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NORMS AND LOWER BOUNDS OF OPERATORS ON THE
LORENTZ SEQUENCE SPACE d(w, 1)

G. J. O. JAMESON

ABSTRACT. Conditions are found under which the norm of an operator on a Banach sequence space is
determined by its action on decreasing, positive sequences. For the space d(w, 1), the norm and "lower
bound" of such operators can be equated to the supremum and infimum of a certain sequence. These
quantities are evaluated for the averaging, Copson and Hilbert operators, with the weighting sequence
given either by Wn 1/n or by the corresponding integral.

1. Introduction

The classical inequalities of Hardy, Copson and Hilbert 10] describe the norms
of certain matrix operators on the sequence space p. Numerous generalizations,
together with results on the companion problem of "lower bounds", have been given
by Bennett [2], [3], [4], [5], [6], Lyons [14] and others. There is also an extensive
literature on analogous results for the continuous case (e.g., ], 15], 16]).

In the present paper, we address the problem of finding the norms and lower
bounds of these operators when p is replaced by the Lorentz sequence space d(w,
determined by a weighting sequence (wn). The "lower bound" notion is particularly
natural for such spaces, since it is defined in terms of decreasing sequences.

Under fairly general conditions, which we identify, the norm of an operator on
any symmetric Banach sequence space is determined by decreasing, non-negative
sequences. For such operators, our problem can be reformulated without reference to
Lorentz sequence spaces: the norm on d(w, 1) equates to the supremum of IlAx II/llx
for decreasing sequences in the weighted el-space 1 (w). Also, a pleasantly simple
characterization is available. In fact, both problems reduce to the study of a certain
sequence, as follows. Let the operator have matrix (ai,j), and let vj -i= ai,jtoi.
Write W, w +... + w, (and V, similarly). Then the norm and lower bound of
A are the supremum and infimum of V! W. This amounts to saying that both are
determined by elements of the form (1 1,0 ).

However, evaluating these quantities in particular cases can be far from trivial, and
we turn to the problem of doing so for the classical operators mentioned above, with
a view to finding exact answers where possible. We consider two natural choices
of weighting sequence, defined respectively by w,, l/n and Wn n- (the
second example is equally "natural" in the context of Lorentz spaces). These are two
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alternative analogues of 1/x’ in the continuous case, and our results show strikingly
how little information about the discrete case can be derived from the continuous case.
Indeed, for each ofthe operators considered, the continuous analogue ofourproblem is
trivial, because there is an isometric relationship of the form IIA(f)ll C(ot)llfll for
all positive functions f. Nothing ofthe sort happens in the discrete case. Although the
norms arising from our two choices of (to,,) are actually equivalent, they repeatedly
lead to quite different problems of evaluation. In each case, we have to evaluate
specific suprema and infima, usually concerning partial sums or tails of series. The
resulting problems can be anything from straightforward to intractable; some are of
real interest purely as questions on inequalities. They are quite similar to problems
encountered in determining the q-concavity constants of Lorentz spaces 11 ]. In most
cases, the required bounds are found by showing that (V,,/Wn) is monotonic, though
even then it can be substantially easier simply to show that the infimum is the first
term and the supremum is the limit (or conversely). Also, if (on is monotonic,
then its bounds coincide with those of (V,,/W,); sometimes this eases the passage
when w,, l/n’. There is both an interplay and a contrast between the results for
the two choices of (w,,).

Specimen results are as follows. For the averaging (alias Cesaro) operator, the
above C(c) is l/or. We find that for w l/n’, this operator has norm ’(1 +
and lower bound 1/or. By contrast, for W, n-, the norm is l/c, while the lower
bound is ’, l/n (n + 1) (denote this by S). Furthermore, the slight change to
(w,,) is enough to change the sequence under investigation from a decreasing one
to an increasing one. We consider two versions of the Hilbert operator, denoted by
H and H0. For H, with w,, l/n’, the norm is zr/sincr (which is the C(ot) in
the continuous case), while the lower bound is above quantity S. Exactly the same
computations solve the problem for H0 with Wn n-. Meanwhile, for H0 with
w,, /n’, the sequence (vn/w,) is no longer monotonic, and we are unable to give
an exact solution.
We finish with an example showing that it is possible to have (V/W,) bounded

while (v, /w,) is unbounded.
There are several ways in which this investigation suggests further problems.

Firstly, there is the question of extending the results to d(w, p) with p > 1. It turns
out that the "V,/W" characterization can be generalized for lower bounds, but not
for norms, as a result of which quite different methods are needed. Some results for
this case are presented in [12] and [13].

Also, one can consider other specific choices of operator or of (w,), or else attempt
to extend the results to wider classes of operators, such as summability or Hankel ma-
trices, or to more general weighting sequences. However, the differences mentioned
above between closely related particular cases suggest that serious difficulties will be
encountered. At best one can hope for inequalities, rather than exact evaluations.

The author is indebted to Grahame Bennett for a number of helpful comments, and
in particular for the proof of Theorem 8, which is far superior to the author’s original
one.
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2. General matrix operators

We start by describing our problem in the notation of weighted e-spaces rather
than Lorentz sequence spaces. Let w (wn) be a decreasing, non-negative sequence
with lim, w, 0 and Y’,= w,, divergent. Write W,, w +... + w,,. Then
e(w) is the space of sequences x (x,,) with

convergent.
Now consider the operator A defined by Ax y, where Yi _,j=l ai.jxj. We

shall write A for the norm of A when regarded as an operator from a space E to
itself. We assume throughout that

ai.j > 0 for all i, j. (1)

We denote by ej the sequence having in place j and 0 elsewhere. We assume
further that each A(ej) is in e (w), that is:

We define

Z ai.j tOi is convergent for each j.
i=1

(2)

vj vj(A, w) ai,jtoi.
i=1

Formally, (vj) is the sequence A* (w).
By condition (1), A (x)lie, ,) _< IIA (Ixl)lie, ,), and hence non-negative sequences

x are sufficient to determine Ilmlle,u,). However, e(w) is of limited interest as a
Banach space, being just an isometric copy of e itself. As already stated, our real
objective is to evaluate the norm of A as an operator on the Lorentz sequence space
d(w, 1). Under conditions established below (Proposition 4), this coincides with

Au,.I(A) sup{llAxlle,<,) x 8(w), Ilxlle,<,,,) 1},

where 6 (w) is the set of decreasing, non-negative sequences in e (w).
At the same time, we shall consider the lower bound of A, defined (following

Lyons [14] and Bennett [2]) as

mw.(A) inf{llAxlle,<,) x (w), Ilxlle,<o,) 1},

(The corresponding definition without the restriction to decreasing sequences leads
to nothing of interest: for all the operators considered below, it would equate trivially
to 0, both in ep and in Lorentz spaces.)

Since Y,, w,, is divergent, we have x,, 0 for all x in 6 (w). We repeatedly
use the following lemma on Abel summation (we omit the well-known proof).
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LEMMA 1. Suppose that (an), (bn) are non-negative sequences and that (bn)
n Yn=l anbn is convergent (say todecreases and tends to O. Write An j=l aj. If

S), then Anbn 0 as n --+ cx and

An (bn bn+l) S.
n=l

PROPOSITION 1. Suppose that A satisfies conditions (1) and (2). Let vj
ic--_l ai,j toi and Vn v + Vn. Then

Un
IIAIle,) sups,

n>l tOn

Aw,(A) sup,
n>l Wn

mw, (A) inf
Vn

n>l Wn

(with the convention that if either side is finite, then so is the other). Both Aw, (A)
and mw, (A) can be evaluated by considering only elements oftheform e +... + en.

Proof Write Ilxll for Ilxlle,<o). Let supn>_(vj/wj) B. Ifx ej, then Ilxll
w, while IIAxll v. Hence IIAII >_ B (also when B x). Now suppose B <
and let (x) be any non-negative sequence in gl(W). Then= vx is convergent,
and we have

i=1 j=l

VjXj.

Hence A B.
Now let the supremum and infimum of V/W be C, c respectively. Let (x) be a

decreasing, non-negative sequence. By the above and Lemma 1,

while

Ilxll Wj(xj xj+).
j=l

Hence, clearly, cllx _< mx <_ C IIx Further, ifx e +... + en, then IIx W
and IlYll W, so such elements suffice to show that Ao, (A) C and mo, (A) c.
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Remark 1. Obviously, if A is regarded as an operator from (w) to e(w’), the
same statements hold with vj i=l ai,jwi.

Remark 2. Clearly, inf,>_l v,/Wn equals the infimum of IIAxlle, for positive
elements x with Ilxlle, 1. However, as with the supremum, this is not the target
of our investigation.

Remark 3. Though our objective in this paper is limited to the discrete case,
we note that the above proof adapts without difficulty to the continuous case for
sufficiently well-behaved functions. The corresponding formulae are

(Af)(x) a(x, y)f (y) dy, v(y) a(x, y)w(x) dx,

Integration by parts replaces Abel summation, and we conclude that cllfllL,()) <_
IIA(f)IIL,(,) < CIIfllL,w) for decreasing, positive functions f, where c and C are
the infimum and supremum of V(x)/W(x). As already mentioned, the continuous
analogues of the specific operators considered here are actually isometric on the
positive part of L(w).

In certain cases, the supremum and infimum of (v/w) coincide with those of
(V,,/W,,), because of the well-known facts listed in the following lemma (we omit
the proofs).

LEMMA 2. (i) If C < v,__, < Cfor all n, then c < < Cfor all n.

(ii)/f (v,/w,) is increasing (or decreasing), then so is (V,/ W,).
(iii) If ’--’ -- L and W, cxz as n -- cx then --+ L as n cx (this also

tO

holds with L cx).

Hence, for example, if (v,/w,) is increasing and tends to the limit L, then
sup(V,/ W,,) L and inf(V,/ W,) v/w. The same conclusion holds provided
that we can show that v/w < v,,/w, < L for all n; in some cases, this is much
easier than showing that the sequence is increasing.
We now translate the above into the language of Lorentz sequence spaces. (Though

this provides motivation for our study, it is not logically essential: our later theorems
can simply be regarded as statements about A,,. (A) and m,, (A) without reference
to Lorentz spaces.) Given a null sequence x (x,,), let (x,’) be the decreasing
rearrangement of Ix,, I.

The Lorentz sequence space d(w, 1) is the space of null sequences x for which x*
is in e (w), vith norm Ilxll,. IIx* Ile,.,). Clearly Ilxll,,,. Ilxlle,.,) for decreasing,
non-negative sequences x. By Abel summation, for x in d(w, 1) we have
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and also

n=l

* (this is where we need the condition w, 0). Sincewhere X* x’ +... + x,
IXl _< x, for all n, this shows that d(w, 1) is contained in e (w). It also shows that
d(w, 1) has the following property: we say that a Banach lattice (E, lie) of real
null sequences has property (PS) if it satisfies:

if x 6 E and Y, < X for all n, then y 6 E and Ilylle _< Ilxll.

Note that the same conclusion follows if x is non-negative and Y,* < Xn for all n,
since X, < X*. By Ky Fan’s lemma [9,111.3.1 ], property (PS) holds in any symmetric
Banach sequence space, i.e., a Banach lattice of null sequences with symmetric norm
such that Ilxlle lim IIPxll for all x, where Pn is the projection onto the first
n terms.

Our next result may be ofindependent interest. It describes conditions under which
the norm of an operator on such a space is determined by its action on decreasing
sequences. However, for the particular operators considered below, this property;is
very easily seen directly.

THEOREM 2. Let E, ) be a Banach lattice ofsequences with property (PS).
Let A be an operatorfrom E to itself, given by Ax y, where Yi Yj--I ai,jxj,
where ai,j >_ Ofor all i, j. .Supposefurther that A satisfies:

(3)for all subsets M, N ofl having m, n elements respectively, we have

mai,j <_ ai,j.
iMjN i=1 j=l

Then A (x*)II >_ A (x)II e for all non-negative elements x ofE. Hence decreas-
ing, non-negative elements x are sufficient to determine

Proof. Let y A(x), z A(x*). We show that

(.) Y* < Zm for allm

Let y’ y=ti), and let M {or(i) < < m}. Also, let xj* Xr(j). Then

YY[-iM yi
iM Yai’rfj)X;’--jlj=l "=

ai,r(j) X;.

By Abel summation (since x,’ -- 0), this equals

ai,j (x,* xn+ I),
n=l jN(n)
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where N(n) r (j) < j < n 1. Meanwhile,

Zi ai,jx; ai,j (x Xn+l).
i=1 i=1 j=l n=l i=1 j=l

The required inequality follows from (3).

Note. The converse is "nearly" true. More exactly, statement (.) (for all x)
implies (so is equivalent to) condition (3), as one sees easily by considering x
-jN ej

Matrices satisfying condition (3) are by no means instantly recognisable. The next
result provides sufficient conditions that are transparently satisfied in many cases of
interest, including those considered below. Write

ri,n ai,j, Cm,j ai,j,
j=l i=l

the partial sums along row and column j respectively. Consider the following
conditions:

(4) ri,n decreases with for each n.
(4*) ai,j decreases with for each j.
(5) Cm,j decreases with j for each m.

(5*) ai,j decreases with j for each i.

Clearly, (4*) is stronger than (4), and (5*) is stronger than (5).

PROPOSITION 3. Condition (3) implies (4) and (5). Conversely, (4) and (5*), or
(5) and (4*), imply (3).

Proof. (i) Suppose that (4) is false, so that rm,n < rm+l,n for some m, n. Let
M={1,2 m- l,m+l},N={l,2 n}.Then

m mZai,j Z ri,n > ri,n Z ai,j,
iMjN iM i=1 i=1 j=!

so (3) fails. Similarly for (5).
(ii) Assume that (4) and (5*) hold, and consider M, N as in (3). For fixed i, the

largest n terms ai,j are the first n terms, so

n

ai,j <_ Z ai,j ri,..
j.N j=l
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In the same way, by (4),
m

_
Y ri,n < y ri,n ai,j.
iEM i=1 i=1 j=l

Note. A diagonal matrix, decreasing along the diagonal, satisfies (3) but not (4*)
or (5*). A matrix that satisfies (4) and (5), but not (3), is

0
0 0 2

For this matrix, if x e3, then x* el, and (with above notation) y 2 while
ZI=I.

Condition (4*) is clearly equivalent to the statement that A (x) is decreasing for any
non-negative x. Condition (4) is equivalent to the statement that A(x) is decreasing
for decreasing, non-negative x, since, firstly, if x el +... + en, then Yi ri,n, and
secondly, by Abel summation again,

Yi ri,j(xj Xj+l).
j=l

Also, under condition (4), our Vn has a simple interpretation:

Vn ri,ntoi IlA(e +... + e,)llo,.
i=1

Note however that vj only equals A (ej)II w, if (4") holds.
Denote by IIAll0, the norm of A as an operator on d(w, 1). We have now com-

pleted the identification of A I10, stated earlier.

PROPOSITION 4. IfA satisfies conditions ), (2) and (3), then A 0,
=/x

0, (A),
and hence is given by the expression SUPn (Vn/Wn) in Proposition 1.

Proof. By Theorem 2, IIAIl0, is determined by decreasing, non-negative se-
quences x. Since A satisfies condition (4), if x is decreasing and non-negative, then
so is Ax, so that IIAxllo, IIAxlle,().

We finish this section with two further remarks.
(i) The quantity supn>_! V/Wn equates to the norm of the sequence v (= A*(w))

in the dual space to d(w, 1). However, this fact will not make any difference to our
computations.

(ii) Ifcondition (5) holds, then condition (2) reduces to convergence ofYl ai, wi,

since this series can be rewritten m=l Cm (Wm Wm+), and condition (5) says that
Cm,j Cm, for all j.
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3. Partial sums and tails of

The following mostly well-known facts will be used repeatedly in evaluating the
suprema and infima arising in our chosen particular cases. Let ct > 0, and write

bn dt,
-1 t

and (as usual) An a + ..’an, etc. For c < 1, the usual integral comparison gives
be +... + bn < An < Bn, or

(n-- 1) <_ A, <_
-or

hence An/Bn -- as n cx. We need to know also that An/Bn is increasing. The
following is the key lemma.

LEMMA 3. Let bn = fn,_ t_ dt. If ot > 0, then nabn decreases with n and
n bn+l increases with n. The opposite conclusions apply when ot < O.

Proof. Write cn n bn. Then

n+l

inCn+ =(n+l)a __1 ds=(n+l)
s

_
(t + 1)
dt.

Forn < < n, we have (n + l)/n < (t + l)/t, hence ifc > 0, then (n + l)a/(t +
1) < n/t and cn+ < cn (with the reverse inequality when ot < 0). Similarly for
the second statement.

PROPOSITION 5. Let 0 < ot < land let An
increases and tends to / or).

--.=, Ij Then An In I-

Proof By Lemma 3, an/bn increases. Hence, by Lemma 2(ii), An/B,, increases.
The limit follows from the inequalities above.

We now consider the tail of the series for (1 + or). For the tail of a series, the
analogous result to Lemma 2(ii) is the following.

LEMMA 4. Suppose that an > O, b,, > Ofor all n and that Y,,__ an and Y,,__ b,
are convergent. Let A(n) .,j=,, aj, similarly Bo, . If (an/b,) is increasing (or
decreasing), then so is (A(,,/B(n).
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Proof. Elementary.

PROPOSITION 6. Let ot > 0 and let Atn) Y4n /J l+a"
creasing, (n l) A(n) increasing. Both tend to as n -- Then n A(n) is de-

Proof. Let an 1/n + and

n

bn dt._t-’i-

Then Btn+) 1/otn’. By the usual integral comparison,

< A(n) <
cn c(n- 1)a

which implies the stated limits. By Lemma 3, (an/bn+l) is decreasing, So by Lemma
4, An)/Btn+ otna A(n) is decreasing. Similarly, An) /Bn) is increasing.

Remark. This is stated without proof in [6], Remark 4.10.

4. The averaging operator

(X -[- -’[’- X,) It is given by theThe averaging operator A is defined by: Yn "ff
Cesaro matrix

l/i for j <
ai,j 0 for j > i.

This is a lower triangular "summability" matrix. In our terms, it satisfies conditions
(4) and (5*). When A is regarded as an operator on ep (where p > 1), Hardy’s
inequality ([10], Section 9.8) states that IIAII p*, and the lower bound m(A) is
(p)l/p [2]. (The element el is enough to show that A does not map el into el.)

The problems considered here are better illustrated by comparison with the fol-
lowing analogous problem in the continuous case. For a function f, let (Af)(x)
+/- f f(t)dt. Let w(x) x and
X

Ilfll,) w(x)lf(x)l dx.

By simply reversing the order of integration, we see that for all non-negative f (not
necessarily decreasing), we have

II A (f)II/, w) -11 f I]/, w).
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This is an isometric relationship, showing trivially that both the norm and the lower
bound are 1/c. In the discrete case, we have two candidates for weighting sequences
analogous to x -u, and the relationship is far from isometric in either case.

Condition (2) requires convergence of i0__! 1o / i, and Vn is given by

For the weighting sequence 113n l/n, our earlier results provide an immediate
solution to both problems.

THEOREM 7.
< 1. Then

Let A be the averaging operator, and let Wn 1/n, where 0 <

IIAII, Aw,(A)= IIAIle,) (1 +c),

mw, l(A)

Proof. We now have wi / / 1+, so vn An) in the notation of Proposition
6, which tells us that rtaVn (-- On/tOn) is decreasing and tends to 1/c. By Lemma 2,
it follows that mw, (A) 1/c and

Vn tin UI
sup sup ’(1 +u).
n Wn n Yl) 1131

We now consider our second choice of weighting sequence, defined by Wn n
(where 0 < c < 1), so that

n l--c
Wn n 1- (n 1) -’ dt.

-1 ta

The slight change to w is enough to change our problem completely. Since Wn is now
simpler than w, we work with V ! Wn instead of Vn/wn. In contrast to the previous
case, we will show that this sequence is increasing. Directly from the expression for
vn, we have

Vn tOl +’"+tOn+n Z toj

j>n+l J

W, + nv,+,

so

Vn n l)n++ +nVn+.W, W,
Write c, l/[n (n + 1)1 and (as before) C,) ,j>_, cj.
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LEMMA 5.
v C().

With this notation, we have + naVn+l nC(n) for n >_ 1. Also,

Proof. By Abel summation,

Un+
j>n+l

j>n+l

j>n

j+l
Wj

n+l

Ij+l
Wj

n

j(j + 1) n’

The first statement follows. Further, v + 132 C(l).

THEOREM 8. Let cn 1/[n (n + 1)], where ot > O. Then n C(,) as
n -- cx. Also, n C(n) is increasing ifO < ot <_ and decreasing if or > 1.

Hence if Wn n- andA is the averaging operator, then

Aw, (A) IIAIlo, l/or, mw, (A) E Cn.
n=l

Proof. Clearly,

<Cn <
(n + 1)+ n+"

The stated limit follows, by Proposition 6.
To prove monotonicity, we use Lemma 4. Let dn l/n l/(n / 1), so that

Dn) /n’. Then

dn (n + 1) n
n(n + 1)

n (n + 1)
(n + 1) n

(n + 1)-1

O/ fn
n+l

a-I dt.
(n + 1)-1

By Lemma 3, this is decreasing if 0 < c < 1, increasing if ct > 1. By Lemma 4, the
same is true of Dt,,)/Ct,,).

Note. The same method shows that the opposite conclusions hold for c’
/[n(n + 1)].
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5. The Copson operator

The "Copson" operator C is defined by y Cx, where

Y .ii
x

It is given by the transpose of the Cesaro matrix

l/j fori <j
ai,= 0 fori>j.

This is an upper triangular matrix satisfying (5) and (4*). By Hardy’s inequality
applied to the dual, IICll p as an operator on p. Copson’s original result [8] was
in fact the reverse inequality for the case 0 < p < I.

The analogous operator in the continuous case is

(Cf)(x) l’l f(Y)
Jx Y
dy,

and with w(x) x-u, one sees by reversing the integration that

Ilfll,o)IIC(f)llz,o)
ot

for all non-negative f.
All versions of our problem are much easier for C. In fact, the lower bound

problem is almost trivial for general (wn):

PROPOSITION 9.
have mw, (C) 1.

Whenever (if)n) is such that C maps d(w, 1) into d(w, 1), we

Proof Though this follows easily from our general formula, it is more instructive
to argue directly, as follows. If y Cx, it is easily checked that

Y,,=X.+n Z xj.
j>_n+l J

Hence if x is non-negative, then Y >_ X for all n, hence IlYll > Ilxll (this applies to
any symmetric Banach sequence space). Further, we have C(el)

Remark. The same is clearly true for any quasi-summability matrix (i.e., an upper
triangular matrix with column sums equal to l) that satisfies our other conditions.
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A pleasantly simple statement can also be made about the norm of C for general
(wn). With the notation of Section 2,

Wv -(w +... + w)
n n

Recall that (wn) is said to be l-regular if

W.
r (w) sup

n>__l nton

is finite. By Proposition and Lemma 2(i), we have at once:

PROPOSITION 10. If (wn) is l-regular, then C maps d(w, 1) into d(w, 1), and

IlCll,,,, ,.,,(C) _< IlClle,<) _< r(w).

THEOREM 1.
1. Then

Let C be the Copson operator, and let wn /n, where 0 < ot <

IlCllo. zo,(c) IICIle,.o

Proof. With our standing notation,

v. W.
tOn n tOn n

Our Wn is the An of Proposition 5, which tells us that Wn/n1- increases and tends
to 1/(1 ct). The statement follows by (ii) and (iii) of Lemma 2. (Of course, this
also shows that r (w) / (1 c)).

Remark. When c 1, so that wn l/n, we have

Vn Wn --. O0
Wn

as n .---> o,

so C is not a bounded operator on d(w, 1), although of course it satisfies condition (2).

THEOREM 12. Let C be the Copson operator, and let wn be definedby Wn n-where 0 < < 1. Then (again)

Proof. We now have

so the new V./W. is exactly the v./w. of Theorem 11, and Proposition 5 again gives
the statement.



NORMS AND LOWER BOUNDS OF OPERATORS ON d(w, 1) 93

6. The Hilbert operator

Two versions of the Hilbert operator, which we denote by H and H0 respectively,
are given by the matrices

ai.j + j’ ai.j + j-
These are Hankel matrices satisfying (4*) and (5*). Hilbert’s inequality ([ |0], section
9.1 gives the norm of both operators on ep (for p > 1) as 7r/sin(zr/p). It is shown in
2 that rnp (H0) " (p) P, and the same method shows that rn
Nearly any study of the Hilbert operator depends on the well-known integral

(0 < o < 1).dt
a (t + c) ca sin otsr

The analogous operator in the continuous case is

(Hf)(x) 1"1 f(y)

Jo x+y
dy.

With w(x) x-a, one .finds, using the integral just quoted, that

IIH(f)IIL,t.,)-
sinczr

for all non-negative f. With our two choices of both (w.) and the operator, this iso-
metric relationship is replaced by no fewer than eight distinct problems! Fortunately,
they do not all need to be considered separately.
We start by considering H, with w. !na. In our usual notation, we have

vn i.= ia(i + n)

n :r/sin andTHEOREM 13 With v,, defined in this way, we have sup,,>_ v,, c<rr

inf,,>_ nay,, v. Hence if w,, 1/na where 0 < ot < 1, then

m,,.l(H) v i.= ia(i + 1)

Pr)of.
hence

By comparison with the integral above, we have v,, < rc/(n sincr),

n v,, <
sin otzr
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Also,

and

Hence

o

V,, >
a (t + n)

dr,

dt <
ta(t + n) nt

mdt=
(1

naVn >
sin an" (1 a)n -’

which proves the stated supremum, and hence the statement concerning norms of
We now turn to the lower bound. Note that

na vn i.= (i/n)a (i + n)

<k, soFork> l,letEk={i EZ’(k-l)n <i <kn}.Ifi EEk, theng_

(i+n) <ka(kn+n)--nka(k+l).
n

Since Ek has n members,

n

(i/n)’(i + n) nk’(k + 1)

Hence

v,, >
ka(k + 1)k=l

Remark 1. Recall that by Theorem 8, we have v < l/or.

Remark 2. It can in fact be shown that n vn increases with n (which of course
implies both statements)" see [7].

Remark 3. When c l, we have

o

v,, i.= (i + n)
1+ + ..+

hence nv,, cxz as n -- , and H is not a bounded operator on d(w, 1).
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The operator H0 (with Wn 1/n) is muchharder to deal with. Clearly, on(no, W)
On- (HI, w) for n > 2, and v (H0, to) ( (1 +). The limit ofna vn is still rr/ sin ot

but this is less than ((1 + ct) when a is less than approximately 0.32. It is quite easy
to show that n Vn < zr/sin otzr for large enough n. Computations by an associate,
R. Lashkaripour, indicate that n Vn either increases throughout, or decreases for a
certain number ofterms and then increases. This, if proved, would imply that H0
is the greater of ((1 + or) and zr/sinotrr. For sequences of this type, one can hardly
hope for an exact expression for the lower bound. However, we can easily give a
lower estimate"

PROPOSITION 14. If ton 1/n, then mto,1 (Ho) >

Proof We now have

o

Un
.= i(i -n- 1) .= j(j- n + 1)

>
j=n J f-+

As noted in Proposition 6, this is not less than 1/(otn), so (vn/w,) > 1/t for all n.

The contrast between H0 and H is enough to show how remote the possibility is
of finding any kind of solution to these problems for Hankel operators in general.
We turn to the case where ton is defined by Wn n-. Note first that, with the

notation of Section 2,

Vn Yri,ntoi Wi(ri,n-ri+l,n).
i=1 i=1

This time, we consider H0 first, since it turns out (in the same way as in Theorem 12)
that we have solved the problem for this operator already For H0, we have

ri,n -t-’"-4-
t+n-l’

hence

and by the above

ri,n ri+l,n
i+n (i + n)’

y I- n na iWn n- i(i + n) ia(i + n)i=1 ’=

This is precisely the vn/to of Theorem 13, so we have:



96 G. J. O. JAMESON

THEOREM 15. With w,, defined by W, n -o/, we have

IIHoll. A,,.(Ho)-
:rr o

sinotrr’
mw Ho

o/ + 1)"

For H, we have instead

ri,n ri+l,n
t+l

so that

n

i+n+l (i + 1)(i + n + 1)’

Wn i=l (i + 1)(i + n + 1)

THEOREM 16. With wn defined by Wn n -o/, we have

sin otrr
, mw,(H) V it.= (i + 1)(i -4-2)"

Proof The norm estimation only requires slight adaptations to the proof of The-
orem 13. Clearly,

,, <
io/(i + n)’

i=1

As seen in Theorem 13, this is not greater than zr/sin ctzr. For any N 2,

i=N (i + 1)(i + n + 1) N
i=N-I (i 4- l)o/(i + n + 1)

N io/(i + n)

As in Theorem 13, we see that

rrno dt -- as n --+ cxz,
to/(t + n) sin otzr

from which it follows that sup,l>_ (V,,/W,,) rr/sin otzr.

For the lower bound, we again follow the method of Theorem 13, but the details
are a bit more awkward. We have to show that V,, ! W,, > V for all n > 2. Define the

<k, sosets Ek as before. For Ek, we have ,-

n
-o/ di

(i+l)(i+n4-1) ko/
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where

(i + 1)(i + n + 1)

Our statement will follow in the same way as before if we can show that

k
(,)

_
di >_

ieE
(k + l)(k -k- 2)

for each k. We only sketch the details. Clearly, for Ek,

i-I i-I
di > >

i(i+n+l) kn(i+n+l)

From this one shows (separately for/ < kn and/= kn)that di > (k- l)/kn(k + 1)
for Ek, so that

k-I
di >

iEk
k(k + 1)

This implies (,) when .k >_ 2, and one then shows directly that _,ieF, di >_ -6"

7. An example

We now give an example to show that it is possible to have (Vn/Wn) bounded,
while (v,, !w,) is not. Clearly, sup(vn/w) is sensitive to variations in each individual
w,,, and its equivalence to sup(V,/Wn) in the above results only occurred because
our choices of (w,) were very "smooth".

Example.
we have

Consider again the averaging operator. Recall that for this operator

Un
i>_n

Vn ROn+l--w. w,,
We shall choose w, so that (v,,/w,,) is unbounded, while nv,,/W,, 0 as n cx
(hence V,,/W, -- ).

Let Ek {i 6 Z k! < < (k + 1)!}, and let wi l/(k!k) for 6 Ek. Clearly,
_.iee, wi and by integral estimation

log(k + 1) < < Iog(k + 2)
i’7"e’

fork > 2.
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So if n k !, then w,, 1/(k !k) while

x- log k
->_v,, > .k. k!k

Hence (v,,/w,,) is unbounded. For any n Ek (where k > 3), we also have

W,, > Wk! k,

while

log(j + 2)

j= jtj

--"= j!jl/2
since log(j + 2) _< j 1

kl/2
j=, J

k 1/2 (k- l)!(k- 1)

Since n < (k + 1)!, we obtain

nv, k+l
W,, k/k- 1’

and hence the required statement.
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