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1. Introduction

In [8] Toponogov proved a theorem relating the angles of a triangle in a
Riemannian manifold V to those of a triangle having the same lengths of sides
in the simply connected two-dimensional space which has constant curvature
equal to the lower bound of sectional curvatures of V. Toponogov’s proof
used a theorem of Alexandrov for surfaces. But for triangles whose side-
lengths are not too big in comparison to the upper bound of sectional curva-
tures of V, Toponogov’s theorem is equivalent to Rauch’s metric comparison
theorem [6, p. 36]. In this article we want to give a new proof of Toponogov’s
theorem, a proof using only Rauch’s metric comparison theorem. Strictly
speaking the proof will use too a slight extension of Rauch’s theorem; this
extension will be proved in 2 as Theorem 1. In itself, this extension is of
interest; we give in 3 a first application of it as Proposition 1. In 4 another
application of the extension is a very short proof of a theorem of Toponogov
concerning manifolds of maximum diameter: Theorem 2 below. And in 5
we give the new proof of Toponogov’s theorem.

2. The extension

Definitions and notations are those of [1], [2], [3]. Moreover by Sn() we
shall denote the simply connected n-dimensional manifold whose curvature is
constant and equal to (and S.() S()); that is, if > 0, a sphere; if

0, a euclidean space; if < 0, a hyperbolic space. In this paper V will
always be a complete Riemannian manifold of dimension n whose sectional
curvatures form a set curv(V) satisfying =< curv(V) -< 1. Rauch’s metric
comparison theorem works with a one-parameter family of geodesics of V
issuing from a fixed point p e V and asserts (if some nonconiugacy hypothesis
is verified) that the length of the curve of V built up by the extremities of the
geodesics of the family is less than or equal to the length of the curve built
up by the extremities of the one-parameter family of geodesics in Sn() asso-
ciated in a natural way with the starting family in V. Now it can be helpful
to have an analogous theorem in which the family of geodesics one works
with is formed by geodesics whose starting points run through a given geo-
desic, and which are orthogonal at these points to the given geodesic. We
shall now write down in a more precise way the material for the theorem we
anticipate.
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Let F Iv(s)} (0 <= s -< l) be a geodesic of V, and A(s) /k(t, s)/a
one-parameter family of geodesics of V such that (a) 0 _-< s -< l; (b)
0 =< -< m(s); (c) for any s, k(0, s) ,(s); (d) for any s, (k’t(O,s),’r’(s)} 0;
(e) for any s, V, (8) (),’t (0, s)) 0. Build up in S() the natural associated
situation in the following way. First let {(s)} (0 =< s <- l) be any fixed
geodesic of S() of length equal to l, and let X e T (0) be any fixed unit vector
tangent to S() at the origin (0) of r and normal to F. Let
{X(s)} (0 -< s =< l) be the field of vectors tangent to S() along F defined by
the conditions" (a) X(s) is continuous in s; (b) X(0) X; (c) for any s,
X(s) is normal to at (s). Now one can define uniquely a one-parameter
family _(s) l(t, s)} of geodesics in S() bythe following conditions" (a)
0 -< s -< l; (b) 0 _<_ _<_ m(s); (c) (0, s) (s) for any s; (d) for any s,
t(0, s) X(s). The extension of Rauch’s theorem concerns the curves

f {o(s) (m(s),s)} and {(s) (m(s),s)} (0 -<_ s -<_ l)

which are the loci of the extremities of the geodesics A(t) and _(t),
respectively.

THEOREM 1. If for any s, m(s) <- r/2, one has for the lengths of and the
following relation" l() <- l().

The proof is that given in [6, pp. 36-39]; we shall only indicate the differences
due to the fact that one is working with a family of geodesics which are no
longer issuing from a fixed point. What corresponds to the nonexistence of a
point coniugate to p on the geodesics issuing from p is now the nonexistence
of a focal point for the set of geodesics normal to I’. Four differences are now
to be noted. First, in Sn(1) a first focal point is always at distance r/2.
Second, the fundamental lemma [6, p. 32] is still valid when the nonconjugacy
is replaced by the nonfocal hypothesis, with the difference that one has to
replace the curve g(s) joining the endpoints by a curve g(s) normal to I’ and
ending at n(s) (notations are those of [6]); the validity of the fundamental
lemma, used for S,(1) and V, implies first that there are no focal points in V
at distance less than r/2, so that the hypothesis re(s) < r/2 will assure us of
the nonfocal-points-in-V hypothesis; now the fundamental lemma can be used
at its place (p. 38) in the proof of the metric comparison theorem. Third,
in line 5 from the bottom of page 38 in [6], one has now 2n’(0)’n(0) 0,
no longer because n(0) 0, but now because n’(0) 0; this is due to the
condition V,(8(X’(0, s)) 0 for the family A(s). Fourth, the passage to
the limit in the relation (62) of page 39 is not necessary because here one can
apply (61) directly since (0)(0) (0)(0) 1. Remark also that
the above proof works only for re(s) < r/2 for any s, but if one knows only
that re(s) =< r/2, one can use a trivial limit argument to conclude the proof.

It is of interest for 2 of this paper to know when l(f) l(). The
answer is easy; looking at Rauch’s proof, one sees that l(f) l() is equiva-
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lent to the fact that the two-dimensional submanifold of V formed by the
union of the A(s) is totally geodesic and of curvature everywhere equal to

3. About a lemma of Klingenberg
KLINGENBERG’S LEMMA [4, Theorem 1, p. 655]. Le V be a compac Rieman-

nian orienable manifold of even dimension such tha 0 < curv(V) =< 1; le$

C(p) denote he cu-locus of p in V. Then, for any p in V and q in C(p), one
has d(p, q) >-_ r.

One can ask about the validity of Klingenberg’s Lemma when the hypothesis
is weakened to 0 =< curv(V) -< 1. From [5] one knows that the answer is
still yes when the dimension of V is equal to 2. We shall not prove the
desired result but only the following weaker result:

PROPOSITION 1. Let V be a compac manifold, Riemannian, orientable, of
even dimension, such that 0 <- curv(V) _-< 1. Then if there exis $wo points
p, q of V such ha (a) q e C(p); (b) d(p, q) < , hen there exists a one-pa-
rameter family r() of closed geodesics of V such tha (a) < <
(b) for any , /(r()) < 2; (c) the union of the r(t) is a totally geodesic
submanifold of V of dimension 2 whose curvature is everywhere zero.

In fact Klingenberg’s proof of his lemma is based on this" If there exist
p, q e V such that d(p, q) < r and q e C(p), then there exists a closed geo-
desic F l(s)} (0 =< s =< l) of length =< 2, enjoying the property that
there does not exist a sequence of curves of lengths < l(F) and converging
toward F. Now by an old trick of Synge [7], there exists a field Y(s)}
(0 <- s <- l; Y(O) Y(1)) of unit vectors such that (a) for any s, Y(s) T
(b) for any s, (Y(s), "’(s)) 0; (c) for any s, V, Y(s) O. Define now
a one-parameter family of geodesics of V"
0 _-< _-< /2; 0 =< s =< l) by the conditions" (a) for any s, ,(0, s) ,(s);
(b) for anys,’(0, s) Y(s). Put2 {X(,s)} (fixed;0 -< s -< l).
Let now be a line of length equal to 1 in the euclidean plane S(0), and along
let/ be the continuous family of lines of length and orthogonal to ; call
the locus corresponding in S(0) to

() (
But Theorem 1 yields

() <_- ()

What one said above about Klingenberg’s argument implies that there exists
an > 0 such that, for any such that 0 -< -< e, one should have 1(2) 1.
So equality has to be attained in Theorem 1, and we saw after the proof of
the theorem that this implies that the union U h(s) (0 -<_ s -< 1; 0 =< <- e)
is a totally geodesic submanifold of V, of curvature zero. One can write

A(s) U0__ 2 and so2 r() (0 _<_ <- ) isa family of geodesics
having the property required in the conclusion of Proposition 1 except that
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ranges only over [0, el. But changing now the field {Y(s)} into the field
{- Y(s)} will give the same property for running over [7, e] with r < 0 and
e > 0; one can repeat the above argument with 1 () and 1 (e) one knows,
moreover, that the limit of closed geodesics of the same length is a closed.
geodesic of the same length. One thus gets Proposition 1.

Remark. Looking for Klingenberg’s lemma for an odd-dimensional simply
connected manifold of strictly positive curvature, one might think, as was
pointed out to us by L. W. Green, of constructing the Riemannian product
V )< V, which verifies the hypothesis of Proposition 1. But we want to
remark that this proposition will not help; in fact the cut-locus of
(p, q) V X W is easily verified to be

C((p, q)) (C(p) X W) u (V X C(q)),

where of course C(p) (resp. C(q)) means the cut-locus of p (resp. q) in V
(resp. W). And so the minimum distance of (p, q) to its cut-locus (which
is used in Klingenberg’s argument) will be attained exactly for points (r, s)
where r p and s minimizes the distance between q and C(q), or s q and
r minimizes the distance between p and C(p). In one of these situations the
existence of a totally geodesic submanifold asserted by Proposition i is trivial.
See also M. BEIGER, On the diameter of some Riemannian manifolds, Depart-
ment of Mathematics, University of California, 1962.

4. Manifolds with maximum diameter
Let V be a complete Riemannian manifold such that 0 < t -< curv(V).

According to Bonnet’s lemma, V is compact and of diameter d(V) <= r//.
In [8] Toponogov proved the following:

THEOREM 2 (Toponogov). If d( V) r//, then V is isometric to S,().
We want to give a proof of this result using only Theorem 1. One reason

is that it is a very quick one. Another, essential, reason is that we shall use
Theorem 2 to prove Toponogov’s theorem (Theorem 3 below), whereas
Toponogov’s proof of Theorem 2 used Theorem 3.

Let p, q be two points of V such that d(p, q) r//, and fix a shortest
geodesic F {(s)} (-r/2/i __< s -<_ r/2/i) from p to q, p ,(-r/2/it)
and q (/2/it). Put r 3’(0), and pick any X such that (a) X II 1;
(b) X e Tr (c) (X, ’(0)) 0. Define a field

{x(s)} (-/2/ __< s <- ./2V)

of vectors along r by the conditions: (a) X(0) X; (b) for any s,
V,(,) X(s) 0. Define a one-parameter family of geodesics of V by
A(s) {X(t, s)} such that (a) -r/2/it _-< s -<_ r/2/i; (b) }t(0, s) (s);
(c) h’t(0, s) X(s); (d) 0 <- <= f(s), wheref(s) isa function of s which
has to be such that, if one builds up, as explained in 1, the situation with
i, , , , -(s) in S(i) (^ instead of -), then the curve corresponding to
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2, {k(f(s), s)} is a shortest geodesic in S(i) from i to whose midpoint is
at distance k/2 from . By Theorem 1, one then has 1(2) _<_ l()
But2 connects p, q, so l(2) >- d(p, q) v//i; so one has to have 1(2) l’:).
From what we said after the proof of Theorem 1, this implies that all curves
2,, for all X in T as above and all k e [0, 1], are shortest geodesics from
p to q; moreover, all Jacobi fields along r and vanishing at p are the same as
in S(5). One can repeat the same argument replacing 1 by uny of the 2,;
from this one deduces easily that all geodesics starting from p in V reach q
at length //5, and that all Jacobi fields along them are the same as in
Sn(5). This (see [6, p. 21, (26)]) implies an isometry between S.(t)
and V q; but the angles between geodesics starting from p are the same
when they meet again in q; so one has the desired isometry.

5. Toponogov’s theorem
We want now to give a proof of Theorem 3 below, which is almost equiva-

lent to a theorem of Toponogov [8, Theorem 1, p. 719]. Toponogov’s proof
rests on a theorem of Alexandrov for surfaces; ours will rest on Rauch’s metric
comparison theorem and Theorem 1 above.

THEOREM 3 (Toponogov). Let V be a complete Riemannian manifold whose
sectional curvature set curv(V) satisfies <- curv(V) <= 1 (where is any real
number <= 1). Let p, q, r be three points of V, and let r {,(s)}
(0 <- s <- d(p, q);/(0) p) (resp. A {(s)} (0 <= s <- d(p, r);k(0) p))
be a shortest geodesic segment of V from p to q (resp. from p to r). Let in S
three points , , and two geodesics (s) (0 _-< s _-< d(p, q) (0) /),
h {k(s)} (0 <-_ s <- d(p, r); k(0) /) be such that (a) (, ) d(p, q)
and (, ) d(p, r); (b) (’(0), k(0)) (/(0), X’(0)); (c)
is a shortest geodesic from to (resp. from to ). Then one has

d(q, r) <- (, ).

Remark that the condition curv(V) -<_ 1 is not a restriction but merely a
normalization of the upper bound (if it exists) of the set curv(V) because in
the following we shall always work in compact subsets of V, such a normaliza-
tion can be always assumed.
An outline of the proof can be the following one" According to Theorem

2, Theorem 3 is trivial if d(V) r//i; hence, one can assume d(V)
Theorem 3 is proved first for triangles such that d(p, q) < r/2 and d(p, r)
r/2; this is a direct consequence of Rauch’s metric comparison theorem
(see Lemma 1). Then Theorem 3 is proved (Lemma 5) for triangles such
that d(p, r) is little enough in comparison to d(p, q) and (,(0), ,(0)) _-< 0;
the proof uses Theorem I and Lemma 1. Then Theorem 3 is proved (Lemma
6) for triangles such that d(p, r) is little enough in comparison to d(p, q)
(no further condition); the proof is a reduction to Lemma 5. Finally one
proves Theorem 3 in general by putting points p, p:, p- on A such



EXTENSION OF RAUCHS METRIC COMPARISON THEOREM 705

that Lemma 6 applies to all triangles pi, pi+l, q and using a device to go
from p, p+l, q to p+, p+2, q.

In the remainder of the paper, notations and hypotheses are tacitly as-
sumed to be those of Theorem 3. As done in [1, p. 96, Theorem 6], we remark
first that, from Rauch’s metric comparison theorem, one deduces immediately
the following:

LEMMA 1 (Rauch). In the circle of unit tangent vectors to S() at , there
exists a unique shortest arc connecting .’ (0) and ’(0) if .’ (0) ’ (0) (or
two if "’(0) --’(O) call it (or either one of the two). Then Theorem 3
is true under the following additional condition" There exists a shortest geodesic
segment of S() from to such that every geodesic of S() which starts at
with a tangent vector belonging to o and ends at , is of length <= r. Moreover,
this condition is always fullfilled if d(p, q) <= r/2 and d(p, r) <-_ r/2.

The last assertion can follow from a look at S(8) for 8 =< 1; it is a con-
vexity property on S(i).

In the following, when two different points i, of S(8) are given with,
moreover, a shortest geodesic from i to , by S(8)/2 one will always mean
the closed half of S(8) built up by the points of S(i) which lie to the right
of the full geodesic which covers .
LEMMA 2. Let , (l be two points of S(), and a shortest geodesic in S(

from to . If > O, suppose moreover that ((, ) < r//. Let

(with a < /V/ if > O) be the semicircle of S(8)/2 of center and of radius
a, and take for parametrization l(t)} (0 <- <- ) of the angle at
between and the unique shortest geodesic from to d(t). Then, when grows
from 0 to v, the function d(, (t) is strictly increasing.

Put n and call the point other than where ; meets the geodesic
of S(i) which covers ; then d(, ) < d(, ), because is the unique short-
est geodesic from $ to . Suppose first, for any e [0, ], that there is a
unique shortest geodesic )(t) from to (t); then the exponential map

T -- S(i) is regular on , so f(t) d(, (t) is a differentiable function of t.
If this function were not strictly increasing in t, from f(r) > f(0) it would
follow that there would exist a to e ]0, [ such that f(t0) is a critical value and
one would have the geodesic (t0) meeting at right angles at (t0). Then
the union of (t0) with the shortest geodesic from/ to (t0) would be a geodesic
from/ to making an angle ]0, [ with 15 at ; such a thing never happens
on an S(8) except when 8 > 0 and/ and are antipodal, but one had as-
sumed d(/, ) < r//; so the lemma is proved in this first case. If now
the exponential map T -- S(ti) is not regular on , it can only happen if
and are antipodal; but then d(a(t), ) // d(, (t)). Because,
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for any t, (, (t)) < r//i, one can apply the proof above to and ;;
replacing by r t, one gets the lemma in this case.

LEMMA 3. Let K be a compact subset of V. Then there exists a strictly
positive real number vr: with the following property" Let p, q, r be any three
distinct points in K such that d(p, q) d(p, r) < vr:. Then, if q I(t)l
(0 <= <= d(p, q);q(0) q) (resp. /(t)} (0 <= <= d(q, r); (0) q))
s any shortest geodesic from q to p (resp. from q to r), one has q’ (0), b’ (0) } > O.

One knows [9] that there exists, for any x e V, a real strictly positive number
a such that d(x, y) >= a for any y e C(x). Put a infK(a); because
of the compactness of K, one has a > 0. Let vK inf(a/2, r/2); then
y > 0. We prove now that / satisfies the requirements of the lemma.
The idea is to use Rauch’s metric comparison theorem for V and S.(1);
notations will be those of [1, p. 96]. Let , , , li(t)t (0 <= <= d(q, p);
(0) ), /(t)t (0 <= <= d(q, r);(0) ), be the elements of
S.(1) corresponding to q, p, r, b, xI,. Call Ia(t)l (0 <= <= d(p, r)) a
shortest geodesic of V from p to r; from d(p, q) d(q, r) < , one deduces

d(q, (r(t) <- d(q, p) -b d(p, a(t) <= d(q, p) A- d(p, r) < 2 <= aq

so the exponential map Tq --+ V is regular on 2;, and so there arises the one-
parameter family O (t) formed by the unique shortest geodesic 0 (t) from
q tour(t) (0 <-_ <- d(p,r); O(0) ; O(d(p,r)) I,);onecanapply
Theorem 6 of [1, p. 96], because for any t, d(q, a(t)) < 2/K _-< r. So for
the curves 2;, ; of this theorem, one gets l(;) =< 1(2:). But ; has ib and
as end points in S,(1), so

l(Z) d(p, r) d(p, q) >- (,
So, on S.(1), d(iS, ?) -< 3(15, ) < /2 (by the choice of y); a look at S(1)
shows that this implies (’(0), ’(0) > 0. But

’(o)>
which proves the lemma.
For the moment, we confine our attention to S(it) only, with i, being

points on S(it), and a shortest geodesic on S(i) from/ to , and consider,
too, the corresponding S(it)/2; if it > 0, suppose, moreover, that
m (i, ) < rv/. Call the complete geodesic of S(it) which covers .
LEMMA 4. There exists a strictly real positive number r(m) having the fol-

lowing property: For any such that ((, ) <= r(m), there is a unique shortest
geodesic from to , which meets ? at with an angle < r/2 and has the prop-
erty that every point z verifies ((z, f’) <= r/2 (where ((z, ) is the infimum
of the distance of z to any points of ).

If/t > 0, one can find r(m) in the following way" Let ) be the geodesic
of S(t)/2 which starts from and whose maximal distance to 1 is exactly
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r/2. Draw then the semicircle of S()/2 which has/ as center and is
tangent to ). Clearly the radius r(m) of fulfills the requirements of the
lemma in this case. If -<_ 0, put the point on so that/ is between
and and (, ) /, where k is a given strictly positive constant. Let
be the point of S(i)/2 which, on the perpendicular to at , verifies

(, ) /2. Draw the shortest geodesic ) from to 0; then draw the
semicircle of S(ti)/2 of center i and tangent to ); clearly its radius r(m)
fulfills the requirements of the lemma.
One can refine the lemma by means of the following remarks"

(A) i _<_ 1 and d(z, 1) < v/2 implies that there exists a unique
geodesic starting from z and meeting ] orthogonally at a distance r/2.

(B) As chosen in the proof of the lemma, the function r(m) is contin-
uous in m.

(C) From Remark (B) one sees that there exists, for any m such that
0 < m < v//i, a real number s(m), which is strictly positive, continuous
in m, such that x < s(m) implies 2x < r(m x).

(D) From Remark (C), one sees that there exists for any k, d such that
0 < k -_< d < r//i (if i > 0) a strictly positive real number e(k, d) such
that, for any m werifying k -< m _<_ d, one has s(m) >- e(k, d).

LEMMA 5. Theorem 3 is true under the following additional conditions"
(a) d(p, q) < r//; (b) (0), X(0)) < 0; (c) d(p, r) < r(d(p, q)) (where
r(d(p, q)) is the function defined in Lemma 4).

Let be the unique shortest geodesic in S(i)/2 from to " &(t)l
(0 _-< -<_ (, );&(0) ). From

d(p, r) ((, ) < r(d(p, q) r((, )
and from remark (A), one knows that there exists a unique geodesic from a
point &(t) e fi orthogonal to and of length < r/2; call it .(t), and call
(t) its foot on . Because of the acute angle conclusion in Lemma 4, there
exists a well defined to e [0, (, )[ such that (t0) i; and one has, for any

>= to, (t) e . Call (resp. ) the restriction of from to &(t0)
(resp. from to ). One has (/, &(t)) < /2 for any e [0, to] because
((, ) < r(m) <- r/2 and d(/, &(t0)) <: /2 (see Lemma 1).
Now build up in V a one-parameter family of geodesics A(t)l

(to __<t<__ (,)) defined as corresponding to the family l-(t)/ (to-<_
_-< (, )) in S(i) in order to apply Theorem 1. This can be done more

precisely as follows" Define first a unit vector Y(to) T belonging to the
two-dimensional plane of T generated by ’(0) and X’ (0) and such that

(,’(0), ’t(O, to)) (h’(O), Y(to)) and (/(0), Y(to)) 0

(in the case where 3" (0) h’ (0) this has no meaning; take then any unit
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vector Y(to) orthogonal to ,’(0)). Then define {Y(t)} (to -<_ __< d(, ))
by the condition V,(t) Y(t) 0 for any e [to, d(, )]. Then define
as starting at k(t), having at (t) the above-defined Y(t) as tangent vector
and the same length as . (t). Call s the end of A(t0).
From Theorem 1, one has d(s, q) <= l() <-_ l(5) d(, (). One saw

above that it is possible to apply Lemma 1 to p, r, s, A, h(t0), from which
it follows that d(r, s) <- d(’, ). By adding we obtain

d(r, q) <-_ d(r, s) + d(s, q) <- (, ) + (, ) (, ).

LEMMA 6. Let p, q be two points of V such that, if > 0, d(p, q) < //.
Let K Ix V Id(x, p) <- r(d(p, q))l, and let vK be the number associated
with K in Lemma 3. Then Theorem 3 is true under the following condition"
r is such that d(p, r) < inf (vK/2, s(d(p, q)) (where s(d(p, q)) is the function
defined in Remark C above).

Define a point sofVby (a) set; (b) d(p,s) d(p,r). One has
p, r, s e K, and one can apply Lemma 3 (note if r s, Theorem 3 is trivial,
so one can always assume r s; and then Lemma 3 is applied to the set
p, s, r instead of p, q, r). Use the corresponding notations of Lemma 3,
so that {(t) "(d(p, s) t)} (0 <- <= d(p, s)). One hasa shortest
geodesic {(t)l (0 <= <- d(s, r)) from s to r such that

(,’(0), k’(O)} -(/(d(p, s), ’(0)} > O.

Moreover, by the definition of s(m) in Remark (C), one has

d(s, r) <- d(s, p) - d(p, r) 2d(p, s) < r(d(p, q) d(p, s) r(d(s, q) ).

So the conditions of Lemma 5 are fulfilled for the set s, q, r, F1, I, (where
F1 means the restriction of I from s to q). But one has to be careful to
define corresponding elements in S(it)/2; there is no problem for , , x c .
Define , c S()/2 as a geodesic starting from and such that

(’(0), "’(d(p, s) )> (b’(O), /(d(p, s)

then define as (d(s, r)). Lemma 5 asserts that

(1) d(q, r) <-_ (, ).

One needs now to compare (, 1) with (, ) (where is the point de-
fined in Theorem 3). Do that, defining first a point e S(i)/2 by the
twoconditions: (, .) d(p,r) (, )andd(, ) d(r,s) ( ).
One can apply Lemma 1 to the set p, s, r, A, F (where F is the restriction
from p to s of F) and the corresponding set in S(i): i, , , ., this is
possible because d(p, s) < /2 and d(p, r) < /2. One gets

(2) d(r, s) <- (, ).
Call a (resp. ) the angle at i between and (resp. between and the
shortest geodesic from/ to ); apply Lemma 2 to the semicircle of center
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/ and radius equal to d(p, r) and the point ; one gets from (2) that a >- .
Apply (in the other logical sense) Lemma 2 to the semicircle of center /
and radius equal to d(p, r) but now for point ; one gets d(, ) <- d(, ).

Call (resp. i) the angle at between and the shortest geodesic from
to . (resp. between and ); we claim that >= % In fact, apply Lemma

1 to s, p, r, , I, and the corresponding set , i, 1, , in S(); this is pos-
sible because, from the definition of s(m), d(p, s) < 7/2 and d(s, r) < r/2.
Lemma 1 yields d(p, r) <= (, ) c(, .). Apply this inequality to
Lemma 2 for the semicircle of center and radius equal to d(r, s) and for
the point/; one gets the claim i >__ ,. But now apply, in the other sense,
Lemma 2 to the semicircle of center of radius d(r, s) but for the point ;
one gets d(, ) -< (, ) (Note, in fact, that the angle at between
and any geodesic is equal to v minus the angle between this geodesic and

..) Finally, from (1), one deduces

d(q, r) <- c(t, ) <-_ c(, .) <- c(l, i’).

Proof of Theorem 2. Let p, q, r be any three points of V. If d(V) /’,
according to Theorem 2, one knows that V is isometric to Sn(); so Theorem
3 is fulfilled with equality. Henceforth, assume d(V) d < //i. Define

k infzA(d(z, q)).

If k 0, then q e A, and so A covers F, and then the theorem is trivial. Hence-
forth, 0 < ] -<_ d < r//i. Let (k, d) be the corresponding number
introduced in Remark (D) above. Let, for z e A,

Bz {xeVld(x,z) _<_ e} and K (.JzABz.

Let be the strictly positive real number associated in Lemma 3 with the
compact subset K of V. Put " rain(e, ). And put points

P Po p Pi, pi+ Pk- p r

in finite number onAso that, for any i= 0,1, k --1, one has
d(pi, p+) < . Let F be a shortest geodesic from p to q, and call A the
restriction of A from pi to p+. Then remark that the choice of the p as-
sures us that each set p, q, p+, F, A fulfills the hypothesis of Lemmu 6.
In fact, for any i 0, 1, k 1,

d(p p+) < min(, v) min(, s(d(p q)

by the choice of remark (D) above and the remark that K B.
An outline of the proof is the following" One will build up in S()/2 by

induction, points r, (i 0, 1,..- 1, ) which will satisfy

d(, ’ ’r+) (, +1) and (, +) (, r).
In the last step, one will get d(q, r) (, ); and the beginning being
r0 , there will follow the required

d(q, r) < (, "’ ’r) d(i, r0) d(i, ).
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Construct first and r to see how things work. In S(t) let, for the
beginning,/, , , , be defined as in Theorem 3. Let/ on / be such
that c(p, ) d(p, p). Then define a point ’ in S()/2 by the con-
ditions

(, tl) (, I) d(p, p) and d(, ’) d(q, p),

in order that the triangle , , ’ in S()/2 have the same side-lengths as
the triangle p, q, p in V. Call the unique shortest geodesic from to ’(uniqueness follows from the choice of r(m) and d < /). Call the
unique shortest geodesic in S() from to , and call the point of S()
which is, on the geodesic starting from $ and covering , at the distance
d(p, ) d(p, r) from . Define as the geodesic which, in the half space
S()/2 associated in S() with the triple $, , , has length l()
d(p, r) and meets at $ the geodesic with the same angle as A does with

’ ’ ’ ’ ) d( )r. Call r the end of ;note that (’, r) d(p,
d(p, r). (In this situation, one can prove that (, r)" ((, )
(, ). But it will be a particular case of the following induction.)
Now such a process can be continued inductively; suppose one has de-

’ ) fori 1, k-- 1fined , , , (and additionally, p, , r,
One defines the next set as follows" The point + is on with the con-
dition (, p+) d(p, p+). Then p+ is in the half space S()/2
which is associated in S() with the triple , , i, and subject to the two
distance conditions

(Pi, Pi+l) d(p, p+) and d(p+, ) d(p+, q),

which express that the triangle p, p+, of S()/2 has the same side-
lengths as the triangle p, pi+, q of V. Then define + as the unique
shortest geodesic from to + and after, define+ as the geodesic which,
starting from p, covers the unique shortest geodesic from to Pi+ and
whose length is equal to d(p, r); call its end +. Denote now by ’+
the geodesic in S()/2 which has length l(+) d(pi+, r) and meets
in p+ the geodesic + with the same angle as A+ does with F+; and
denote the end + by r+. Remark that

One claims now, for each i 0, 1, k 1, the inequalities

(3) d(i, ,+) d(i, r),

() d(i, r+) d(i, +).

Devices here are quite similar to the proof of Lemma 1. First apply
Lemma 6 to the set pi, q, pi+l, F, h; the corresponding set in S(i) is
Pi,Ar ,/+1, . and the restriction of ’from i to/i+1. We saw above
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that this is legitimate; one gets d(q, p+l) <= d(O,/+1). But d(q, p+)
(pi+, ) by construction of p+, and so (, +) =< (, +). Call
a (resp. ) the angle at between and (resp. between and +);
apply Lemma 2 to the semicircle in S(5)/2 of center , radius d(pi, p+)
and for the point . From d(, p+) (, +), Lemma 2 yields a .
Again apply Lemma 2 in the other logical sense for the semicircle in S()/2
of center ’, radius d(p, r) and point ; one gets the above inequality (3).
One proves now the inequality (4). Call (resp. ) the angle at p+

(resp. at p+) between r+ and --A (reversed sense on A) (resp. between
+ and the restriction from + to ’ of --+ (reversed sense));remark,
by construction, that is equal to the angle at+ between + and -+
(this denotes a geodesic starting from p+, with direction opposite to that
of+ and of length d(p, p+) the end of -+ will be called ). Apply
now Lemma 6 to the set p+, q, p, F+, -A in V, and the corresponding
set in S(), +, , , +, -+ one gets d(q, p) (, ). But
d(q, p) (, ); apply now Lemma 2, using this inequality, to the semi-
circle of center +, radius d(p, p+) and for the point ; one gets .
mark now that and that v (resp. ) is the
ngle =t p+ between + nd + (resp. between + =nd +); nd
apply then Lemma 2 to the semicircle of center +, radius d(p+, r) and
for the point ; one gets exactly (4).
From (3) and (4) and a trivial induction, it follows that

(5) (, r) (, r) (, ).

But apply Lemma 6 to the set p, q, p r, F_, h_ in V, and the cor-
responding set p_, , p r,

_
in S(); one gets

r) =< "’).
Now Theorem 3 follows from (5)o
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