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THE ESSENTIAL NORM OF A COMPOSITION OPERATOR
ON A PLANAR DOMAIN

STEPHEN D. FISHER AND JONATHAN E. SHAPIRO

ABSTRACT. We generalize to finitely connected planar domains the result of Joel Shapiro which gives a
formula for the essential norm of a composition operator. In the process, we define and give some prop-
erties of a generalization of the Nevanlinna counting function and prove generalizations of the Littlewood
inequality, the Littlewood-Paley identity, and change of variable formulas, as well.

1. Introduction

Let be a domain in the plane. For < p < oe, the Hardy space HP Hp

is defined to be those analytic functions f on f2 for which the subharmonic function
If(z)l p has a harmonic majorant. Once we specify a base point to f2, we define the
norm of f to be the pth root of the value at to of the (unique) least harmonic majorant
of If p. A different choice of the base point gives an equivalent norm on HP; this is
an application of Harnack’s inequality. The Hardy space H is the space of bounded
analytic functions on with the supremum norm. For more on the Hardy spaces, see
[6], Ill.
An analytic function o that maps f2 into itself determines a composition operator

C0 on Hi’ given by

(1) Cof f o

C0 is a bounded operator on HP. One simple way to see this is to note that if uf is
the least harmonic majorant of If p, then uf o o is an harmonic majorant of If o

and so

IIf o oll _< u.f(O(to)) <_ Kuf(to)
where K is a constant that, again by Harnack’s inequality, depends only on the domain
f2, and the points to and o(t0).

In this.paper we are concerned with Hp on a domain f2 that is finitely-connected;
that is, has only a finite number of complementary components. In this setting, it is
known [2] thatC is compact on some H’, _< p < cx, if and only if it is compact on
all HP. We therefore concentrate on C0 acting on H2. The main result of this paper
is an extension of the theorem of Joel Shapiro [7] on the essential norm--distance to
the set of compact operators--of the composition operator C that he proved when
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is the unit disk. To understand the statement of Shapiro’s theorem we must first
define the Nevanlinna counting function of o.

Definition 1.1. Let A be the open unit disk and suppose that tp is an analytic
function mapping A into itself. The Nevanlinna counting function for 0 is

N(w) -log Izl for w - o(2) (0).
o(z)=w

With this background, we can state Joel Shapiro’s result.

THEOREM 1.2. Suppose that tp is an analytic function that maps A into A with
tp(O) O. Let [[Colle denote the essential norm ofCe as an operator on H2. Then

ilcll2=limsup [ N(w)].Iwl- -log wl

In particular, Ce is compact on H2 ifand only if

lim
No(w)

Iwl-, I- log wl

The development of this paper follows the arguments of Shapiro in [7] closely,
altering several parts as n6cessary to allow for the change in setting.

2. Background

Let D be a domain in the plane whose universal covering surface is the open unit
disc A and let FI be the covering map. The Poincard metric for D is defined at

" rI(z) D by

xo(’) In’(z)l( -Iz12).
It is shown in [3, p. 44] that the value of ,o() is independent of the particular choice
of z A with rl (z) .

If D is regular for the Dirichlet problem, we denote the Green’s function for D with
pole at p D by go(z; p). The domain D is omitted unless confusion is possible.

In this paper we shall generally be concerned with a planar domain f2 whose
complement consists of a finite number of disjoint non-trivial continua. Such a
domain is conformally equivalent to one whose boundary consists of a finite number
of disjoint analytic simple closed curves; indeed, it is conformally equivalent to a
domain whose boundary components are circles. Since the conformal mapping gives
an isometry of the corresponding Hardy spaces, we may assume, and shall do so, that
the components 1-’0 FI, of F are circles, with F0 the boundary of the unbounded
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component of the complement of g2. We let ot,, denote the harmonic measure on F for
the (fixed) base point to. It is standard [2] that each H2 function f on has boundary
values almost everywhere on F, that these boundary values lie in L2(F, ot,,), and that
the correspondence of f to its boundary values is an isometry of H2 onto a closed
subspace of L2(F, oho). We let "j be the region outside l-’j, j p, including
the point at cx and 0 be the region inside F0. Each of the regions j is conformally
equivalent to the unit disk A via a linear fractional transformation. When we write
H2(j) for the Hardy space for this region, we shall always assume that the norm is
taken with respect to the base point to.

2.1. Factorization of Hp functions. There is a factorization of functions in
Hp(), developed in [8], that parallels that for np functions on the unit disc. Here
we give a summary; additional details may be found in [1, Section 4.7].

Let be the group of linear fractional transformations of A onto itself that leave
the covering map II invariant: FI r H, r . An analytic function h on A is
modulus autornorphic if for each r 6 ( there is a unimodular constant c c(r) such
that h r ch. Each modulus automorphic function h corresponds to a function f
on 2 by h(z) f(Fl(z)), z 6 A. The modulus of f is single-valued, but f itself
has unimodular periods in the sense that analytic continuation of a function element
(f, (9) along any curve , in f2 leads to the function element (cf, O), where c is a
unimodular constant that depends only on the homotopy class of ,. The class of such
multiple-valued analytic functions with single-valued modulus whose pth power has
a harmonic majorant will be denoted by MHp (2).
A Blaschke product B is an element of MH() with

log In(z)l Y g(z; to,), y g(w,; to) < .
k k

If there are only a finite number of zeros, then the second condition is automatically
satisfied.
A singular innerfunction S is an element of MH with

log IS(z)l f P(s; z)dv(s)

where v is a non-negative Borel measure on 1-’ that is singular with respect to harmonic
measure o,, and P (.; z) is the Poisson kernel for z

An outerfunction in MHt’ is an element F of MHt’ of the form

log IF(z)l fv u(s)P(s; z)dogto(s)

where u L (F, w,,) and e" L !, (F, w,,).
The basic theorem on factorization is this.
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THEOREM 2.1. Eachfunction f MHP(2) has afactorization as

f BSF

where B is a Blaschke product, S is a singular inner function, and F is an outer

function in MHP(f2). The factors are unique up to multiplication by unimodular
constant. Even if f is single-valued, thefactors need not be.

2.2. The Nevanlinna countingfunction. Our first goal is to generalize the Nevan-
linna counting function to the domain f2 and understand some of its properties.

Definition 2.2. Let o: be an analytic function. The Nevanlinna counting
function for o, No (w) for w 2 \ 0(t0) }, is

Ne(w) E g(z; to).
o(z)=w

Note that this reduces to the counting function defined previously if f2 is the unit
disk A and to 0.

For the Nevanlinna counting function on the unit disk, there is the classical theorem
of Littlewood [4]:

THEOREM 2.3. Let be a holomorphic self-map ofthe unit disk A. Then

(3) N, (w) < log
99(0)w

(o) w
to e zx \

with equality homingfor quasi-every w (i.e., all w except those in a set of capacity
zero) exactly when p is inner.

If p(0) 0, then (3) reduces to

No (w) < log Iwl

which is an improvement of the Schwarz inequality.
For counting functions on f2, we have the following generalization of Littlewood’s

inequality:

THEOREM 2.4. Let o: 2 -- f2 be analytic andfix the point to. Then

No(w) E g(z; to) < g(w; to)for all w 2\ {to},
o(z)=u,

with equali, holding @r quasi-every w) exactly when o(F) C F, by which we will
mean that the boundary values of o on F lie in F almost everywhere (with respect
to o)t,,).
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Proof. Let g(z; w) be the Green’s function for fl with pole at to. The function
g(o(z); w) is harmonic on except at the collection of isolated points where o(z)
w; at such a point, g(tp(z); w) has a logarithmic pole. Let*g(tp(z); to) be the (multiple-
valued) harmonic conjugate of g(o(z); w) on f2 \ {o(z) w} and set

Qw(z) e-g((z);w)-i*g((z);w).

Qo lies in MH; indeed, its modulus is bounded by one. Using Theorem 2.1, we
factor Qo in H2(g2) as Qo(z) Bo(z)So(z)Fw(z) where the factors are a Blaschke
product, a singular inner function, and an outer function, respectively. We then get

log lQo(t0)l g(o(t0); w)

g(t0; w)

log IBo(t0)l log ISo(t0)l log IFo(t0)l

The function Qo(z) has zeros exactly where o (z) w, so we have

log IBw(to)l g (to; z) Ne(w).
o(z)=w

Thus we see that

g(w; to) Ne(w) log ISo(to)l log IFo(t0)l,

so

g(w; to) >_ N(w).
We have equality when both log IS(t0)l and log IFo(t0)l are zero, which happens
when both So and F are unimodular constants. If o(1") C F, then we will have
Qwl almost everywhere on F and thus Fo 1. By the extension of Frost-
man’s theorem, Theorem 2.6, which is proved below since Qo is a Blaschke product
composed with tp, it has trivial singular factor for quasi-every w in g2. I-’1

The well-known theorem of Frostman, for functions on the unit disk, can be stated
as follows:

THEOREM 2.5. Let ap be an innerfunction on A. Thenfor Iwl < 1, thefunction

(4) qua(z)
O(z) to

is a Blaschke product except possiblyfor a set ofw in A oflogarithmic capacity zero.

For our generalization, we will prove the following theorem and associated lemma,
which are suggested in [1, Ch. 5, Exercise 2, 3]"
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THEOREM 2.6. Let o be an analyticfunction on 2 with tp (F) C F, and Bw(z)
exp {-g(z; w) i*g(z; w)} be the Blaschke product on 2 with zero at w. Then the
function

Qw(z) Bw(tp(z))

is a Blaschke product (on ), except possibly for a set of w in f2 of logarithmic
capacity zero.

Proof. For FI, the universal covering map from A onto f2 (with H (0) to), we
have the pull-back map ap" A ---, A which satisfies o o I-I FI o ap. It is easy to see
that if o (F) C F, then ap must be inner. Define

{ P (z) w
has a nntrivial singular factr }E w e A"

By Theorem 2.5 above, E has logarithmic capacity zero, thus so does FI (E) (in ).
We write

Qw o Fl B o o o H

B o FI o a#.
By Lemma 2.7, below, Bo o H is a Blaschke product on A, with zeros at those points z
with FI (z) w. The function Bo o FI o is thus a (constant times a) product of terms
of the form (4). If w is not in FI (E), then each of these terms is a Blaschke product.
Thus Bo o FI o p Bo o tp o FI is a Blaschke product, and, again by Lemma 2.7,
Bo o o Qo is a Blaschke product on . I-’1

LEMMA 2.7. The analytic function B on is a Blaschke product if and only if
B o FI is a Blaschke product on A.

Proof If B is a Blaschke product on , we can write

B(z) e-Eg(z;zj)-i*(Eg(i;z.i))

for some sequence {zj} with the property that E7 < for each
B o FI is easily seen to be an inner function on A, so we can write

(5) B o FI b S,

where b is a Blaschke product on A and S is a singular inner function. The Blaschke
product b has a zero at any z with H (z) zj for some j. We now see that

-log In o H (0)l -log In(t0)l

g(t0; zj)

’ log
1

n(z)=z. Izl
-log Ib(0)l.
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The third line above comes from the fact [5, VII.5] that we can write the Green’s
function for f2 in terms of Green’s functions on the unit disk,

g(w;to)= Z log.
rl(a)=w lal

But (5) gives us log IB o FI (0)1 log Ib(0)l-log IS(0)l, so IS(0)l 1, and thus
S 1; i.e., B o FI b is a Blaschke product in A.
Now assume B FI is a Blaschke product on A. It is easy to see that B must be

an inner function on 2, so it has the factorization in H (g2),

B=bS

where b is a Blaschke product on f2 and S is a singular inner function on g2 (i.e., S
has boundary values of modulus a.e., and has no zeros on f2). We then have

B o FI (b o I-I) (S o I-l),

and we can easily see that S o FI is a function on A which has no zeros and has
boundary values of a.e., so S FI is a singular inner function. But B FI is a
Blaschke product, so has only trivial singular inner factor; i.e., S I’1 is trivial, so S
must be trivial, and B must be a Blaschke product. U!

2.3. The sub-mean-value property.
counting function on f2:

We will need the following property for the

THEOREM 2.8. Let h be an analyticfunction on a domain U. Suppose that D is
an open disk in U\h-l (to) with center ata and that h(D) C g2. Then

(6) No(h(a)) <
A(D)

No(h(w))dA(w)

where N is the countingfunctionfor f2 and A is area measure.

Proof. This sub-mean-value property follows from the version proved in [7],
since we can express our counting function on f2 as a counting function on the unit
disk:

No(w) g(z; to).
o(z)=w

As we did earlier, we write the Green’s function of fl in terms of the Green’s function
on A to get

N(w) g(z; to)
0(z)=w
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Z E lgla--
o(z)=w Fl (a)=z

_- log
1

qgoH(a)=w lal

Uon (w),

for I-I the universal covering map of the unit disk onto f2 which maps 0 to to. In this
last line, Non (w) is the counting function on the unit disk. It is shown in [7] that

Noon (h(w)) has the required sub-mean-value property, so N (h(w)) has the same
property. I--I

2.4. The Littlewood-Paley identity.
Paley identity [7]"

For functions in H2(A), we have the Littlewood-

THEOREM 2.9. Forfunctions f H2 (A),

ilfllZ lfr 12 z
m,) If(d) dO-- If’(z)l log(l/Izl)dA(z) + f(0)[2

The corresponding theorem on g2 is"

THEOREM 2.10. Forfunctions f H2(),

[I/l12H2(2, I/I 2 dtoto--- If’z)l

where Wto is harmonic measure on I" for to.

g(z; to)dA + If(t0)l 2

Proof Let r be a small positive number and let "r \ {Z IZ t01 _< r}. The
boundary of "r is I" F 1,3 {Z [Z t0l r}. We begin with Green’s formula:

foUon v ds (uAv- vAu) dA.

We take u If 12 and v g (.; t0). We have

-10v
dw,,, 2--- 0--- ds and Au 4lf’lz.

On the circle Iz t01 r, the normal derivative of v is the radial derivative and equals
l/r plus a bounded term. This.gives a term on the left-hand side of 2rrlf(t0)[ 2 as
r -- 0. On the other hand, v itself is log r plus a bounded term and so the other term
from the left-hand side goes to zero as r - 0. On the right-hand side, the Laplacian
of v is identically zero on g2r and v itself is log s, 0 < s < r plus a bounded term
on the circle Iz tol s. Thus, the right-hand side approaches -4f If’(z)lZdA as
r 0. Rearrangement gives the conclusion. I-3
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2.5. Change ofvariableformulas.
for the disk (see [7]):

We also have the change of variable formula

THEOREM 2.1 1.
self-map of A,

For any positive, measurable function F on A, and analytic

FOP(Z)) I’(z)12 log(l/Izl)dA(z) fA FNdA.
We will need the corresponding theorem on the domain

THEOREM 2.12.
self-map (p of f2,

For any positive, measurable function F- on f2, and analytic

F(q)(z)) Iq)’ (z)l 2 fag(z; to)dA(z) F(z)N(z)dA(z).

Proof. The proof follows closely the one in [7]. Since o is a local homeomor-
phism on the open set f2’ formed by deleting from the zeros of qg’, there exists a
countable collection {Rj of disjoint open regions in 2’ the union of whose closures
is g2, and such that q) is one-to-one on each Rj. Let grj denote the inverse of the
restriction of q) to Rj, so that p is a one-to-one map taking 0 (R) back onto R. By
the usual change of variable formula applied on Rj, with z j (w),

F(o(z)) IO’(Z)I fg(z; to)dA F(w)g (apj(w); to)dA(w)..
Thus, if Xj denotes the characteristic function of the set q) (Rj),

This is the desired formula, since the term in curly braces on the right side of the
equation above is N(w).

We will also need the following version of this change of variable formula.

COROLLARY 2.13. For each f analytic on 2,

IIfo qgll 2
2 if,12 NedA + If(go(to))l zH() "
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Proof.
yields

The generalized form of the Littlewood-Paley identity applied to f o o

y o f o  z)I:

f If’ o I ,12

g(z; to)dA + If(go(t0))l 2

g(z; to)dA / If(o(t0))l 2

(by the chain rule). An application of the change of variable formula, with F If’[ 2,
completes the proof. 121

2.6. A basisfor H2(2).

THEOREM 2.14. Let f2 be bounded by p + disjoint circles, 1-’o I’p, and
let 2i, O, p be defined as at the beginning of this section. There is an
orthonormal basis of H2(2), say uo, ul, u2 with this property: if f H2 has
the expansion ’ ckuk, then f y-p+l) ckuk has a zero at to of order at least
m, m= 1,2,3

Proof. Let pj be the linear fractional transformation that maps g2j onto the unit
disk A, normalized so that Pj (t0) 0. Let Ujk P; then {Uk}=0 is an orthonormal
basis of H2(j), j 0 p and uj vanishes to order k at to. Arrange the functions
Ujk as

U00 b/10, b/p0, U01, /11, b/pl, U02,

and renumber them as v0, vl, 132 Now let En be the closed linear span of {13n+1,
Vn+2 }, n 0, 1,2 Finally, let Um be the (normalized) projection of Vm
onto the orthogonal complement in H2 of En. We now check that these functions
have the desired properties. Evidently, by its very construction, u0 is orthogonal to
v, v2 We write u v + h where h 6 E. Hence,

0 (u0, vl) (u0, Ul) (u0, hi) (u0, ul),

and so u0 is orthogonal to u. Next, U2 is orthogonal to 133,134 We write U2
v2 + h2 where h2 6 E2. Hence,

0 (/gO, 132) (U0, U2)

and

0 (U l, 132) (U l, U2) (U I, h2) (u i, u2)

Thanks to Todd Young for his contribution of this idea to the proof.
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so that u2 is orthogonal to both of u0 and u. In a similar way we can see that the
functions u0, u, u2 are mutually orthogonal. Next, it is easy to establish that the
linear span of u0 un is the orthogonal complement of En, n 0, 1,2 and so
if v H2 is orthogonal to u0, u then

vAEn.
n--O

and thus v 0. Finally, suppose f 6 H2 has an orthonormal expansion f ckuk.
mThose uk with k > (p+ l)m vanish at to to order at leastm and hence f-Yo (p+) cu

has a zero at to of order at least m.

PROPOSITION 2.15. Suppose that f H2(f2) vanishes to order n at to. Let FI
be the universal covering mapfrom A to f2. For f2 and FI (z) , let Za be the
Poincard metricfor f2. Then"

(a)

(b)

If(g)! < Izl" (x(g)llnll) Ilfll2,

If’(’)l < ,/n Izl"-’ (,ka(’))} Ilfll211nll

Proof. Let g f o FI so that g has a zero of order n at the origin. Then use the
standard estimates (see [7]) in the unit disk plus the fact that .a(’) II’I’(z)l(l
Izl 2) _< IIIqllBo.h <_ 111311.

3. The main theorem

With the background of Section 2 in place, we are now ready to state and prove
the main result of this paper.

THEOREM 3.1. Suppose that f2 is finitely connected and that tp is an analytic
function mapping f2 into itselfwith tp(to) to. Let IlC0lle denote the essential norm

ofC, regarded as an operator on H2 (f2). Then

IIc 2
lim sup N(w).
w--F g(w; to)

In particular, Ce is compact on H2 ifand only if

lim
N(w) 0.

wr g(w; to)

We will prove the theorem by proving separately upper and lower bounds for the
essential norm of C.
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3.1. The upper bound. We will use the following general formula from [7] for
the essential norm of a linear operator on a Hilbert space:

THEOREM 3.2. Suppose T is a bounded linear operator on a Hilbert space H.
Let Kn be a sequence of compact self-adjoint operators on H, and write Rn
I Kn. Suppose Rn for each n, and Rnx 0 for each x H. Then
T lie lim, Tgn II.

The goal now is to show that, for an analytic function 0:g2 f2 which fixes the
point to,

Nw_______)(7) IIc ll < lim sup
w-r g(w;to)

We do this by applying Theorem 3.2 above with Kn the operator which takes f to the
sum of the first (p + 1)n terms in its expansion relative to the basis we have chosen
for H2 (’) in Theorem 2.14.

For this orthonormal basis uo, u , u2 of H2 (), we can write any f H2 ()
X--,(p+l)nas f -=o ckuk, and then Knf /-..,k=o ckuk. Rn I Kn will then be an

operator with the property that Rn f -k=l+tp+), ckuk has a zero of order at least
n att0.

The operator Kn is self-adjoint and compact. Since Rn I K,, its norm is 1,
so that the hypotheses of the proposition are fulfilled, and

To estimate the right side of the above, fix a function f in the unit ball of H2 (),
and a positive integer n. Then by Corollary 2.13 we get

IIc  .fll 2
Hz(2) f I(R.f)’l z

N dA + IRnf (qg(to))l 2

Since f c) 1, the same is true of R, f.
Now fix r < 1. Split the integral above into two parts, "r l-I (r z) (where

FI is the universal covering map of f2 which maps the origin to to), and the other
its complement in , f2. Then take the supremum of both sides of the resulting
inequality over all functions f in the unit ball B of H2 (f2). We obtain

2
< sup-- NdA

B 7/"

+ sup I(Rnf)’l NdA + IR, f(qg(to))l 2

We now use the pointwise estimate for (R,,f)’, from Proposition 2.15 part (b). R,f
has a zero of order at least n at to, and, for w 6 g2r, w 7r(z) for some z with Izl < ro
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Thus we have

I(R,f)’ (w) < n Irl"- (,a (()) Ilfll2111-IIl,
V/I--]r]2

so

2 L [(R"f)’12 NodA

Irl"- 2
< /nv/1 irl2

0(()) Ilfl12111-111 --7r NodA.

Since the right side is (n Ir I"- )2 multiplied by terms which are bounded (independent
of n), we get

2 L I(g"f)’12 NdA 0

as n -- cxz.
We can also easily see that IRnf(o(to))l 2 IR,,f(to)l 2 0 for all n > 1. As f

runs through the unit ball of H2 (f2), R,,f runs through a subset of the ball, so we can
replace R,, f in the remaining integral with f and only increase the right side. We
use h(w) N (w) /g(w; to), to obtain

lim IICR,,II 2
_< lim sup-2 I(R,,f),I2 NdA

2 [ 2 N (w)
< sup--

j [f’(w)l
(w; to----S g(w; to)dA

B 7r g

sup-- If’(w)l h(w)g(w; to)dA

suplhCw) w sup 2 -if,w)12< g(w; to)dA
B

sup{h(w)’w },

where the last line follows from the generalized version of the Littlewood-Paley
identity, Theorem 2.10. As r 1, w 6 f2 means that w is the image under FI of
only those z with zl >_ r, so w I’; thus

sup{h(w)’w 6 } --+ lim sup h(w),
!-"

giving us (7).
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3.2. The lower bound.
showing

We now wish to complete the proof of Theorem 3.1 by

(8) IIc ll > lim supe- -.r g(w; to)

The following elementary proposition will be used.

PROPOSITION 3.3. Suppose T is a bounded operator on a Banach space X and
{xn is a sequence in the unit ball of X that goes weakly to zero. Then liT lie >
lim supn Txn It.

Proof. Let K be a compact operator. Then

T K lim sup (T K)x, lim sup T.x

since IlKxn 0. Now take the infimum over all K to get the desired conclusion.

We will apply Proposition 3.3 to the operator Ce with the role of {x, played by
normalized reproducing kernels for the spaces H2(f2j). We fix j, 0 < j < p and
let 4 be the linear fractional transformation that maps f2j onto the unit disk A, with

4 (t0) 0. We then know that

u o dp doJj u dO, u continuous on T,

where o)j is the harmonic measure on Fj relative to f2j for the point to. It then follows
that the reproducing kernel for a on H2(2j) is given by

From Proposition 3.3, we see that

-c/)(a)(z)

CKa’ 2

(9) IICll 2e > lim sup
a--, r, Ilgaa.’ 2

We may compute terms on the right above in the following way:

IICga’ 112 fr Ig"a’

2rr fa IKa "((z))ll’(z)12dA(z) / IKaa (t)12

2 f I4(a)l e

II-rb(a)qb(o(z))141rb’((z))lel’(z)ledA(z)/l
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where b 4(a), and U q(2). We now make the change of variables " r,()
or r, (’) We then obtain

-b

(10) IICg" 2 > Iblz 2

(1 -Ibl2)2 - N(qb-(rt’()))dA()

where U r, (U).
We need to compute the norm of Kff in H2(Q) exactly. For simplicity, we set

b q(a). Then
2

b(z)
do),,, (z)

2 fa 12+
14

Ib Idp’(z)12ga(z; to)dA(z)
r brb(z)

2,+ -lbl2gv( O)dA(g)
rr II b’l4
2 Ibl 2 f-I- 2)4

gu,,(; b)dA()
zr (1 Ibl

(where U

b-’)using=
1-"

This last integral may be computed using Theorem 2.10 with f(z) z. This will
give

where S is the union of that part of the boundary of U that lies inside A, so that S
is p disjoint circles lying inside A. When this is substituted into the expression for

Kaa 2 we obtain

(11) Ka’ 2

(12)

( )( fs Izl2 )Ibl2
l-lbl2 do0

]l z]2

l-lble (l-l(b))
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where

l(b) Ibl 2 fs -Iz]2

[1 -zl2d"
We now put (12) together with (10) and obtain

(13)
IlCg 112 > g(-l(rb()))dA().
Ilga’ll 2 (1 -Ib12)(l l(b)) rr

The open set U q(f2) has the form U A P where P is the union of p closed
disks. As Ibl 1, v converges uniformly on compact subsets on A to a unimodular
constant. Thus, r(P) (as a subset of A) converges to the unit circle as Ibl 1; in
particular, if r < is given, then U contains the disk {11 r} when Ibl is near
enough to 1; that is, when a is near enough to Fj. Thus,

f,, N(-’ (r()))da() flr N(-’ (r()))da().

However, by the sub-mean-value propeay for the counting function, Theorem 2.8,
we obtain

__2 fIr
N(-(ro()))dA() 2N(- (r (0)))r2 2N(a)r2"

When this and (13) are applied to (9) we obtain

2
IlClle limsup N(a)r2.

aV, (1 Ib12)( l(b))

The number r may be arbitrarily near so that it may be removed from this last
inequality yielding

2N(a)
(14) ]lClle lim sup

12
b (a).

aV, ( --I )( ())

Next, g(a; to) g(b; 0) and so

2 N(a)
(15)

(1 iblZ)No(a) g(a; to) (1 -Ibl2)
We now claim that

gt (b; 0)
(16) lim

-," 7 (1 Ibl z) (1 I (b))

(I 4), (15), and (16) imply that

N(a)
(17) IlCo lie > lim sup

arj g(a; to)

g(b; 0)

1, O<t <2r.
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which together with (7) proves the theorem.
To see that (16) holds, we first note that

lim
gt(b; O)

lim
gt(b; O) Ogt (eit V(eit)

b---eit 1/2 (1 --Iblz) b--*e" -Ibl On

where V is the function such that Vdt 2rrdto on the unit circle ql". Now let u be
any continuous function on ql" and let fi" denote its harmonic extension to A via the
Poisson kernel. Then

This shows that

V(eit) fs --Izl 2
I1 eit zl 2

lim (1 I (b)),
b--. ei

which gives us (16), so we are done.
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