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THE ESSENTIAL NORM OF A COMPOSITION OPERATOR
ON A PLANAR DOMAIN

STEPHEN D. FISHER AND JONATHAN E. SHAPIRO

ABSTRACT. We generalize to finitely connected planar domains the result of Joel Shapiro which gives a
formula for the essential norm of a composition operator. In the process, we define and give some prop-
erties of a generalization of the Nevanlinna counting function and prove generalizations of the Littlewood
inequality, the Littlewood-Paley identity, and change of variable formulas, as well.

1. Introduction

Let 2 be a domain in the plane. For 1 < p < oo, the Hardy space H? = HP(2)
is defined to be those analytic functions f on €2 for which the subharmonic function
| f (2)]” has a harmonic majorant. Once we specify a base point #y € 2, we define the
norm of £ to be the p'™ root of the value at #) of the (unique) least harmonic majorant
of | f|7. A different choice of the base point gives an equivalent norm on H?”; this is
an application of Harnack’s inequality. The Hardy space H* is the space of bounded
analytic functions on 2 with the supremum norm. For more on the Hardy spaces, see
[61, [1].

An analytic function ¢ that maps € into itself determines a composition operator
C, on H? given by

ey Cof =fop.

C, is a bounded operator on H”. One simple way to see this is to note that if u; is
the least harmonic majorant of | f|”, then ur o ¢ is an harmonic majorant of | f o ¢|”
and so

lf o@ll” <us(p(to)) < Kuys(ty)

where K is a constant that, again by Harnack’s inequality, depends only on the domain
2, and the points #y and ¢(#y).

In this paper we are concerned with H” on a domain €2 that is finitely-connected;
that is, has only a finite number of complementary components. In this setting, it is
known [2] that C,, is compacton some H”, 1 < p < oo, if and only if it is compact on
all H”. We therefore concentrate on C, acting on H2. The main result of this paper
is an extension of the theorem of Joel Shapiro [7] on the essential norm—distance to
the set of compact operators—of the composition operator C, that he proved when
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Q2 is the unit disk. To understand the statement of Shapiro’s theorem we must first
define the Nevanlinna counting function of ¢.

Definition 1.1.  Let A be the open unit disk and suppose that ¢ is an analytic
function mapping A into itself. The Nevanlinna counting function for ¢ is

) Ny(w)= > —loglz]  for ws#¢(0).

p2)=w

With this background, we can state Joel Shapiro’s result.

THEOREM 1.2. Suppose that ¢ is an analytic function that maps A into A with
©(0) = 0. Let ||C, || denote the essential norm of C, as an operator on H 2. Then

2 _ . N(p(w)
IColl. =timsup [—loglwl]’

In particular, C, is compact on H 2 if and only if

Now) _
lwl—>1- —log |w|

The development of this paper follows the arguments of Shapiro in [7] closely,
altering several parts as necessary to allow for the change in setting.

2. Background

Let D be a domain in the plane whose universal covering surface is the open unit
disc A and let IT be the covering map. The Poincaré metric for D is defined at
¢ =Tl(z) € D by

Ap(0) = T @)IA = |z1).

Itis shown in [3, p. 44] that the value of A (¢) is independent of the particular choice
of z€ Awith(z) = ¢.

If D is regular for the Dirichlet problem, we denote the Green’s function for D with
pole at p € D by gp(z; p). The domain D is omitted unless confusion is possible.

In this paper we shall generally be concerned with a planar domain € whose
complement consists of a finite number of disjoint non-trivial continua. Such a
domain is conformally equivalent to one whose boundary consists of a finite number
of disjoint analytic simple closed curves; indeed, it is conformally equivalent to a
domain whose boundary components are circles. Since the conformal mapping gives
an isometry of the corresponding Hardy spaces, we may assume, and shall do so, that
the components I'y, ..., I', of " are circles, with Iy the boundary of the unbounded
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component of the complement of 2. We let wy, denote the harmonic measure on I" for
the (fixed) base point #y. It is standard [2] that each H? function f on  has boundary
values almost everywhere on I', that these boundary values lie in L2(T, w;,), and that
the correspondence of f to its boundary values is an isometry of H? onto a closed
subspace of L2(I", wy,). We let Q; be the region outside I'j, j = 1, ..., p, including
the point at co and €2, be the region inside I'g. Each of the regions ©2; is conformally
equivalent to the unit disk A via a linear fractional transformation. When we write
H?(K;) for the Hardy space for this region, we shall always assume that the norm is
taken with respect to the base point #.

2.1. Factorization of H? functions. There is a factorization of functions in
H?"(L2), developed in [8], that parallels that for H” functions on the unit disc. Here
we give a summary; additional details may be found in [1, Section 4.7].

Let G be the group of linear fractional transformations of A onto itself that leave
the covering map IT invariant: I1o 7 = I1, v € G. An analytic function 4 on A is
modulus automorphic if for each T € G there is a unimodular constant ¢ = ¢(t) such
that 4 o T = ch. Each modulus automorphic function % corresponds to a function f
on Q2 by h(z) = f(Il(2)),z € A. The modulus of f is single-valued, but f itself
has unimodular periods in the sense that analytic continuation of a function element
(f, O) along any curve y in 2 leads to the function element (cf, O), where c is a
unimodular constant that depends only on the homotopy class of y. The class of such
multiple-valued analytic functions with single-valued modulus whose p™ power has
a harmonic majorant will be denoted by M H”(S2).

A Blaschke product B is an element of M H*°(2) with

log|B()| ==Y ga@ we), Y galwity) < 00.
k k

If there are only a finite number of zeros, then the second condition is automatically
satisfied.

A singular inner function S is an element of M H*> with

log|S(2)| = —frP(s;z)dv(S)

where v is a non-negative Borel measure on I" that is singular with respect to harmonic
measure wy, and P (-; z) is the Poisson kernel for z € Q.
An outer function in M H? is an element F of M H?” of the form

log | F(2)| =/u(s)P(s;z)da),,,(s)
r

where u € L'(T, w,,) and " € LP(T', w,,).
The basic theorem on factorization is this.
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THEOREM 2.1.  Each function f € M HP () has a factorization as
f =BSF

where B is a Blaschke product, S is a singular inner function, and F is an outer
function in M HP(2). The factors are unique up to multiplication by unimodular
constant. Even if f is single-valued, the factors need not be.

2.2. The Nevanlinna counting function. Our first goal is to generalize the Nevan-
linna counting function to the domain €2 and understand some of its properties.

Definition 2.2. Let: 2 — < be an analytic function. The Nevanlinna counting
function for ¢, N,(w) for w € \ {p(t)}, is

Ny(w) = Z 8a(z; 1o).

p(2)=w

Note that this reduces to the counting function defined previously if €2 is the unit
disk A and 7y = 0.

For the Nevanlinna counting function on the unit disk, there is the classical theorem
of Littlewood [4]:

THEOREM 2.3. Let  be a holomorphic self-map of the unit disk A. Then

I—Mw

3 N, 1
3) v(w) < log |~

, we A\ {y(0)

with equality holding for quasi-every w (i.e., all w except those in a set of capacity
zero) exactly when  is inner.

If ¥ (0) = 0, then (3) reduces to
Ny (w) < —log |w|

which is an improvement of the Schwarz inequality.

For counting functions on €2, we have the following generalization of Littlewood’s
inequality:

THEOREM 2.4. Let ¢: 2 — 2 be analytic and fix the point ty. Then

Ny(w) = Z 8(z; to) < g(w; to) for all w € Q\ {t},

p(z)=w

with equality holding (for quasi-every w) exactly when ¢(I") C T, by which we will
mean that the boundary values of ¢ on T lie in " almost everywhere (with respect
10 wy,).
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Proof. Let g(z; w) be the Green’s function for 2 with pole at w. The function
g(¢(2); w) is harmonic on €2 except at the collection of isolated points where ¢(z) =
w; atsuch a point, g(¢(z); w) has alogarithmic pole. Let *g(¢(z); w) be the (multiple-
valued) harmonic conjugate of g(¢(z); w) on 2 \ {¢(z) = w} and set

0w (z) = e 8W@iW—Tlp@5w)

Qy lies in M H*; indeed, its modulus is bounded by one. Using Theorem 2.1, we
factor Q,, in H3() as Q. (z) = B, (2)Sw(2) F(z) where the factors are a Blaschke
product, a singular inner function, and an outer function, respectively. We then get

—log|Qu ()| = gle(t); w)
= g(to; w)
—log | By (to)| — log |Sw ()| — log | Fy (t0)] .

The function Q,,(z) has zeros exactly where ¢ (z) = w, so we have

—log By (o)l = ) g (to; 2) = Ny(w).
p(@)=w

Thus we see that

g(w; to) = Ny(w) — log [Sy (fo)| — log | Fy (to)!,
$0

g(w; tp) = Ny(w).

We have equality when both log |S,,(%)| and log | F,(t)| are zero, which happens
when both §,, and F,, are unimodular constants. If ¢(I') C T, then we will have
|Qw| = 1 almost everywhere on I' and thus F,, = 1. By the extension of Frost-
man’s theorem, Theorem 2.6, which is proved below since Q,, is a Blaschke product
composed with ¢, it has trivial singular factor for quasi-every win 2. 0O

The well-known theorem of Frostman, for functions on the unit disk, can be stated
as follows:

THEOREM 2.5. Let { be an inner function on A. Then for |w| < 1, the function

Y@ —w
1 —wy(2)

is a Blaschke product except possibly for a set of w in A of logarithmic capacity zero.

C)) quw(2) =

For our generalization, we will prove the following theorem and associated lemma,
which are suggested in [1, Ch. 5, Exercise 2, 3]:
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THEOREM 2.6. Let ¢ be an analytic function on Q with ¢ (I') C T', and By (2) =

exp {—g(z; w) — i*g(z; w)} be the Blaschke product on Q with zero at w. Then the
Sfunction

0w (2) = By(p(2))

is a Blaschke product (on ), except possibly for a set of w in Q of logarithmic
capacity zero.

Proof. For I1, the universal covering map from A onto 2 (with I1(0) = ), we
have the pull-back map ¥: A — A which satisfies ¢ o I1 = IT o . It is easy to see
that if ¢ (I') C T, then ¥ must be inner. Define

V(@) -—w
1 —wy(z)

By Theorem 2.5 above, E has logarithmic capacity zero, thus so does IT(E) (in €2).
We write

E = [w eA: has a nontrivial singular factor} .

Qpoll = Byogpoll
= By,olloy.
By Lemma 2.7, below, B,, o I1 is a Blaschke product on A, with zeros at those points z
with I1(z) = w. The function B,, o ITo v is thus a (constant times a) product of terms
of the form (4). If w is not in I[1(E), then each of these terms is a Blaschke product.

Thus B, o I[1 o ¢y = B,, o ¢ o Il is a Blaschke product, and, again by Lemma 2.7,
B, o ¢ = Q, is a Blaschke product on Q2. O

LEMMA 2.7. The analytic function B on Q2 is a Blaschke product if and only if
B o Il is a Blaschke product on A.
Proof. If B is a Blaschke product on €2, we can write
B(z) = o~ 282 =i*(Z8(iz)))
for some sequence {z,-] with the property that Y ° g(¢; z;) < oo for each { € Q.
B o I is easily seen to be an inner function on A, so we can write
5) Boll=bS,

where b is a Blaschke product on A and S is a singular inner function. The Blaschke
product b has a zero at any z with T1(z) = z; for some j. We now see that

—log|B o T1(0)| = —log|B(t)|

= Zg(to; Zj)
J
1
=2 2 log 5

J M@=z
= —log|b(0)].
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The third line above comes from the fact [5, VIL.5] that we can write the Green’s
function for €2 in terms of Green’s functions on the unit disk,

1
g(w; 1) = Z log|—a—|.

M(a)=w

But (5) gives us — log | B o I1(0)| = — log |b(0)| —log |S(0)], so |S(0)| = 1, and thus
S = 1;i.e, B oIl = b is a Blaschke product in A.

Now assume B o IT is a Blaschke product on A. It is easy to see that B must be
an inner function on €2, so it has the factorization in H*(2),

B =bS

where b is a Blaschke product on €2 and S is a singular inner function on  (i.e., S
has boundary values of modulus 1 a.e., and has no zeros on £2). We then have

Bol = (boll)(Soll),

and we can easily see that S o IT is a function on A which has no zeros and has
boundary values of 1 a.e., so S o I is a singular inner function. But Bo Il is a
Blaschke product, so has only trivial singular inner factor; i.e., § o I1 is trivial, so S
must be trivial, and B must be a Blaschke product. [

2.3. The sub-mean-value property. We will need the following property for the
counting function on 2:

THEOREM 2.8. Let h be an analytic function on a domain U. Suppose that D is
an open disk in U\h~(ty) with center at a and that h(D) C Q. Then

1
6 Ny(h <—— [ Ny dA
© p(h(a)) < A(D)fD o(h(w))dA(w)
where N, is the counting function for Q and A is area measure.

Proof. This sub-mean-value property follows from the version proved in [7],

since we can express our counting function on §2 as a counting function on the unit
disk:

Nyw) = Y g(z; to).
@(2)=w

As we did earlier, we write the Green’s function of 2 in terms of the Green’s function
on A to get

Now) = > g(zit)

o(2)=w
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9(2)=w M(a)=z

1
= Z logm

@oll(a)=w
= N«pol'l (w) ’

for IT the universal covering map of the unit disk onto £ which maps 0 to #. In this
last line, Nyon (w) is the counting function on the unit disk. It is shown in [7] that
Nyon (h(w)) has the required sub-mean-value property, so N, (h(w)) has the same
property. O

2.4. The Littlewood-Paley identity. Forfunctionsin H2(A), we have the Littlewood-
Paley identity [7]:

THEOREM 2.9. For functions f € H2(A),

1 012 2 ,

1w = 5= [ 17 a0 = 2 [ |7'@  tog1/ A + 150
T Jr T Ja

The corresponding theorem on 2 is:

THEOREM 2.10.  For functions f € H*(),

2 ;2
tmmm=ﬁmw%=;LUmummm+vwﬁ
where w;, is harmonic measure on T for t,.

Proof. Letr be a small positive number and let Q, = 2\ {z : |z — 9| < r}. The
boundary of Q, is T, =T U {z : |z — | = r}. We begin with Green’s formula:

ad 9
/ (u——li - v—u) ds = ] (uAv — vAu) dA.
r, \ on on Q,

We take u = | f|? and v = g(-; o). We have

doy, = -i;:—z—::ds and  Au=4|f'|%

On the circle |z —ty| = r, the normal derivative of v is the radial derivative and equals
1/r plus a bounded term. This gives a term on the left-hand side of 27| f (£)|? as
r — 0. On the other hand, v itself is log r plus a bounded term and so the other term
from the left-hand side goes to zero as r — 0. On the right-hand side, the Laplacian
of v is identically zero on €2, and v itself is logs, 0 < s < r plus a bounded term
on the circle |z — fo| = s. Thus, the right-hand side approaches —4 fn | f (2)|*d A as
r — 0. Rearrangement gives the conclusion. O
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2.5. Change of variable formulas. We also have the change of variable formula
for the disk (see [7]):

THEOREM 2.11. For any positive, measurable function F on A, and analytic
self-map ¥ of A,

fAF('/f(z))|¢'(z)|210g(1/|z|)dA(z)=LFN,,,dA.

We will need the corresponding theorem on the domain 2.

THEOREM 2.12.  For any positive, measurable function F on 2, and analytic
self-map ¢ of Q,

fg Flo@) |¢' @I 8(z: )dAGz) = /Q F@N,(dA().

Proof. The proof follows closely the one in [7]. Since ¢ is a local homeomor-
phism on the open set Q' formed by deleting from 2 the zeros of ¢’, there exists a
countable collection [Rj ] of disjoint open regions in 2’ the union of whose closures
is €, and such that ¢ is one-to-one on each R;. Let ¥; denote the inverse of the
restriction of ¢ to R;, so that ¥; is a one-to-one map taking ¢ (Rj) back onto R;. By
the usual change of variable formula applied on R;, with z = ¥; (w),

f F(p@) |¢' @ g(z; t0)d A = f F(w)g (yj(w); to) dA(w).

R; o(R)

Thus, if x; denotes the characteristic function of the set ¢ (R;),

fQ(Fow) |¢'| 8 to)d A =fQF(w) [Z xj(w)g (wj(w);to)]dA(w).
j

This is the desired formula, since the term in curly braces on the right side of the
equation above is Ny(w). 0O

We will also need the following version of this change of variable formula.

COROLLARY 2.13.  For each f analytic on 2,

2
1 o ley = = fg |72 Nyd A + 1 £ (po)) .
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Proof. The generalized form of the Littlewood—Paley identity applied to f o ¢
yields

2
1f o@ling = = [ |(f 00) @ g t0)dA + | f (o))
b4

2
= f | ool* ¢ 8z t)dA + 1 £ (pto)) P

(by the chain rule). An application of the change of variable formula, with F = | f |2,
completes the proof. O

2.6. A basis for H*(R).

THEOREM 2.14. Let Q be bounded by p + 1 disjoint circles, Ty, ..., T'p, and
let Q;,i = 0,1,...p be defined as at the beginning of this section. There is an
orthonormal basis of H*(2), say ug, uy, ua, . .., with this property: if f € H? has
the expansion Zgo CrlUi, then f — Z:)"(p +h cxuy has a zero at ty of order at least
mm=1,2,3,....

Proof. Let @; be the linear fractional transformation that maps €2; onto the unit
disk A, normalized so that ¢; (fg) = 0. Let uj; = ¢}‘; then {u;¢}}2, is an orthonormal
basis of H 2(9;), Jj =0, ... panduj; vanishes to order k at fo. Arrange the functions
Wjk as

U0s U10y ++ -5 Up0s UOL, ULls oo oy Upl, UO2, - - -
and renumber them as vy, vy, vy, .... Now let E, be the closed linear span of {v, |,
Un42,--..}, n = 0,1,2,.... Finally, let u,, be the (normalized) projection of v,

onto the orthogonal complement in H? of E,.! We now check that these functions
have the desired properties. Evidently, by its very construction, u is orthogonal to
vy, V2, .... We write u; = vy + h| where h, € E,. Hence,

0 = {(uo, v1) = (uo, u1) — (uo, h1) = (uo, u1),

and so ug is orthogonal to u;. Next, u, is orthogonal to v3, v4, .... We write u; =
vy + hy where h, € E;. Hence,

0 = (uo, v2) = (o, uz2) — (uo, ha) = (uo, uz)
and

0= (uy, v2) = (uy, uz) — (uy, ha) = (uy, uz)

I'Thanks to Todd Young for his contribution of this idea to the proof.
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so that u; is orthogonal to both of ug and u;. In a similar way we can see that the
functions ug, u;, us, . .. are mutually orthogonal. Next, it is easy to establish that the
linear span of uy, . .., u, is the orthogonal complementof E,,n =0, 1,2, ... and so
if v € H? is orthogonal to ug, uy, . . ., then

00
vE ﬂ E,.
n=0

and thus v = 0. Finally, suppose f € H? has an orthonormal expansion f = Y_ cxuy.

Those u; withk > (p+1)m vanish at ¢, to order at least m and hence f — 2'"”’“) Crllg
has a zero at ¢y of order at least m.

PROPOSITION 2.15.  Suppose that f € H?*(2) vanishes to order n at ty. Let T
be the universal covering map from A to Q2. For ¢ € Q and I1(z) = ¢, let A, be the
Poincaré metric for 2. Then:

(@ If(;“)l<Jﬂi—(lg({)llﬂllw)zllfllz,

o 3 }
(b) If(;)l<«/§n—1——m(kg(€)) Il FlI2 1T %

Proof. Let g = f oIl so that g has a zero of order n at the origin. Then use the
standard estimates (see [7]) in the unit disk plus the fact that Aq(¢) = [TT'(2)|(1 —
12%) < 1Tl Broch < 1T {loo-

3. The main theorem

With the background of Section 2 in place, we are now ready to state and prove
the main result of this paper.

THEOREM 3.1. Suppose that Q2 is finitely connected and that ¢ is an analytic
Sfunction mapping Q into itself with ¢(ty) = ty. Let ||Cy || denote the essential norm
of C,, regarded as an operator on H* (). Then

Ny(w)
Il =P w0

In particular, C,, is compact on H? if and only if

Ny (w)

im =0.
w—T g(w; to)

We will prove the theorem by proving separately upper and lower bounds for the
essential norm of C,,.
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3.1. The upper bound. We will use the following general formula from [7] for
the essential norm of a linear operator on a Hilbert space:

THEOREM 3.2. Suppose T is a bounded linear operator on a Hilbert space H.
Let {K,} be a sequence of compact self-adjoint operators on H, and write R, =

I — K,. Suppose ||R,|| = 1 for each n, and ||R,x|| — O for each x € H. Then
ITlle = lim, TRyl

The goal now is to show that, for an analytic function ¢: Q — € which fixes the
point o,

2 . Ny(w)
@) C < lim sup ————.
Icel. wor” g(w; to)
We do this by applying Theorem 3.2 above with K,, the operator which takes f to the

sum of the first (p + 1)n terms in its expansion relative to the basis we have chosen
for H? (2) in Theorem 2.14.

For this orthonormal basis ug, uy, us, ... of H? (), we can write any f € H? (Q)
as f = Y oo Cklk, and then K, f = Z;(’:{)')" ckug. R, = I — K, will then be an

operator with the property that R, f = 32, p+1)n Cklk has a zero of order at least
n at ty,

The operator K, is self-adjoint and compact. Since R, = I — K,,, its norm is 1,
so that the hypotheses of the proposition are fulfilled, and

I, = Jim ICoRal -

To estimate the right side of the above, fix a function f in the unit ball of H 2(Q),
and a positive integer n. Then by Corollary 2.13 we get

2
"Canf"i]Z(Q) = ;f |(Rnf)/|2 N¢dA + anf(‘na(tO))l2 .

Since || f || p2@) < 1, the same is true of R, f.

Now fix r < 1. Split the integral above into two parts, 2, = I1(rA) (where
I1 is the universal covering map of £ which maps the origin to #p), and the other
its complement in 2, Q¢. Then take the supremum of both sides of the resulting
inequality over all functions f in the unit ball B of H? (2). We obtain

2
ICoR|* < sup—/ |(R.f)|* N,dA
B T Jgq,
2
+sup — / |(Ruf)|* NpdA + IR, f (0 (t0))I*.
B T Jq

We now use the pointwise estimate for (R, f)’, from Proposition 2.15 part (b). R, f
has a zero of order at least n at y, and, for w € Q,, w = 7 (z) for some z with |z| < r.
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Thus we have

||nl

[(R. f) ()| < V2n——= N G @)} 1121 %,

SO

Ef (R )| N,d A
T Jg,

2
n—1 2
(fn \/lTl_ag(o)fufnzunuw) = [ Moaa.

Since the right side is (n|r|"~" )2 multiplied by terms which are bounded (independent
of n), we get

Q,

E/ |Ruf)' |2 Npd A > 0
T Jo,

asn — oo.

We can also easily see that |R,,f(<p(t0))|2 = |R,,f(t0)|2 =0foralln > 1. As f
runs through the unit ball of H? (£2), R, f runs through a subset of the ball, so we can
replace R, f in the remaining integral with f and only increase the right side. We
use h(w) = N, (w) /g(w; tp), to obtain

lim |C,R|* = lim sup3 / (R, f)’|2 N,dA
n—00 n— .
< sup— f |f'(w >| ))g(w fo)d A

= sup—f |f’(w)| h(w)g(w; to)d A
B T Jqr

: 2
< sup{h(w): w € Q‘,}sup;/ |f’(w)|2g(w3 to)d A
B Q
< sup{h(w) : w € Q},
where the last line follows from the generalized version of the Littlewood-Paley

identity, Theorem 2.10. As r — 1, w € Q¢ means that w is the image under IT of
only those z with |z| > r, so w — T; thus

sup{a(w) : w € 5} — limsup h(w),

w—T"

giving us (7).
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3.2. The lower bound. We now wish to complete the proof of Theorem 3.1 by
showing

2. Ny(w)
® Icel. = h?—?gp g(w; 1)

The following elementary proposition will be used.

PROPOSITION 3.3.  Suppose T is a bounded operator on a Banach space X and
{xn} is a sequence in the unit ball of X that goes weakly to zero. Then ||T|. >
limsup,,_, o II1Tx,]l.

Proof. Let K be a compact operator. Then
IT — K|l = limsup (T — K)x,|l = limsup ||Tx,||

since || Kx,|| — 0. Now take the infimum over all K to get the desired conclusion.
m]

We will apply Proposition 3.3 to the operator C, with the role of {x,} played by
normalized reproducing kernels for the spaces HZ(Qj). We fix j,0 < j < pand
let ¢ be the linear fractional transformation that maps 2; onto the unit disk A, with
¢ (tp) = 0. We then know that

1
/ uo¢dwj = — f ud6, u continuouson T,
rj 2 Jr

where wj; is the harmonic measure on I'; relative to €2; for the point #y. It then follows
that the reproducing kernel for @ on H*(%;) is given by

Q; 1
Ka ! (Z) = ————_
I —¢(a)p(2)
From Proposition 3.3, we see that

Q;

C, K. |?
9) IC, 112 > lim sup "——“’Q—"—
=ty || Ka|?

We may compute terms on the right above in the following way:
Qi Qi
1CokE R = [ 1KY o pPda,
r

2 . ,
= ;/ K& (@@)llg' (@)PdAG) + K (102
Q

2 |¢(Cl)|2 ’ 20,7 2
=z AL 18 (@) P1¢' @IPdAR) + 1
7 /sz I —d@aa L eRIant
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2 2
= 2 BOP e nda +

11— g(a)p(w)|*
-2 / b — LN, (¢” ())NAEQ) + 1,
— o Ju |t =B

where b = ¢(a), and U = ¢(§2). We now make the change of variables { = 7,(§) =
L= or & = 1,(¢). We then obtain

b2 2
(10) IC, K52 > (1—|||b|_2)2§ fu Ny (¢ (tp(€)))dA(E)
where Uy, = 1,(U).

We need to compute the norm of K,fz " in H3() exactly. For simplicity, we set
b = ¢(a). Then

2

1K = | 1—_51—4,&—) dow,(2)
=142 fn mwmw(mm 0)dA)
—142 UIT_‘—E;WngU(;:OMA(c) (where U = ¢(2)
I+ 5(7%';—2? fu 50,6 DAA®) (usingé = f’—:i:)

This last integral may be computed using Theorem 2.10 with f(z) = z. This will
give

2
2 [ s bane = i+ f l2Pdel* @)
™I au,

¢ = bl T
—b2+/ [ = ]d 0
1b| ou LIT =Bt wy (£)

]—|Z|2 U
——duwyg (z
sl =Bz

2
=(1—|b|2)( j“ 'Z' 5’(z))

where S is the union of that part of the boundary of U that hes inside A, so that §
is p disjoint circles lying inside A. When this is substituted into the expression for
1S 12 we obtain

o= () ()
11 K. = 1—1b ———do
an 1Kol (l—|b|2 b1 ST —Bapp 0

1
(12) = (T—WI—Z) (1 —1())

—b*+1—(1 =16




128 STEPHEN D. FISHER AND JONATHAN E. SHAPIRO

where
— |z|?
1(b) = |b)? f ———dw,
®) = b |~ ot
We now put (12) together with (10) and obtain

ICoKa 1 1
TR RO

The open set U = ¢(£2) has the form U = A\ P where P is the union of p closed
disks. As |b| — 1, 1, converges uniformly on compact subsets on A to a unimodular
constant. Thus, 7,(P) (as a subset of A) converges to the unit circle as |b| — 1; in
particular, if » < 1 is given, then U, contains the disk {|§| < r} when |b| is near
enough to 1; that is, when a is near enough to I';. Thus,

2
(13) f Ny (¢~ (15(6)))dA(E).

/;jN¢(¢_'(Tb(S)))dA(€)ZfIS| Ny (¢~ (z(6)))dA(E).

However, by the sub-mean-value property for the counting function, Theorem 2.8,
we obtain
2

=) Ny (¢~ (m(E))dAE) = 2N, (¢~ (T (0))r? = 2N, (a)r’.

When this and (13) are applied to (9) we obtain

2
Cylle = limsu
IColle = Timsup o T =10y

Nw(a)r2.

The number r may be arbitrarily near 1 so that it may be removed from this last
inequality yielding

' 2Ny(a)
(14) ICplle = ll(?lsrl:p (- 1PHA-10)’

Next, ga(a; to) = gy (b; 0) and so

b=¢(a).

2 Ny(a)  gu(b;0)
15 — Ny = —2
1 =@ gala;to) (1 - |b1?)
We now claim that
. gu(b; 0)
16 1 =1, 0 2
(10) poen T(1— bP2) (1 — 1(b)) sr=er

(14), (15), and (16) imply that

. Ny(a)
an C,ll, > lim sup —4——
1€l a—»r,p gala; t)
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which together with (7) proves the theorem.
To see that (16) holds, we first note that

; b; 0 a
gub;0) lim gub;0) _ dgu

= li QU V) ( lf) — V(eir)
bseit %(1 —bl2)  boer 1-— |b] ~ on

where V is the function such that Vdt = 2rdw{ on the unit circle T. Now let u be

any continuous function on T and let & denote its harmonic extension to A via the
Poisson kernel. Then

—/u() / |Z|2d<l)] dt
s |1 —eifz)?

- [ (L [ A )t
s\ 27 Jr |1 —eitz)?

= #(0) - f B()dol (2)
S

=u() — / #(z)dwf (z) + ] udwl (2)
U

1
= — Vdt.
2 ,/1;-u

. 1 —|z|?
V(') = 1-[-—&(160{,’
N

|1 —eitz|?
lim (1 —1(b)),

b—ell

This shows that

which gives us (16), so we are done.
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