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BY
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1. Inrecent years the method of the extremal metric has proved to be the
most consistently effective method for the treatment of problemsin the theory
of univalent functions. Among its consequences is the General Coefficient
Theorem [2], [4], [5], which in a single statement includes a large part of
the explicit results on univalent functions. Up to the present, however,
one class of problems for univalent functions has not been successfully
treated by this method, namely those associated with the span of multiply-
connected domains. In the present paper we show that by a slight modifica-
tion of the method of the extremal metric we are able to treat these prob-
lems. Indeed this approach provides both great generality and perhaps the
most penetrating analysis of these problems and at the same time the greatest
simplicity consonant with the former. There are many results of this type
which can be treated by this method, but to avoid an excessively lengthy
exposition we will confine ourselves to two of them. First we prove the most
familiar span theorem in a form more general than that previously given.
Then we prove a theorem of this type for functions regular in a domain, in
distinction to the usual situation where the functions are required to exhibit
a prescribed singularity. To the best of our knowledge this is the first general
result of this kind.

2. Let first D be a plane domain of finite connectivity containing the point
at infinity with boundary continua C;, 7 = 1, ---, n. We consider several
families of functions for this domain. We may without loss of generality
assume that each C; is an analytic curve. Let m, p, ¢ be nonnegative integers
such that m + p + ¢ = n. Let Z(D; m, p) denote the class of functions
f(2) univalent in D, regular apart from a simple pole at the point at infinity
where each has a development of the form

@® 24+ D aand "

and such that under the mapping w = f(z), C;,j5 = 1, - -+, m, correspond
to horizontal slits, C;,5 = m + 1, --- , m 4+ p, correspond to vertical slits.
The function f(z) will automatically be regular on C;, 7 = 1, .-+, m + p.

Let F(D; m, p) denote the class of functions f(2) regular in D apart from a
simple pole at the point at infinity where each has a development of the form
(1), regular on C;,j = 1, --- , n, and such that the values of f(z) for z on
C;,7=1,---,m,have constant imaginary part, forzonC;,j=m+1, ---,
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m -+ p, constant real part. The following canonical mappings are of im-
portance.
LemMa 1. Giwven a, a = 0, /2, there exisis a unigue function

f(z; D, m, p, a) € Z(D; m, p)

such that under the mapping w = f(z; D, m, p, o) the boundary curves C;,
j=m+p+ 1, -, n, correspond to slits on lines of slope a.

This result appears in a paper of Komatu and Ozawa [6]. It is easily
proved by the methods of [3].

3. Let f(2) be a function belonging to = (D; m, p) or to F(D; m, p), and
let « = 0, 7/2. We now define the (f, a)-star, S(f, a), a subdomain of D
associated with f. On the Riemann image of D under the mapping w = f(z)
we regard the trace 7(\) of each line N of inclination «. This is the image
of an at most countable set of arcs in D which divide D into certain sub-
domains, among them two which contain points in the neighborhood of the
point at infinity. We denote these domains by D;(A), D2(\) containing
respectively the directions e’*, —ie’*. One component A(\) of D — D;(\)
contains Dy (A\). Let us denote the common boundary of D;(A\) and A(M)
by ¢(\). As X varies through all lines of inclination «, ¢(\) sweeps out a
set which we denote by S(f, ) and call the (f, «)-star of D. The following
lemma is useful.

LemMa 2. If feF(D;m, p) or Z(D; m, p) and the (f, «)-star of D coin-
cides with D, o = 0, /2, then f is unwvalent in D, and each complementary
component of f(D) is met by each horizontal and each vertical line in at most a
single segment (or point).

In the proof of univalence we evidently may assume that f e F (D; m, p).
On every C; each function ®&f (2) and gf(z) has at least one arc or point where
it assumes a maximum and a minimum relative to values on C;. In the
case of an arc this value must be assumed constantly on C;. If this occurs
for either ®f(z) or Jf(z) on each boundary component, the univalence of f
is immediate. Suppose then there are boundary components where this
does not occur. We will show that if f is not univalent, then at least one
such point is a point of relative maximum or minimum for values of ®f(z)
or 9f(z) on D. From this we see that either the (f, 0)-star or the (f, =/2)-star
fails to coincide with D.

To complete the proof we regard a curve C in D lying in a neighborhood of
the point at infinity in which f is univalent and which is mapped by w = f(2)
onto a circle. Let A be the subdomain of D bounded by C and not containing
the point at infinity. We will now regard the relationship between the
number of boundary curves, minimum points relative to A, interior and
boundary saddle points for +=®f(z), +9f(z) in A. We will denote the num-
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bers of these respectively by », m, S, and s, where in each case we disregard
those boundary components on which the function considered is constant.
If none of the latter were present, we would have by a result of Morse [7;
Theorem 11.2] the relation

2—v=m—8S —s.

It is easily seen that for any of these functions a boundary curve on which
it is constant can be replaced by an adjacent curve which satisfies the condi-
tions required for the validity of Morse’s result, and which would have on
it no minimum point and at least one boundary saddle point. Thus we have
the inequality

2—v=m— S8 —s.

Now evidently S = 0, and the boundary curve C contributes 1 to v, 1 to m,
and 0 to s. Any other minimum point must lie on a boundary C;, and our
proof is completed by proving m > 1 for one of the functions in question.
On any boundary component C; not excluded above, the points of relative
maximum for values on C; each contribute at least 1 to s. Thus if there is
more than one such for any boundary component, we have m > 1. If this
does not occur for any of the four functions, then the image of C; is met by
each horizontal and each vertical line in at most two points. If, as we
describe the boundary curves of D in the positive sense, all of their images
under w = f(z) are described in the clockwise sense, f(z) is clearly univalent.
Let us assume then that one of these images is described in the counter-
clockwise sense, and that on the corresponding boundary component ®f(z)
assumes its maximum at 4, its minimum at B, and Jf (z) assumes its maximum
at E, its minimum at F, in each case relative to values on this component. If
A is not a point of relative maximum of ®f(z) for values on D, it contributes
at least 1 to s for the functions ®f (z) and +4df(z). Similar remarks apply to
the points B, E, F. Thus in any case we must have m > 1 for at least one
of these functions. This completes the proof of univalence.

For functions in Z(D; m, p) the final statement of Lemma 2 is obvious.

4. Let us denote the functions f(z; D, m, p, 0), f(z; D, m, p, =/2) for
brevity by h(z), k(z), and let f e F(D; m, p) or Z(D; m, p). Let h, k, f
have the developments of form (1) with a; respectively equal to a, b, c.
Let L be so large that the square with sides 2L parallel to the axes centred
at the origin lies in the part of the Riemann image & of D under the mapping
w = f(2) which lies schlicht above the w-plane. Let S'(f, ) denote the
image of S(f, «) under this mapping, let D (L) denote the portion of ® en-
closed by the above square (not containing the point at infinity), and let
D' (L) be the intersection of D (L) and S'(f, 0). Let 4L’ minus the area
of D'(L) be denoted by A*, 4L’ minus the area of D(L) by A. Evidently
these are independent of L and may be negative. The latter may be called
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the complementary area of f(D). Let the mapping of ® given by kf " be
denoted by V. On S’(f, 0) we can use w as local uniformizing parameter
and denote the function by V (w) (not necessarily globally single-valued).
In particular this is valid in a neighborhood of the point at infinity where
V (w) has the expansion

V(w) = w + pw™" + higher powers of w™"

with g = b — ¢

If ¢(\, L) denotes the subset of 7(\) for slope 0 which is the intercept by
D(L) on the image of s(\) under f and w = u + 4w, we have, apart from a
finite number of choices for A,

(2) [, V@) du = avPO) = V@MW),
where P(A\), Q(\) are the points on 7(\) at which Rw = L, Qw = —L.
Let E(f, ) be the complement relative to D of S(f, ), and let E* be the

area of the image of E(f, 0) under k. Integrating (2) with respect to v
over the interval —L < v < L we obtain

ff Q¥ (w) ddy = AL + 70w + O(L7),
D' (L
that is,

@ [, ot = [[ - dd,+ 474w+ o,

where dA. denotes the element of area over the w-plane. On the other
hand, a standard argument shows (see [2], [4], [5])

* ! 2 * -1
(4) ffD'<L)dA‘”+A —ffDI(L)|V(w)| dA. + E* + 0(L™).
Combining (3) and (4) we obtain
) [ V) =1} dde + B = —2n6w — A®+ 0L,
D'(L)
Letting L tend to infinity we find
(6) [ 1vw) =17 dd, + B = —2e0u — 47,
80
and transferring the integral to the z-plane we get
(7) ff | K (z) — f’(z)|2 dA., + E* = 2@ (c — b) — A*,
54,0

where dA, denotes the element of area in the z-plane.
Consider now the image A of D in the ¢-plane (¥ = & + 4n) under the
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mapping ¢ = h(z) and a square of sides 2L parallel to the axes centred at
the origin with L so large that this square encloses the complement of A.
Let A(L) be the portion of A enclosed by this square. Let the function
fh™" defined in A be denoted by H(¢). This function has expansion in a
neighborhood of the point at infinity given by

H(t) = ¢ 4+ v + higher powers of {,

where » = ¢ — a. For all but a finite number of valuesof 9, —L < 7 < L,
the intersection t(y, L) of the line 9¢ = 5 with A (L) will consist of a finite
number of segments (in some cases one) of total length 2I.. We see at once
that for these values of 7

(8) ®H'(¢) dt = Q(H(P'(n)) — H(Q'(1))),

v(mL)

where P’ (), Q' () are the points L + 4n, L — in. Integrating (8) with
respect to # over the interval —L < 5 < L we obtain

ff QH!(¢) dA; = 4IF + 76w + O(L),
A(L)
that is,

(9) ffm) GH'(¢) dA; = ffm) dA; + 70w + O(L™),

where dA; denotes the element of area in the {-plane. On the other hand,
in the same way as for (4) we obtain

! 2 — —1
(10) [ 1rraac+a = [[ s+ o).
Combining (9) and (10) we obtain
(11) [[ 1@ - 1P aas = —2row — 4 + 0(17).

A(L)
Letting L tend to infinity we find
"(¢) —1[PdA; = —27@®v — A,
(12) [l 1@ —1raa = —2re
and transferring the integral to the z-plane we get
(13) [[ 157G = w@)Pad, = 2260 = o) — 4.
D

These formulae constitute our basic result.

TaroreM 1. Let f e F(D; m, p) or Z(D; m, p), and let f(2; D, m, p, 0),
f@z; D, m, p, ©/2) be denoted respectively by h(z), k(). Let h, k, f have
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developments of form (1) with a; respectively equal to a, b, c. Let A be the
complementary area of f(D). Then

ffwm | K'(2) — f'(2)[dA, + f[wm | k()] dA.,

=2r®(c —b) — 4 — ffE(m) [£'(2)[F dA.,

(14)

(15) ffD 1£(2) — W(2)[ dA, = 2r&(a — ¢) — A.

Analogous formulae hold interchanging the roles of h(2), k(z), namely

f‘[gwr/z) | W(e) — @) dA. + ffgu,w/z) | h'(2)[ dA.,

= 2r@(a—c) — A — [

(16)
| f/(2)[ dA.,
E(f,7/2)

(17) [fD 1£(2) — K (2)[ dA, = 2rq(c — b) — A.

Formula (14) is a trivial modification of (12). Formulae (16) and (17)
are obtained by completely parallel arguments.

LemMA 3. In the notation of Theorem 1, of m = p = 0, we have
QM) E@) >0 for zin D.
It is well known that the function
e“(cos a h(z) — isin a k(z))

is univalent in D for 0 £ o« =< = and thus has a nonzero derivative in this
domain. If we set
h = wu + 1y, k= uy + 1,

as the division into real and imaginary parts, the vanishing of the above
derivative for some « would be equivalent to there being a nontrivial solution
to the equations in £, 9

6u1 Oug 61)2 31)1
%E‘i‘a—xﬂ:(), %E—%"l—oy
that is,
ou o ot _
dx ox = dx oz )
The left-hand side of the last equation is precisely ® (A’ (2)%k’(z)) which is
thus nonzero in D. However this expression is positive in the neighborhood

of the point at infinity and thus everywhere in D.
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The result of Lemma 3 could also be deduced from one step in the argu-
ment on p. 182 in [1]. However the present proof seems simpler and more
natural.

CoroLrARY 1. Let A, h, k, a, b, ¢ be as in Theorem 1. Let 8 + v = 1,
B, v = 0. Then
A+ 21 —7v)&e

1s maximized in the class F (D ; m, p) uniquely in the case of the function Bh + vk.
The value of this maxzimum is 2w (8°Ra — v'®b). If m = p = 0, the function
Bh + vk is univalent, so the same result ¢s valid for the class Z(D;m, p). More-
over in this case Bh + vk maps D onto a domain bounded by convex continua.

Setting f = k in (15) we find

(18) ffD | W(2) — W(2)[dA, = 2nci(a — b).
Now multiplying (15) by 8, (17) by v, and adding we find

s [[ 157G = w@Fad+ o [[ 196) - ke P da,

= 27r®(Ba — vb) — 27 (B — v)®Rec — A.

If we use (18), this is equivalent to

s [[17@ =@+ [[ 176) - )P aa,

(19)

(20) — v [[ 1K) — WP a4+ 4 + 2008 — 1) o0

— 27 @(Ba — vb) — By ffD |K(2) — K@) dd, .

Now

sf[ 176~ @Fdd A [[ 1776) ~ KL aa,

— By f fD [K(z) — K()[dA. 2 0,

with equality only if
J = Bh + ~k,

while the right-hand side of (20) is equal to
2w (B — ) ®R(Ba + vb) + Agy,

where Ag, is the value of A for the function gh + k. This completes the
proof of the first statement in Corollary 1.
The value of this maximum is derived by setting f = Bh + vk in (19) and
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using (18). In this connection we observe the equality
Agy = 278y®(a — b) = By [[ | B(2) — W (2)] dA..
D

Taking f to be the function 8k + ~k in the formulae of Theorem 1, multi-
plying (14) by v, (15) by B, and adding we obtain

w8 [[ 10 —w@Fad + [[ 1P,

+87 [[ 10 — WP ade o [[ 180 + v ()] aa,

= — Ag.y + 416’)’6‘{((1 —_ b),

where S, E stand respectively for S(8h + vk, 0), E(Bh + «k, 0). This
reduces to

v [ I¥@rad -y [ 1886 +ar@rad. - g [[ 106 - w P, =0,
and further to
@) (4 = [[ 1KEPa + 2y [[aW@F() dd, = o,

In the case m = p = 0 we have by Lemma 3 that both integrals on the
left-hand side of (21) are positive unless E(8h + vk, 0) is void. Thus
E (Bh + vk, 0) is void. A similar application of (16) and (17) shows that
E(Bh + vk, w/2) is likewise void under these conditions. Thus by Lemma
2 the function Bh + vk is univalent. Finally, similar considerations can
be applied to any pair of orthogonal directions, so that it follows by the last
statement in Lemma 2 that the mapping w = Bh(2) + vk (2) maps D onto a
domain whose complementary continua are convex.

5. Let D be a plane domain of finite connectivity with boundary con-
tinua C';,5 = 1, --- ,n + 1, and let four boundary elements P, P;, P;, P,
be given in natural cyclic order on C;. We may without loss of generality
assume that D lies in the finite z-plane, and that each C; is an analytic curve,
so that the points P; are boundary points. Let m, p, ¢ be nonnegative
integers such that m 4+ p + ¢ = n. Let 2(D; m, p) denote the class of
functions f(z) regular and univalent in D such that under the mapping
w = f() (w= u -+ @), Cy corresponds for some L > 0 to the perimeter of
the rectangle

0<u<lU, 0<y <1,

with Py, P, , P;, P, going into the points 0, L, L 4+ ¢,¢,C;,j = 2, - -+ ,m + 1,
correspond to horizontal slits, and C;,j = m + 2, -+, p 4+ 1, correspond
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to vertical slits. The function f(z) will automatically be regular on Cj;,
j=2--,m+p+1. Let F(D;m, p) denote the class of functions f(z)
regular in D such that under the mapping w = f(z), C: corresponds for some
L > 0 to the perimeter of the rectangle

O<u<L 0<v<l,

with P;, Py, P;, P, going into the points 0, L, L + 4, 7, such that f(2) is
regularon C;,7 = 2, --- ,n + 1 with

0 < ®f(z) <L, 0<df(z) <1

on each such boundary component, and such that the values of f(z) for 2z
onC;,j=2,--+-,m -+ 1, have constant imaginary part, for z on C;,j =
m+ 2, ---,m 4+ p + 1, constant real part. The existence of the following
canonical conformal mappings follows from [3, Theorem 1].

Levma 4. Gwen a, a = 0, w/2, there exists a unique function
j(Z;D, m, P, a) € 2(-D;/"n) P)

such that under the mapping w = f(z; D, m, p, a) the boundary curves C;,
j=m+p+2 ---,n 4 1, correspond to slits on lines of slope a.

6. Let f(z) be a function belonging to £(D; m, p) or to F(D; m, p).
We will define the (f, 0)-star, S(f, 0), a subdomain of D associated with f.
On the Riemann image of D under the mapping w = f(z) we regard the trace
7(v) of each line gw = v with 0 < » < 1. This is the image of an at most
countable set of arcs in D which divide D into certain subdomains, among
them two special ones: D; (v) on whose boundary is the arc P; Py, and D;(v)
on whose boundary is the arc P; P.. One component A(») of D — D;(v)
contains D;(v). Let us denote the common boundary of D;(v) and A(v) by
s(@). As v runs through the values 0 < v < 1, s(v) sweeps out a set which
we denote by S(f, 0). The (f, n/2)-star, S(f, »/2), is defined similarly
except we use lines ®w = u, 0 < 4 < L, and domains with P, P; and P, P;
on their respective boundaries.

Lemma 5. If fe F(D; m, p) or £(D;m, p) and the (f, a)-star of D coin-
cides with D, o = 0, w/2, then f is univalent in D, and each bounded comple-
mentary component of f(D) is met by each horizontal and each vertical line in
at most a single segment (or point).

The proof of this result is not essentially different from that of Lemma 2.

7. Let us denote the functions f(z; D, m, p, 0), f(z; D, m, p, =/2) for
brevity by 1(2), ¢(2), and let f € F(D; m, p) or £(D;m, p). Let the values
of the length L corresponding to I, q, f be denoted by Ly, L , L. Let S'(f, &)
denote the image of S(f, @) under the mapping w = f(2). Let L minus the
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area of f(D) be denoted by A, L minus the area of S'(f, 0) by A*. The
former will be called the complementary area of f(D). Let the mapping
defined on the Riemann image ® of D under f by ¢f * be denoted by V. On
S’ (f, 0) we can use the plane variable w as local uniformizing parameter and
denote the function by V (w) (not necessarily globally single-valued).

If ¢ (v) denotes the subset of 7(v) which is the image of s(v) under f, we
have, apart from a finite number of values of v

(22) QV'(w) du = L, .

o(v)
Let E (f, ) be the complement relative to D of S(f, &), and E* the area of
the image of E (f, 0) under ¢q. Integrating (22) with respect to v over the
interval 0 < v < 1 we obtain

(28) [ avi(w)dde = L,
87 (1,0)
where dA,, has its usual meaning. On the other hand,
24 dA, + A* = L,
(24) f /S'<f,o) +
(25) ff | V'(w)[*dA, + E* = L.
5" (1,0)

Combining (23), (24), and (25) we obtain
(26) f[ | V'(w) ~1[dA, + E* = L — L, — A%
87(£,0)
and transferring the integral to the z-plane we get
(27) [ 1¢@) —r@)Pad. + B = L - Lo — 4%,
8(7,0)
where dA, has its usual meaning.
Let the function fI™* defined in (D) in the ¢-plane be denoted by H (¢).
For all but a finite number of values of n, 0 < n < 1, the intersection ¢ ()

of the line 9¢ = # with [ (D) will consist of a finite number of segments of
total length L; . We see at once for these values of 4 (¢ = & + 79)

(28) f( ) ®H'(¢) di = L.

v(n
Integrating (28) with respect to # over the interval 0 < n < 1 we obtain
(29) [[ e aa =1,

1(D)

where dA; has its usual meaning. On the other hand,
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(30) ffl(m dd; = I,

31 ") dA; = L — A.
(31) ffl(mm(r)l A; A
Combining (29), (30), and (31) we obtain
(32) [[ 1E@) —1pa =1 - L - 4,
(D)
and transferring the integral to the z-plane we get
(33) ff If'(2) — V(2)]*dA, = L, — L — A.
D

Summarizing these results we have

TaEOREM 2. Let f ¢ F(D; m,p) or £ (D;m, p), and let f (z; D, m, p, 0),
§(z; D, m, p, 7/2) be denoted respectively by 1(2), q(2). Let the values of L cor-
responding to I, q, f be denoted respectively by Ly, Ly, L. Let A be the comple-
mentary area of f(D). Then

ffs(m) |¢'(z) — f'(2)[ dA. + ffmo) | ¢'(2)|"dA.

. _ _ _ ’ 2
L —In—4A ff,;(f,m'f(z)' dd.

(34)

(35) f[D 1§(2) = V() dAs = In — L — A.

Analogous formulae hold interchanging the roles of 1(z), q(2), namely

/fsu,«/z) |V(2) — f'(2)]" dd. + ffn(f,,r/z) | V(2)[* dA.

—_ T, — A — ’ 2
~nL-L—A- [ irefa,

(36)

(37) ff,, 17(2) — () dA, = L — L — A.
Formula (34) is a trivial modification of (27). Formulae (36) and (37)
are obtained by completely parallel arguments.
LemMA 6.  In the notation of Theorem 2, if m = p = 0, we have
&/l ()7 () >0 for z in D.
The first step in our proof is to verify that the function

cos al(z) — isin @ q(2)
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is univalent for each value of @, 0 = a < 27. The image of a boundary
component C;, j = 2,--+, n + 1, under this function lies on a segment
parallel to the real axis. We will examine now the image of C;, treating
for definiteness the case 0 < a < 7/2. The situation in other cases is com-
pletely analogous. As z describes the arc P; P, , its image point w describes
an arc o; which meets each horizontal and each vertical line at most once
and runs from the origin to the point L; cos o — 7L, sin a. As z describes
the arc P, P;, w describes an arc o, which meets each horizontal and each
vertical line at most once and runs from the preceding point to the point
(Ly cos o + sin o) + i(cos @ — L sin o). As z describes the arc P; Py, w
describes an arc ¢; which meets each horizontal and each vertical line at most
once and runs from the preceding point to the point sin a + 7 cos a. As z
describes the arc P, P;, w describes an arc o4 which meets each horizontal
and each vertical line at most once and runs from the preceding point back
to the origin. The arcs o; described in succession form a closed curve vy
which lies in the rectangle R:

0=<u=Licosa-+ sin aq, —ILysina < v = cos a.

Forj = 1, 2, 3, 4, let 7; denote the arc composed of parts of two sides of this
rectangle joining the end points of o;. The degree of v about a point ex-
terior to R is evidently zero. For a point w interior to R

Adj (arg (w - wO)) = A‘rj (arg (w - wO))’ .7 = ly 23 3’ 47

this being the usual notation for the increment in the argument. Thus
the degree of v about any point is at most one. From these facts about the
images of the C; it is immediate that the given function is univalent.

Now as in the proof of Lemma 3 it follows that ® (I'(2)g' (2)) # 0 for
z in D.

Finally we observe that ® (I’ ()¢’ (2)) > 0 for points in D near the boundary
and thus everywhere in D.

CoroLLARY 2. Let A, 1, q, Ly, Ly, L be as in Theorem 2. Let + v = 1,
B, vy = 0. Then

A4+ B—vL

is mazimized in the class F (D; m, p) uniquely for the function Bl + vq. The
value of this maximum is 'L, — v'Ly. If m = p = 0, the function Bl + vq
is univalent, so the same result is valid for the class £(D;m, p). Moreover in
this case Bl + yq maps D onto a domain each of whose finite complementary
continua s met by each horizontal and each vertical line in at most a single
segment (or potnt).

Setting f = ¢ in (35) we find

(38) [[ 11 —q@rad. = - 1.
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Now multiplying (35) by 8, (37) by v, and adding we find
’ 7 2 ’ o 2
o [[ 17 —v@ras+y [[ 176 - @ aa.

=.3L1—'YL2"‘(5_’Y)L—A.

(39)

If we use (38), this is equivalent to

s [ 17 —v@Fad+y [[ 176) - ¢@Paa.
(40) —or [[ 1 — @l A+ - L

= L — Lo — v [[ 110) — @) ad..
Now

8 [ 157G —v@Pas, +4 [[ 176G - g aa,

—ov [[176) —¢@fas. 2 o,

with equality only if
=Bl + g,
while the right-hand side of (40) is equal to

Agy = (B — ) BLr + vL»),

where Ag, is the value of A for the function 8l + vg. This completes the
proof of the first statement in Corollary 2.

The value of this maximum is derived by setting f = Bl 4+ vyq in (39) and
using (38). In this connection we observe the equality

Agy = Br(Ia— L) = oy [[ 17() — ¢ aa..

Taking f to be the function Bl 4 ¢ in the formulae of Theorem 2, multi-
plying (34) by v, (385) by 8, and adding we obtain

8 [[1v@ - ¢@r sty [ 1e@r aa.

+6 [[ 10G) — ¢ as. + v [ 180 + 20 () aa.

= —Ap, + 28v(Ls — Ly),



ON SOME SPAN THEOREMS 117

where S, E stand respectively for S(8l + vq, 0), E (8l + v¢, 0). This re-
duces to

v [ lae@Fad+ o [[ 160G + 0@ aa.

—gv [[ 10 - ¢Faa. =,
and further to
() (47 = [[ w@ras+ 26y [[ at@renas.-o.

In the case m = p = 0 we have by Lemma 6 that both integrals on the
left-hand side of (41) are positive unless E (8l + vg¢, 0) is void. Thus this
set must be void. A similar application of (36) and (37) shows that
E (Bl 4+ ~vq, w/2) is likewise void under these conditions. Thus by Lemma 5
the function 8l + vq is univalent. Moreover the mapping w = Bl(z) + vq(2)
carries D onto a domain each of whose finite complementary continua is met
by each horizontal and each vertical line in at most a single segment (or
point).

Finally we remark that we could have normalized the mappings of
F(D; m, p) and £(D; m, p) so that the exterior horizontal dimension of the
image rather than the exterior vertical dimension was fixed.
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