X1,i = 1,2,..., N, be uniformly Abel ergodic and satisfy the conditions
lim, o0 | T /n®]| =0,i =1,2,..., N. Put

n
ML) =) A Thi = 1,2, N,
k=0

Q[T = M([Ty],

QUIT, .., Tul = Y ME[T,IQ [T, ..., Tut], m=2,3,...,N.
ptq=n

Then there exist projections E; € B[X, X],i = 1,2, ..., N, such that

. QWMIT, ..., Ty] Ey - EyE|
(uo) lim - .
n—oo pertetentN= T Dy 4 ... +ay + N)

Proof. Inview of Theorem I there are projections E; € B[X, X],i =1,2,..., N,
with

(uo) lim C\*[T;] = E; foreach i,
n—00
so that
(uo) lim M@ [T;1/n" = E;/T(a; +1) foreachi.

This also shows that the theorem holds for the case N = 1. Suppose that the theorem
has been established for N — 1 operators Tj, ..., Ty—;. So, letting

VAT Ty = QYOI Tyl /AR e D),
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one gets

(o) lim VN"VITy, ..., Ty_11 = Ex_i -+ E2E|
n—oo
by assumption. Cesaro’s multiplication formula enables us to assert that

(uo) lim QMIT, ..., Tyl/nat v tN=l — Ey E)Ei/T (2 +- - +ay + N)

by the induction hypothesis. In fact, we have

pttevtN=1 QT Tyl Ey - EyE,
At tN=D | paitetaytN-1 T T+ Fay +N)

Z A;’an) A;UI+~"+0N—I+N—2) (CI(;YN) [Ty] Vq(N—l) [Ti,....,Tn_11—En--- E2E|)

p+q=n
- AlFFan+N=1)
n
nu|+~~+aN+N—| Al@ittay+N=1) Ey -+ E2E, Ey---EyE,
+ n -
A’('Ul+~~~+otN+N—1) nor+otay+N-1 I'ay+---+ay +N)

and

Z A;f‘"’) A:]a|+~~+a/v_|+N—2) (CI(;)’N) [Tv] Vq(N—l) [Ty,...,Ty-1]— En--- E2E|)
p+q=n

N1
A'(:X|+ +an+ )

n

DAy At tND T (VN VT Tl = Eney o E2Ey)

n—q n—q
q=0

A;al+"'+WN+N_I)

n
D AR AN D (0 [Ty] — E) En-y -+ E2E
+ =2

A(01|+“'+QN+N—I)

n

Let € > 0 be arbitrarily small and choose a number ny = ng(e) > 0 such that
IWVNDIT, . Tyl = Enoi -+ E2E || < €

and
IC¥) [Ty] — Enll <€ forall n > ng.

Note further that there exists a constant Ko > 1 such that || E;|| < sup, ||C,‘,""')[T,-]|| <
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Ko, i =1,2,..., N. Then it follows that

porteFan+N-1 Q:’N) [Ty, ..., Tn] Ey---EE,

paittan+tN—1 [+ +ay+N)

KN—I A(a|+~-+aN+N—l)
0 n

Alan+1)
< _n
- A(0l|+'~~+OlN+N—1)
n

no
_1+N=2 N-—1
x Y ALt N |y NI T Ty ] = v B2 B
q=0
(aj++ay_1+N—1) ny
n

* AlrFHanEN=D) Z A;JQN) ch(vaN)[TN] —En " + 2
n p=0

Kond|+--~+aN+N—l Al@+-Fay+N=1) 1
ALy tN=D | partetay N =1 T T( +---+ay+N)
for all n > ng. Therefore
T QM [T, ..., Tv] Ey--- EyE, - 2KY e
n—soo || part-tan+N-I Moy +---+ay+N)| ~ T(ay+---+ay + N)

as required. The proof of Theorem 3 has hereby been completed. O

THEOREM 4. With the hypotheses of Theorem 3, let T; € B[X, X],i = 1,2,
..., N, be strongly Abel ergodic and satisfy the conditions sup, ||C\*)[T;]|| < oo
and lim,oo |T"x/n®|| = 0,i = 1,2,...,N, for all x € X. Then there exist
projections E; € B[X, X],i =1,2,..., N, such that forall x € X,

® lim QUVITi, ..., Tyhe/n V=1 = By . BBy x/ D@+ +an+N).

The proof follows exactly the same line as the proof of Theorem 3, and therefore
it is omitted.

COROLLARY 3. Let S,T € B[X, X] satisfy the conditions |S"|| = o(n) and
IT"|| = o(n). Let .. = 1 be a pole of R(\; S) and R(A; T) of order one. Then with
E(1; T) and E(1; S) the projections corresponding to the pole . = 1 it follows that

(i) Wo)limy—soo 32, -, (P + D X4 T*Y/n* = E(1; T)/T'(4) and
(i) (Wo)lim, oo, (31 y "Y1y TY/n* = E(1; YE(1; T)/T(4).

This corollary holds also in real Banach spaces, when the assumption that 1 is a
simple pole is replaced by uniform ergodicity, with E(1; S) and E(1; T) the (C, 1)
ergodic projections. In the complex case, these are equivalent to the statement of
Corollary 3.
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COROLLARY 4. Let S,T € B[X, X] be quasi-compact and 0 < o < 1,0 <
B < 1. Suppose that S"/n® — 6, T"/n? — 0 in the weak operator topology when
n — 00. Let{a,};2 , be asequence of real or complex numbers withlim,_, o a, /n* =
a (la| < 00). Then with the same projections E(1; S) and E(1; T) as in Corollary 3
it follows that

DRSNS D SN 3 3 S Ve
=all(@+B+2)]"' T+ DHE(; T),

(i) (o) limy ool #1170 ANSY STY, A% T}
=[Ta+B+21 ' E;SE;T).

It is known that there exists a non power-bounded operator on X which is strongly
(C, a) ergodic for some « > 0. Following Hille [7], to illustrate this, we take X to
be the space Cy[0, 1] of functions f(x) continuous for 0 < x < | which vanish at 0,
with || fll = max | f(x)|. Let 8 > O be fixed and define

0sf = U —Ipf. UpfHox) = /0 [FE & — ' fWdu,0<x < 1

for f € X. Obviously Q4 and Jy are bounded linear operators on X. Also, it is

seen that || Jg|| < [T(B + D17, Jg, I, = Jpi1p, (B1, B2 > 0), and QpJs = J5Qp.
Moreover, the iterate Q; for each n > 1 has the form

Q4 ) = fx) - /0 Pu(x — u, B) f (wdu
where
Pax —u, ) =) (=D (Z) (CkAY™ (x — )P~
k=1

Then Hille’s theorem [7, Theorem 11] shows that (i) [| Q" || = O (n'/*), lim,_ « | Q|
= 00, and (ii) Q) is strongly (C, a) ergodic for ¢ > 1/2. Itis worth while to note that
another example of a strongly (C, 1) ergodic operator which is not power-bounded
is given by Derriennic-Lin [2] and Emilion [6] for a positive operator on a reflexive
Banach lattice. Now, using the operators Qg and Jg, we define Ty = I'(B + 1) Qg Jg
for B > 3/2. Clearly

T ={T(B+1}'Q}J; foralln > 1.
So, making use of Hille’s estimate

D2 log(n — 1),

| 3
(n— =5
fo |Pa(w, B)ldw < C(B) { (n - 11, g1
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for sufficiently large n, we have [T} || = o(n'/**?) for = 3/2,y > Oand ||T} || =
O (nP~")yfor B > 3/2. Furthermore, T} is compact since the Volterra integral operator
is known to be compact. Hence from Theorem 3.1 of [13] it follows that if 3/2 <
B < 2 then the operator Ty is uniformly (C, «) ergodic for & > 8 — 1. The question
is whether T} is a non power-bounded operator for some 3/2 < B < 2, but it is still
open for the time being.

3. Hausdorff and Abel summability

When T € B[X, X] is given, we denote by ®(T') the class of all functions of
complex variables which are analytic in some open set containing the spectrum o (T').
The open set need not be connected and may depend on f € &(T). If f € ®(T)
is analytic in an open set D containing o (T) and the boundary D of D consists
of a finite number of rectifiable Jordan curves, oriented in the usual sense, then the
operator f(T) is defined by

f(T) = Qmi)™' f SQ)RQ; T)dAr
aD
since R(A; T') is analytic in the resolvent p(T') of T. The operator f(T') so defined
depends only on the function f but not on the domain D. Recall that for [A| > y(T)

(the spectral radius of T) the series Y v 7,,/A"*! converges in the uniform operator
topology. Then

1 o
1 = sa | rw (Z F) dx

n=0
00
= ZT" (L &dx)
oy 2mi ap h + 1
o0
= Zc,,T",
n=0

say, and in particular it follows that I — f(T) = (I = T) Y oo o(1 = 3" _ocp)T".

LEMMA 2. Let H, = H,(-),n =0, 1,2, ..., be the functions of complex vari-
ables defined by

1
H,,(A):/ (At + (1 —1))'dt.
0

Then each function H, belongs to the class ®(7') and

|
Hy[T] =/ {(1 =) +:T})"dt.
0
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Proof. Clearly H, € ®(T) for all n, because each H, is a polynomial function.
Let C be the circle |A| = p with y(T) < p < y(T) + € for an € > 0 sufficiently
small. Then using Cauchy’s integral formula we have

1 1 [ Tp
H,[T] = — At 1 —n}"dt —dA
7 = 5 C([O{ + =0 );W,

G0 )]
0 =0 k 2mi =0 )»k'H
I n n 1
=/ Z( )t"(l—t)"“" T* dt=f {(1 =) +AT)" dt
0 k=0 k 0
as desired.

By the way we note that the functions C\*) = C!*(-) belong to the class ®(T)
and that

1 1
(a)[T] — (a 1) )\,k
- i (@) Z n—k Z +|
i Je AV D = M

1 n
- A(OI—') f —d)\
(a—1) 7k
= @ Z AL T
Ay

The sequence of functions H, appearing in Lemma 2 is known to constitute a
strongly regular Hausdorff method H, with the generating function g(¢) = ¢, 0 <
t < 1. We call the operator averages H,[T] defined by Hausdorff method H, in the
sense of Lemma 2 the Hausdorff means of the sequence of powers T*, or simply
the Hausdorff means for 7. So far, no way to relate the Cesaro (C, ) limit and the
Hausdorff limit has been known in ergodic theory. In connection with this matter, the
next aspect we wish to consider is the new question of relations between Hausdorff
and Abel summability in the uniform and strong operator topology. It will be seen
later that the Abel limit plays an important role in relating the (C, o) limit and the
Hausdorff limit. O

THEOREM 5. Let T € B[X, X] satisfy the condition |T" //n|| — 0 whenn —
00. Then there exists a projection E € B[X, X] such that ||H,[T] — E|| — Oas
n — oo ifandonly if |, — DR(A; T) — E|| > 0asA — 1 +0.



UNIFORM AND STRONG ERGODIC THEOREMS IN BANACH SPACES 537

Proof. First of all we prove that (/ — T)H,[T] — 6 in the uniform operator
topology when n — oo. It follows from Lemma 2 that

I_Tn+l
n+1

I _n .
+[ Z [ (:)tk(‘ _ t)n—-k _ (kil. ]) tk—l(l _ t)n—k+l l T* dt.
0 k=l

Note that for a fixed 1 with 0 < t < 1, maxo<k<y (;)t¥(1 — £)"7* is attained for a
k = ko(= ko(t)) such that |ko/n —t| < 1/n. For0 <t < 1, put

(I =TH,[T] =

An)={t: 10/n <t <1 —10/n}
and
Bn,t) ={k: |k/n—1t| <t/10,k/n —t]| < (1 —1)/10}.

We make use of Lorentz’s estimate [11, page 543]

nY ko1 n—k 1 _ n__ .]f_ :
(k)t (1= <——————mexp[ 4t(l—t)(n t>:|, k € B(n,1t).

Then for sufficiently large n, t € A(n) implies kg € B(n, t), so that there exists an
integer N > O such that foralln > N,

n

1
ma (1 —-—n"*F < n) tho l—t"—k"<—————, t € A(n).
02k (k) ( yos (ko ( ) V2t(1 =Dn )

Therefore, foralln > N,

10/n 1 1-10/n n
{f +/ + }max()t"(l—t)""‘dt
0 1-10/n 10/n 0<k<n \ k

20 1 1-10/n 1
<2y L / L
n 2n Jio/n Jt(l—1)

T+ 20
<
= ﬁ

and we thus have

1+ 17 i [ n\ n—k
W0 =TT = — = +2max AT | max ) ¢ (1= 0" ds

A

1 n k
7 {1+ ITINT"I + 27 +40)012,§15>§, 71}
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which approaches zero as n — 00 since {maxo<x<, |T¥||}/+/n — 0 when n — oo.
Now suppose ||H,[T] — E|| — 0asn — oo. Since H, (1) = 1 for all n, Dunford’s
uniform ergodic theorem applies and weseethat X = N(/ —T) & R(I—-T),EX =
N —T),and R(I — T) is closed. If S denotes the restriction of T to R(I — T)
then lim,_, o || H,[S]]| = O holds on R(I — T), so that I — H,[S] is invertible on
R(I — T) for sufficiently large n. On the other hand, one can easily find appropriate
analytic functions G, () € ®(T) such that I — H,[T] = (I — T)G,[T] for each n.
Hence I — § is also invertible on R(I — T'). Therefore by the same calculation as
in the first half of the proof of Theorem 1 we obtain ||[(A — 1)R(%; S)|| = O when
A — 1 4+ 0, which implies that ||[(A — )R(A; T) — E|| > O when A — 1 4+ 0. The
converse follows from the general result, and the theorem is proved. O

The above theorems can be generalized to the case of more general operator
functions f,(T) for f, € ®(T). We state only the results without the proofs.

THEOREM 6. Let T € B[X, X] satisfy lim,_,» ||T"/n*|| = 0 for some 0 <
a < 1. Suppose that the functions f, € ®(T) satisfy lim,_. fu(1) = 1 and
lim, 00 |(J — T) f,(T)]| = 0. Then the following statements are equivalent:

(i) (wo)lim,_,o f,(T) =E,E>=E,EX=N{—-T).
(i) (o) limy_,40(A — DR(M; T) = E, E*=E,EX=N(U—-T).
(iii) R(I —T) is closed.

THEOREM 7. Let T € B[X, X] satisfy lim, o |T"x/n%|| = O forall x € X
and some 0 < a < 1. Let f,, € ®(T) satisfy lim,_, f,(1) = 1 and lim,_,  ||(I —
T) fu(T)x|| = Oforallx € X. Suppose thatsup,, || f,(T)x| < c>oandsup,<)‘52 [I(A—
DR(X; T)x|| < oo forall x € X. Then the following statements are equivalent:

(i) (so)lim,_ o fo(T)=E,E2=E,EX=N{U-T).
(ii) (so) limy_140(A — DR(A; T) = E,E*=E,EX =N —-T).
(iii) X=NI-T) ® RUI-T).

THEOREM 8. Let T € B[X, X] be quasi-compact and satisfy the condition
T"//n — 0O in the weak operator topology when n — oo. Then H,[T] con-
verges (as n — o) to a compact projection E € B[X, X] in the uniform operator
topology.

Proof. By virtue of Lemma VIII, 8.1 of [4] (cf. [13, Lemma 2.2]), the spectrum
o (T) is a subset of the unit disk {z: |z| < 1} and any pole A of R(u; T) with |A| = 1
has order one. Moreover, by Theorem VIII, 8.3 of [4] (cf. [13, Lemma 2.3]), there
exist at most a finite number of points A, . . ., A, of unit modulus in o (T'). Each point
Ak is a simple pole and the corresponding projection E (A; T') has a finite dimensional
range. Let

o=0c(MN{z |z] <1} and o =0o(T)-o.
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Clearly ¢’ = {Ay,...,A,}. Since o is compact, one can choose a number § with
0 < 8 < 1 such that sup, ., |A| < 8. It follows that

H,[TIE(@;T) =Y HyG)E(;; T)

A€o’
and
H,[T1E(0; T) = (H\[TDo E(0; T) = H,[T;1E(0; T)

(see [4, Theorems VII, 3.20 and VII, 3.22]). Each function H,(-) belongs to ®(T5),
and so

H,[T,] = Qri)~! / H,MR(; Ty) da,
aUu

where U is some neighborhood of 6 = o (T,,) withU C {z: |z| < &} and its boundary
aU is rectifiable. If n is sufficiently large then by using Lorentz’s estimate, for A with

|A] < & we have
10/n 1-10/n
|H, ()] {f / / }{8t+(l — o) dr
1-10/n 10/n

IA

1-10/n
k)<Y R\ key _ oyn—k

< ;8 ~ +/0/n max (k)t (1—1) dt]

1 1-10/n
- ———dt}

1-5 «/Zn o/n Vt(1—1)

Jt+20
< o
T (1=8)/n

and for A with |A| =1, A # 1,

(A= 1DH,(L)] < {/ t dt+ 111]?} (Z) k(1 =k dt}
1 1-10/n
2l Ll
n+1 «/55 10/n «/t—(ITt—)

Therefore, since R(A; T,,) is uniformly bounded on dU in the sense of the norm || ||,

1
|Ho [T 00 < -Z—f [Hy (MR T5) A
T Jau

T +20

< A —0)Jn )y IIR()»; TH\ldA| =

Q
—~
G-
~
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. B ) 2w + 42 _l_
|H[T1E(o"; T) — E(1; T)|| < AZ@: I)» ||E()»,, )| = (\/ﬁ)
A;él

All in all we get

IH[T] = E(L; DI < [|H[To1E(o; T + | Hy[T1E(0"; T) — E(1; T)|
1
= o(%)

which means that lim,_, o | H,[T] — E(1; T)|| = 0. Finally, it remains to show that
E = E(1; T) is compact. Since T is assumed to be quasi-compact, there exist some
integer m > 0 and some compact operator P € B[X, X] such that |7" — P| < 1.
Put Q = T" — P. Then (I — Q)~! exists and

PU-Q ' +U =TI -0)' =

Hence, EP(I — Q)~! = E which implies that E is compact. This completes the proof
of the theorem. 0O

From what we have already observed we can derive the following equivalence of
Cesaro, Hausdorff, and Abel summability as mentioned in the introduction (cf. [1],

[8D.

COROLLARY 5. LetT € B[X, X] satisfy the condition lim,_, o ||T" /n®|| = O for
some 0 < a < 1/2. Then the following statements are equivalent:

() (o) lim, 0o C®[T]1 = E,E? = E,EX =N —T).
(i) (uo)lim,oo H)[T1=E,E*=E,EX=N{U-T).
(iii) (uo)lim,_, ;oA — DR(A;T) = E,E>=E,EX=N{-T).
(iv X=NU-T)®RU —T), RU —T) is closed.
(v) R((I —T)?) is closed.
(vi) R(I —T) is closed.

COROLLARY 6. Let T € B[X, X] satisfy the condition lim,_, ||T"x/n%|| = 0
for all x € X and for some 0 < o < 1/2. Suppose that sup, |C¥[T]x|| < oo
and sup, || H,[Tx|| < oo forall x € R(I — T). Then the following statements are
equivalent.

(i) (s0)lim,0o C®[T]1=E, E?>=E,EX=N(I-T).

(ii) (so) lim,_ oo Hy[T1=E,E>=E,EX=N(U-T).
(iii) (so) lim;_j;o(A — DR(A;T) = E,E>=E,EX=N(-T).
(iv X=NUI-T)®R(I-T).
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THEOREM 9. LetT; € B[X, X],i = 1,2, ..., N, be uniformly Abel ergodic and

satisfy the conditions lim,_, ||IT"/s/nll = 0,i = 1,2,..., N. Write G;"[T;] =
H,[T\] and

GY[Ty, ..., Tpl = H,[T,1G" [T, ..., T,.,] m=2,3,...,N.
< q
ptg=n

Then there exist projections E; € B[X, X],i = 1,2,..., N, such that

o) tim O¥Ti o To) _ En - ErEy
n—»00 nh-1 - '(N)

Proof. By virtue of Theorem 5, there exist projections E; € B[X, X], i =
1,2,..., N, such that

(uo) lim H,[T;]=E;,i=1,2,...,N
n—00

which shows, of course, that the theorem holds for the case N = 1. Suppose that in
the case N > 2, the theorem has been established for N — | operators Ty, ..., Ty_;.
So, writing

WO, L Tvel = GO, L T /AN
we see by the induction hypothesis that

(Uo)n]i»no]o WNDIT, ..., Ty-1]1 = En_y - -- E2E.

Now let € > 0 be arbitrarily small and choose a number ny = no(€) > 0 such that

| Ha[Tn] — Enll <€,

IW,""ITi, .. Tyoil = En-y - B2 Eill <6,
and
ANV /N0 — 1/ T(N)| < €

for all n > ng. Moreover, by the principle of uniform boundedness, ||E;|| <
sup,o 1 HulT: 1l < Ko, i = 1,2,..., N for some constant Ko > 1. Therefore
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we have

GMITy, ..., Ty] _En---EE,
nN-1 C'(N)
< A;N_])K()
=T,

no
> AL ANDIWNDT, L Tyoi] = Ency - EEd
=0

X

A;,N_l)

no

A(N I)KON ! q=0

+

nN-1 ’ LN—I)
A(N—I)K A(N—I)KN—I
+( nnN—l >+~ nN~I0 +Kj | e

so that
im [[[n" "7 GITy, ..., Ty] = [TV Ex - - E2Ey || < 3K,
n—>00

which proves the theorem. 0O

Remark 2. Let Tg = I'(B + 1) Qg Jg with the operators Jg and Qg defined in §2.
First we consider the case 1 < 8 < 3/2. Hille’s estimate

1
/ |P,(w, B)ldw < C(B)(n — 1)P/*~1/4
0

for sufficiently large n gives lim,_ || 74 || /+/n = 0. Recall that T is compact.
Then, in view of Theorem 8, T turns out to be uniformly Hausdorff ergodic and it is
also uniformly (C, ) ergodic if o > 1/2. Next we consider the case —1 < 8 < 3/2.
For |A — 1] > || Jg|l we have

00 "
R Qp) == DI+ Jp) ' = Z(A—(:IL)";—' 2
n=0

which converges in the uniform operator topology. It follows from Hille’s theorem
that lim,,_, o || Qg ||/n = O, but it is obviously false that the point 1 is at most a sim-
ple pole of R(A; Og). Hence by Mbekhta and Zemdnek’s theorem [10, Théoréme
1] the operator Qg fails to be uniformly (C, 1) ergodic. This also implies that Q,
is not uniformly (C, ) ergodic when 1/2 < o < 1. This fact seems to have
been unnoticed by Hille. In [12], Wacker proved that if the point 1 is a pole
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of order less than or equal to an integer p > 1 of R(\; T)(T € B[X, X]) and
limy, 00 |T"||/nP = 0, then (1/nP) ZZ;& T* converges in B[X, X]. The converse
implication does not hold in general. For example, we have lim,_, « || Q';, f|/n? =0

and (uo) lim,_, o (1/n?) ZZ;(') Q’;S = 6 when p > 2. But the point 1 fails to be a
pole of R(A; Qp) of order less than or equal to p. Incidentally, if p > 2 then Qg
is easily shown to satisfy Burlando’s condition E(k, p) for some positive integer k.
Hence by Burlando’s theorem [1, Theorem 3.4] we see that §(/ — Qg) = oo where
8(T) =inf{n € N: R(T") = R(T"")}.
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