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1. Introduction
Our principal aim is to present results relating the classical theory [2], [4]

of the Lagrange problem to topics of current interest in differential geometry.
We also sketch a reformulation of the classical theory in differential-geometric
language, guided especially by E. Cartan’s treatment of the ordinary varia-
tional problem in [7].

Let B be a manifold, let T(B) be its tangent bundle, and let M T(B) X R
(R real numbers). An ordinary variational problem is defined by a
Lagrangian, i.e., by a real-valued function L on M, denoted by L(v, t),
v e T(B), e R. Such a function defines by integration a real-valued func-
tion L on the space of curves of B. The extremal curves are the solutions of
the Euler equations, i.e., the "critical points" of the real-valued function
L defines on the space P of curves of B joining two fixed points. However,
in the regular cases the extremals can be defined without reference to co-
ordinate systems as follows" There is a vector field on M such that the
projection in B of its integral curves are the extremal curves. Further,
there is a closed 2-differential-form on M which is an "invariant integral"
of the vector field, i.e., the orbit space of M under the one-parameter group
generated by the vector field locally has a symplectic manifold structure.
In the nonregular cases, this 2-form is still defined, and the extremals in
B are the proiections of its characteristic curves.
A Lagrange problem can be formuluted as follows. In addition to the

Lagrangian L on M, a "constraint submanifold" S c M is given" The
extremals of the Lagrange problem are the "critical points" (in the sense of
infinite-dimensional differential geometry) of the restriction of L to the
space P(S) of curves of B joining two fixed points whose tangent vector
lies in S.
The formal extremals are the curves in B given by the classical Lagrange

multiplier rule which, in the regular cases, can be described as follows" Let
M be the vector bundle of normal vectors to S, a manifold of the same dimen-
sion as M. There is a vector field on Mr, again having a closed 2-differential-
form as an "invariant integral" whose integral curves projected in B are the
formal extremals. In the nonregular cases, the 2-form on M can still be
defined, and the formal extremals are the projection in B of its characteristic
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curves. (However, it is a nontrivial matter to prove that the extremals
are also formal extremals [2].)
The class of an extremal is a very important invariant, measuring a type of

degeneracy condition that does not occur in the theory of the ordinary prob-
lem. To describe it, suppose that M’ S R, where p dim M dim S,
and ha (1 -< a, b, -< p) are coordinates in R. There are 1-differential-
forms ta and 0 on S locally defined by the variational problem. A curve
z(t), 0 -< -< 1, is a formal extremal if and only if its tangent vector curve r(t)
in S satisfies" There is a curve ha(t) in R such that the curve (z(t), ha(t))
in M’ S X R" is a characteristic curve for the 2-form d(0 ha ta) on M’
and 0a(r’(t)) 0 (r’(t) is the tangent vector to r at t). These two condi-
tions are equivalent to the conditions

1.1.(a) Oa(r’(t) O, and

(b) r’(t) _] dO + (dha(t)/dt)Oa - ha(t)(’t(t) ._J dOa) O.

(If o is a p-differential-form on a space, v a tangent vector, v _J 0 is the inner
product or contraction of o by v, a (p 1)-covector of the space at the same
point as v.) The curve ha(t) is the Lagrange multiplier curve associated with
a. Notice that it is not necessarily unique" The difference Ua(t) of tWO
such multipliers satisfies

1.2. ua(t)(a’(t) _J dOa) + (dua/dt)Oa O.

This is a system of linear homogeneous differential equations for ua(t). The
dimension of the set of solutions is called the class of the extremal a. If it
is zero, P(S) may be thought of as being a "regular submanifold" of P locally
about a in the sense of the differential geometry of path spaces. On the
other hand, Carathodory has defined [5] an integer called the class attached
to a, whose vanishing ensures that all points close to a(1) can be reached
as end-points of formal extremals starting at a(0). These two notions of class
thus have different geometric meaning and are not necessarily equal. One of
our main results (Section 8) gives a sufficient condition that both classes be
zero. In general, these matters lie at the heart of what may be called the
"differential geometry of submanifolds of path spaces" and, although local
in nature, will be found useful in possible attempts to extend Morse theory
to the Lagrange problem.
Another topic we shall treat is suggested by the fact that the "space" of

all formal extremals of a Lagrange problem would be a symplectic manifold
if it were a manifold at all; hence the usual correspondence between func-
tions on the space of formal extremals and one-parameter groups of sym-
plectic automorphisms makes some sort of sense. We shall apply this idea to
prove the following result: Suppose X is a vector field on B such that the
one-parameter pseudogroup of diffeomorphisms of B generated by X, when
extended to T(B) X R M, leaves L and S invariant, i.e., maps extremal
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into extremals. Generalizing the same question dealt with earlier for Rie-
mannian geometry [14], we ask for the points b e B such that the integral
curve of X starting at b is itself a formal extremal. Modulo degeneracy
problems, the answer in the case where L and S are time-independent is
that they are the critical points of the function b ---. L(b, X(b)) restricted
to the submanifold b e B X(b) S} of B.

It appears that the most interesting special case of the Lagrange problem
occurs when L defines a Riemannian metric on B and where the constraint
manifold S is linear. We apply the general theory of the Lagrange problem
to this situation. We shall state here our principal results on this topic.

A. Let B be a Riemannian manifold, and let T(B) be the tangent bundle
to B. T B has a natural Riemannian metric defined by the Levi-Civita parallel-
ism. Consider the Lagrange Problem on T(B) obtained by taing the Rie-
mannian metric as Lagrangian, and the constrained curves as those which are
horizontal, i.e., perpendicular to the fibres of T(B). If ---> v(t), 0 <= <-_ 1,
is a minimizing curve for this Lagrange problem and ----> (t) is its projection
in B, then is the solution of the following variational problem on B:

Given tangent vectors Vo, vl e T(B), with bo, bl
is the shortest curve joining bo to b among the class of all curves joining bo to b
such that vo parallel-translates along the curve to

If and v define a formal extremal of this Lagrange problem, and is para-
meterized proportionally to arc-length, there is a vector field )(t) along such
that

(a) Vv- 0, (b) Vk- ’,
c R(’, u) (), v) 0 for all vector fields u ---+ u t) along .

v is the covariant derivative vector field of v along , ’ is the tangent vector
field to , and R( )is the Riemannian curvature tensor. (As a first ob-
servation, these equations are interesting because they involve the curvature tensor
directly at the first order, instead of at the second order as do the equations of
the geodesics.)

B. With the notations of A, suppose that X is a Killing vector field on B,
i.e., X generates a one-parameter pseudogroup of isometries of B. Let X’ be
the vector field on T(B) that is the first-order prolongation of X. Then, X’ is
a Killing vector field with respect to the metric on T(B), and preserves the ex-
tremals of the Lagrange problem on T B defined by A. Given a v T B
with b its projection on B, the integral curve of X starting at v is horizontal if
and only if

X=O.
Any integral curve of X is a geodesic of the metric on T(B) if and only if it is
horizontal and its projection into B is a geodesic. The integral curve of X’ at a
v T(B), satisfying V X 0 is an extremal of the Lagrange variational
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problem on T B defined in A if and only if there is a tangent vector at b such
that

1.3. (a) xX 0, (b) R(, v)(X(b)) x(b) X.

C. Now let B be a Riemannian manifold, and let H b Hb c Bb (Bb
tangent space to B at b) be any field of tangent subspaces of constant dimension
on B, i.e., H defines a Pfaffian system on B. Consider the Lagrange problem
of minimizing the length of curves which are integral curves of the Pfaffian
system H, i.e., satisfy

’ e H(t)

Such a a parameterized proportionally to arc-length is a formal extremal if and
only if there is a vector field h along a perpendicular to H with

where Q( is a tensor field on M determined by H. If B is complete, these
extremal curves can be extended indefinitely. There is a tensor field on M
whose vanishing is necessary and sufficient that every geodesic of M that is tan-
gent to H at one point be everywhere tangent. (This is a generalization of a
result of B. Reinhart [17] in the case where H is the horizontal field associated
with a foliation on B.) A real-valued function S on B is a solution of the
Hamilton-Jacobi equation associated with the Lagrange problem if

(grad S) F(S),

where - is the projection of vector fields on B parallel to H, where grad S is the
usual gradient vector field of a function defined by the Riemannian metric, where
X is the length function of the vector field X, and where F( is some function

of one variable. The corresponding field of extremals of the Lagrange problem
is formed by the integral curves of the vector field

(grad S).

2. Symplectic foliations

We continue the notations of [12] and [13], which we briefly summarize.
All manifolds, maps, curves, tensor fields, etc. will be of differentiability
class C unless mentioned otherwise. If M is a manifold (usually con-
sidered as connected and paracompact), Mx denotes the tangent space to
M at a point x. If M --. M’ is a map of manifolds, . Mx -- M(),for x e M, is the linear map induces on tangent vectors at x. In the special
case M [a, b] {teR’a -_< -< bl, i.e.,definesacurveinM’,’(t)
denotes the tangent vector to at t. Let V(M) be the set of vector fields
on M, considered as a module over the ring C(M) of real-valued C functions
on M and as a real Lie algebra with respect to the Jacobi bracket operation
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[X, Y]. If X is a vector field and is a p-differential-form on M, denote by
(a) X(o), the Lie derivative of by X, a p-form;
(b) X _3 , the inner product or contraction of o by X, a (p 1)-form;
(c) d, the exterior derivative of 0, a (p q- 1)-form.

Recall the following rules these operations obey (omitting the standard
bilinearity conditions). In the following formulas, X, Y, Z,... denote
vector fields, ol, 02, ..-denote differential forms.

2.1. X(ol h 2) X(I) h 2 q- h X(.)
h denotes the exterior product of forms).

2.2. IX, Y]() X( Y(,) Y(X() ).

2.3. X Y .3 0,) [X, Y] . 0, + Y _] (X(o)).

2.4. X(o) d(X . o) W X . do.

2.5. x ( ^ ) (x ) ^ + (-) ^ (x
(p degree 01).

Let H be a real subspace of V(M). For x e M, define

H, {v e M, lX e S such that X(x) v}.

A submanifold N of M is called an integral manifold of tt providing N,
for all x e N. (N, is to be identified with a subspace of M,.) In particular,
a curve [a, b] - M is an integral curve of tt if ’(t) e tt(,) for a _-< =< b.
For x e M, let

L Y M y can be joined to x by an integral curve of H}.

The following facts are proved in [13], and are standard if dim tI, is constant
for x e M.

2.6. Suppose that
(a) For every integral curve [a, b] --> M of H, dim H(,) is independent

oft, a<= <= b,
(b) [H, H] H.

Then for all x e M, L is a maximal connected integral submanifold of H with

L I-I for all y e H is said to define a foliation on M, and L is the
leaf of H through x. The foliation is said to be nonsingular if dim H is con-
stant for x e M.

2.7. Suppose that [H, H] H and that H is locally finitely generated in the
sense that each x e M has a neighborhood U with a finite-dimensional subspace Hv
such that every element of H can, in U, be written as a linear combination of
elements of I-Iv with coeffzcients from C(U). Then H defines a foliation on M,
i.e., 2.6(a) is satisfied.
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From now on, we shall denote foliations by F, and more general subspaces
of V(M) that are not necessarily subalgebras of V(M) by H. Let be a
closed 2-differential-form on M. Let

F {Xe V(M)’X
_

o 0}.
Note that the following facts follow from 2.1-2.5.

2.8. If X e F, then X(oo) d(X _J ) + X _J d O.

2.9. [F, F] c F.

2.10. If Y e V(M) satisfies Y(oo) rio, for f e C(M), then [Y, F] F.
Iffurther Y(o) O, then d Y _J ) O.

In this section, we shall assume further that

2.11. dim F is constant for x e M, i.e., the form o has constant ran] on M.

F then defines a (nonsingular) foliation on M, the characteristic foliation
of [9]. From 2.8, we see that o is a base-like form for this foliation and
defines a symplectic manifold structure on M/Y, the space of leaves of F,
if it is a manifold at all. (More precisely, suppose U is an open set of M
having a map " U -- B that is a decomposition map for the foliation F
restricted to U [12]. There is a closed 2-form coy on B such that

(a) *() , (b) ^ ^ coy (p-times) 0,

where 2p dim B dim M dim F.)
Suppose now that 0is a 1-formonM such that dO w. Let Ube an

open set of M. Adopt the range of indices 1 __< i, j, _-< n and the summa-
tion convention. Suppose (xi, yi, t) is a set of functions in U such that

0 y dx --H dr,

where H is a function in U that is functionally dependent on (xi, y, t).
0 will be said to be in Hamiltonian form. If H constant, and the (x, y, t)
are functionally independent, 0 will be said to be in normal form. Notice
then that X e V(U) is a characteristic vector field for dO if and only if

X(y) dx X(xi) dy X(H) dt + X(t) dH O.

Consider a (2n -t- 1)-dimensional Euclidean space R2n+1, with coordinates
(u, v, s). Construct a mapping U-+ Rn+l by the conditions"

u(4(m) x(m), v(4(m) y(m), s((m) t(m)

for m U.
Suppose that H’(u, v, s) is a function on Rn+l such that

*(H’) H.
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Then also *(0’) 0, where O’ is the 1-form v du H’ ds on R+. In
particular, maps a characteristic curve of dO w into a characteristic
curve of dO’. However, it is easy to see, by using 2.5, that the characteristic
curves of dO have the following properties"

2.12.(a) If has an everywhere nonzero tangent vector, its parameteriza-
tion can be changed so that it is defined by giving u and v as functions of s.

(b) u and v as functions of s satisfy the Hamilton equations with Hamil-
tonian

d OH’ d OH’ (u, v, s).d- u (u, , s), - v

Conversely, every solution of these equations determines a characteristic
curve of dO’. This provides the link with classical Hamilton-Jacobi theory.

is usually called a Legendre transformation. However, following Cartan
[7] we shall usually work with the more geometric differential-form formalism.
Suppose Y e V(M) satisfies Y() 0, and M has zero first Betti-number.

Since d(Y.J ) 0, there is a functionfreC(M) with dfr Y
A critical point x0, of fr, i.e., a point at which dfr O, is then a point for
which Y(xo) e Y Since [Y, F] F, this means that the integral curve of
Y starting at x0 lies in the leaf of F through xo, i.e., the integral curve is a
characteristic curve of .

Let Xo be a critical point of fr If X e F, notice that then

2.13. dX(fr) IX, Y] .J o zr Y .J X() 0; hence the whole leaf of
F through xo is a critical manifold for
The Hessian of fr at x0 is a symmetric, bilinear form h on M defined

as follows [1]: For v, veMo, let X, Xe V(M) be such that
X(xo) v, X(xo) v. Then

2.14. h(Vl, v:) X(X.(fr))(Xo). (It is easily seen that this is inde-
pendent of the X, X chosen.)

We see that

2.15.(a) For v e Fo,h(v,M0) O.
(b) Let h (resp. ) denote the bilinear form induced on M0/F by

h (resp. o). Since Y(xo) e 1 Y induces a linear transformation
lr Mo/Y --+ M0/Y by passing to the quotient from Ad Y V(M) V(M)
defined by Ad Y(X) [Y, X]. Then h(v,w.) (lr(v), v), for
v v e M wherev denotes the image of v in M0/F

The geometric interpretation of 2.15(b) is as follows: Suppose that M/F
is a manifold and that M ---. M/F is the decomposition map. There is a
form on M/F such that *() . The tangent space to M/F at (x0) is
isomorphic under , to Mo/Y. There is a vector field Y on M/F such that
O.(Y(x)) Y((x)) for all x M, and Y()) 0. Y(C(xo)) 0, i.e., Y
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has a singular point at (x0). fr can be chosen as *(fr), with dry Y
(assuming M/F also has zero first Betti-number) ;hence Y has a nondegenerate
critical point at (x0) if and only if fy has a nondegenerate point at (x0), i.e.,
if h is nondegenerate on M0/F
Example. To give a simple illustration of the possible applications of

this machinery, recall the Poincar-Birkhoff fixed-point theorem (Poincari’s
"Last Geometric Theorem").
M is the region between two concentric circles in the plane with Cartesian

coordinates (x, y). Let dx ^ dy, the Euclidean volume element. Let
T M -- M be a transformation such that

(a) T is extendable to the boundary: Co u C1 -- Co u C1, (C0 (resp. C)
is the outer (resp. inner) circle) and rotates them in opposite senses.

(b) T*(0) o, i.e., T is volume-preserving.
The theorem states that T has at least two fixed points.

It remains a challenge to imbed this famous theorem in general fixed-point
theorems. We shall now show, however, that the infinitesimal version of
the theorem can be proved very simply by the methods we have been using.
Suppose then that X is a vector field on M u Co u C that is (a) tangent to
Co and Cx and points in opposite directions on Co and C, with no zeros on
either boundary, and (b) is infinitesimally volume-preserving, i.e., X() 0.
We know then that d(X ..] o) O. We do not know a priori that there

is an f C(M) such that df X ..] , since M is not simply connected.
However, this is where hypothesis (b) enters: Since X _1 (X) 0, and
X restricted to Co and C1 is, up to a factor, the tangent vector, the line integral
of X _J o on the boundaries is zero; hence by de Rham’s theorem such an

f actually exists. We use (b) again to verify that either grad f or -grad $
always points inward to the region. Standard Morse theory for manifolds
with boundary now guarantees that f has at least two critical points, i.e.,
X has at least two zeros.
Return now to the general theory. If Y() 0, then X

_
is a base-like

form for the foliation F; hence, if dfr Y ..l o, then fr is an invariant of
the foliation F, i.e., is constant along the leaves. If frl is so associated with
another such vector field Y1, then the Poisson bracket {fr, frl} can be defined
as in [7] as the F-invariant function such that

2.16. ,-1 ^ dfr ^ dfr {fr, fr}’, where 2p dim M dim F.

Note that

d(Y(/,)) Y(df,,) Y(Y ) [Y, Y] ,
i.e., Y(fr) can be taken as fEr,rl

Y(frl) p{fr, fr} fEr,rll
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Y(f’l)*’ Y(f’, ) d(f’l (Y .3 ’))

d(f, .p. Y ..] o) ^ ,,-1)
=pdf. ^ (Y .3 o) ^ -=p df. ^ dry ^ *’-, Q.E.D.

(Note that a proof of the Jacobi identity for the Poisson bracket is easily
obtained from 2.18.)
Now suppose that 0 is a 1-form on M such that dO and that Y e V(M)

satisfies Y(0) 0. Then,

d( O( Y) Y dO, i.e., 0(Y) can be taken as -fy.

Note then that if Y1 also satisfies YI(0) 0, then

Y(f.) -O([Y Y]), i.e., Yx(f) is fx.rl
3. The to,grange wriationl problem

Let B be a manifold, and let T(B) U,e, B, be its tangent bundle. If
(xi) (1 _<_ i, j,..- _<_ n; summation convention) is a coordinate system for
B, we can construct a coordinate system for T(B), denoted by (xi, 2’), so
that (a) the (xi) considered as functions on T(B) are just the xi on B lifted
up to T(B), and (b) 2"(v) dx(v) forveT(B). LetX aO/Oxi bea
vector field on B. Define its first-order prolongation X’, a vector field on
T(B), as

0 Oa 0

It is easy to verify that X’ is independent of the coordinate system used to
define it, and hence is globally defined on T(B). This is so because X’ has
the following geometric interpretation" Consider the one-parameter pseudo-
group generated by X. Each element prolongs to a transformation on
tangent vectors; hence there is defined a one-parameter pseudogroup acting
on T(B). X’ is just its infinitesimal generator.

Let M T(B) R. Let be the real function on M obtained by pro-
jecting on the second factor. Consider vector fields Z on B X R of the form"

3.1. Z X + O/Ot,

where, for each t, X is u vector field on B.
These fields have the property that the pseudogroups they generate pre-

serve the subclass of curves of B X R that are graphs of curves in B. We
define the first-order prolongation of Z as the field Z’ Xt’ -- O/Ot on M.
A Lagrangian for B is a real-valued function L on M. It defines a real-

valued function L on the space of curves of B as follows: If [a, b] -+ B
is a curve, then

L(z) L((’(t), t) dt.



THE LAGRANGE VARIATIONAL PROBLEM 43

(a’(t) e B(o denotes the tangent vector to a at t.) Note that a 1-differential-
form on B defines a Lagrangian. If is a curve in B, define its prolongation
to M as the curve . -+ (a’(t), t) e M.

LEMMA 3.1 (Cartan [7]). There is a 1-form O(L) on M such that O(L) (a,)
L(a) for each curve ( in B. A curve in B is an extremal for L, i.e., satisfies
the Euler equations, if and only if . is a characteristic curve for dO(L). In
a coordinate system (xi) for B, O(L) has the form

3.2. O(L dx 2 L dt.

The following properties follow from 3.2:

O(fL1 + gL.) fO(L) + gO(L)

for any two Lagrangians L and L any two functions on B X R, f and g;

3.4 Z’(O(L)) O(Z’(L))

for a vector field Z on B X R of the form 3.1.

Cartan actually defined O(L) via 3.2. The proof that it is the same no
matter what coordinate system is used, hence is globally defined on M, is
straightforward and is left to the reader. 3.3 and 3.4 are similarly proved
by a direct computation.

It should be noticed, following Cartan [7] again, that Lemma 3.1 provides
a way of developing the basic facts of the ordinary problem in the calculus
of variations in an elegant, completely global manner. For example, a
function W on B X R is a solution of the Hamilton-Jacobi partial differential
equation if there is a cross-section B R - M such that

3.5. dW +*(O(L)).
Following Carath6odory’s ideas, such solutions of the Hamilton-Jacobi
equation can be used, together with a suitable "Legendre condition", to
prove that the extremals locally minimize L. On the other hand, if one
wants to write the extremals of L as solutions of the Hamilton ordinary
differential equations 2.7, proceed as follows to define the Hamiltonian func-
tion H: It is any function of 2n W 1 real variables H(ui, vi, t) such that

OL ) OL
3.6. H x =-=--, 2.--L.

As another application of the formalism, suppose that Z is a vector field
on B X R satisfying 3.1 and such that Z’(L) 0, i.e., the prolonged pseudo-
group preserves L. By 3.4, Zr(O(L)) 0, and the work of Section 2 can
be applied: Define fz O(L)(Zr). Let (b0, to) eB X R. We see that
the integral curve ofZ starting at (b0, to) is an extremal for L if and only if
(Xt(bo), to) is a critical point for fz. Using 3.2 and a short calculation,
we see that
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3.7. The integral curve of Z starting at (b0, to) is an extremal for L if and
only if (bo to) is a critical point for the function (b, t) --> L(Xt(b) on B X R.

We shall not give the details of the calculation since we shall prove a more
general result (Theorem 3.3) below. Note further that we have dealt with
a special case of this result (i.e., when L defines a Riemannian metric for B)
in [14], which in turn was a generalization of a theorem due to H. Busemann
[3].
We now turn to showing how this formalism can be extended to treat

Lagrange problems. In addition to the Lagrangian L we are then given a
submanifold S M, the constraint manifold. Let P(B, S) be the set of
curves [a, b] -+ B such that (’(t), t) e S for a -<_ <_- b. The extremals
of the Lagrange problem are the critical points of L restricted to P(B, S).
We describe the extremals via the classical Lagrange multiplier device.
(The reader should keep in mind that it is a nontrivial problem to identify
the extremals defined by means of Lagrange multipliers with those defined
as the critical points of L.) Suppose that (x, 2, t) are the usual local
coordinates for M, and Ca(X, 2, t) are functions such that )a 0 defines S.
(1 <= i, j,... -_< n; 1 =< a, b,-.. -_< m dim M- dim S; summation conven-
tions.) Following the classical idea, we are to introduce new auxiliary func-
tions of t, ha(t), form the new Lagrangian L’(x, 2, t) L A- a(t)a(X, 2, t),
and find the ordinary extremals of L’ that satisfy the conditions of constraint.
It is easy to see that this is equivalent to the following procedure: Introduce
(ha) as coordinates of a new space Rm. Form B X R X R and on it a new
Lagrangian

L’(x, 2, X, X, t) L(x, 2, t) + aa(X, , t).

Since L’ does not depend on ka, the associated 1-form 0(L’) is equal to
0(5) - ha O(a), which can be considered as a form on M X R. The
characteristic curves of dO(L’) that lie on S X R, when projected to B, are
the extremals of the Lagrange problem. But of course, the characteristic
curves of dO(L’) that lie on S X R are precisely the characteristic curves of
d(L’) restricted to S X R, i.e., the extremals of the Lagrange problem are
defined by a symplectic foliation on S X Rm. As for writing the equations
of the extremals in Hamiltonian form, the following facts follow from these
observations"
A function H(ui, v., t) of 2n A- 1 real variables is a Hamiltonian for the

---- 2 (L + Xaea)(p)

From now on, by "extremal" we will always mean the curves satisfying the La-
grange multiplier rule. These curves were described as the "formal" extremals in the
introduction.
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for all p e S, all (ha) e Rm. Then, under the mapping defined by

(with the relations a 0 holding), the extremal curves go over into solutions
of the Hamilton equations with Hamiltonian H. Of course, this mapping is
not necessarily onto the (u, v, t)-space, i.e., every solution of the Hamilton
equations does not necessarily arise as the image of an extremal. However,
a reasonable sufficient condition for every solution of the Hamilton equations
to correspond to an extremal is that

3.9. For x held constant and a held zero, the Jacobian matrix of

wiCh repee o he oher idependen varible of M R i noneero, i.e., the
variational problem is regular in the classical sense.

So far this is local, dependent on a choice of coordinate system and functions
a whose vanishing defines S. Suppose however, that the 6a are functionally
independent, i.e., the da are linearly independent. (It would suffice that
this be true in a neighborhood of S.) da is zero on S, for p e S, and hence
passes to the quotient and defines a linear form on Mv/S. The forms
da in fact form a basis for the dual space of M/S. Under change of
coordinates in B, L remains invariant, while the da change, by the above
remark, like the dual of the normal bundle of S. Since it is natural to require
that O(L’) be invariant when restricted to S, the ha must change dually to
the Ca, i.e., ha are to be interpreted as the coordinates of Mv/S with respect
to the basis of linear forms da, and 0(L’) is to be interpreted as a form on
the normal vector bundle to S, which we denote by M’.
To verify this interpretation is now a straightforward matter, in the

portion of M covered by the coordinate system (x, , t), define the diffeo-
morphism of M’ with S X R as described above, carry 0(L’) back to M’
via this map, and check by direct calculation (left to the reader) that O(L’)
so defined on M’ is independent of the coordinate system we have used.
We can now state the result of these remarks:

THEOREM 3.2. With the above notations, the extremals of the Lagrange prob-
lem in B (defined the Lagrange multiplier way) are the projection in B of the
integral curves of the characteristic (symplectic) foliation of the 2-form dO(L’)
on M’, the normal vector bundle to the constraint manifold S.

We have so far done nothing more than take the classical arguments, fit
them into Cartan’s approach to the calculus of variations, and then remark
that in this form they admit an immediate global interpretation. We shall
now use this point of view to generalize 3.7. Suppose that Z is a vector field
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on B R of the form X - O/Ot and that Z’ Xt’ - O/Ot satisfies

3.10. Z(L) 0 and Z is tangent to S.

The one-parameter pseudogroup generated by Z then maps S into itself,
hence also generates a one-parameter pseudogroup acting on the normal
bundle, M, to S, whose infinitesimal generator we also denote by Z’. Suppose,
for example, that

3.11. Z(d) Ad on S.

To determine explicitly the action of Z’ on M’, it only remains to determine
Z’(Xa), where the , are considered as functions on M’. From 3.11 and our
previous remarks about the dual nature of h and d, it is easy to see that

3.12. Z

From 3.10, 3.11, and 3.12, we have

3.13. Z’(O(L’)) 0 on i’.

The considerations of Section 2 now apply, and we have

3.14. The integral curve of Z’ starting at p M’ is a characteristic curve of
d(L’) restricted to M’ if and only if p is a critical point of O(L’) (Z’) restricted
to M.

Suppose, for example, that X a O/Ox. Then,

and we find its critical points that satisfy the constraints 0. Notice
however that we do not want to find all critical points, iust those correspond-
ing to orbits of Z that are extremals, i.e., those for which a . Suppose
(xo, 0, to, ),0, uo) is such a critical point, with a(x). Differentiating
3.15 first with respect to i gives the condition"

3.16. Ua-- 0 at (X, a(x), to, Xa U).

Applying O/Ox and O/Ot and using 3.16 gives

Oxi (L(Xt)
3.17.

0_ (L(X)) -t- (,- U)(a(X))) 0 at (X, as’ to ha Ua).
Ot

Notice however, that 3.17 is the necessary and sufficient condition that
(x, to) be a critical point of the function (x, t) L(X(x)) restricted to the
subset A {(b, t) eB X R" (X(b, t)) e S}, provided that
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3.18. The system of Pfaan forms d(a(X(b) has a constant dimension
on A, and A is a submanifold of B )< R.

If 3.18 is not satisfied, note at least that 3.16 implies that (x, to) is a critical
point of L(X) restricted to A. Summing up, we have proved

THEOREM 3.3. With the above notations, if the integral curve of Z starting at
(bo, to) A c B X R is an extremal of the Lagrange variational problem,
then (bo, to) is a critical point of the function (b, t) -+ L(X(b), t) on A pro-
viding that A is a submanifold of B X R. Conversely, if (bo, to) is a critical
point and if 3.18 is satisfied in a neighborhood of (bo, to), then the integral
curve of Z starting there is an extremal.

In the general case, i.e., if 3.18 is not necessarily satisfied, let r be the dimen-
sion of the space of m-tuples (a) such that a d(,(X(b))), considered as
a covector at (x, to), is zero. To identify r with a natural invariant of the
Lagrange problem, proceed as follows: Let a [a, b] -- B be any (formal)
extremal of the Lagrange problem, i.e., (r.’[a, b] -- M is a characteristic
curve of the 2-form d(O(L) + Xa(t)O(a)), for some curve Xa(t) inRm. Con-
sider now the set of such curves )a(t). The difference of two such, say a
curve (Xa(t) in Rm, satisfies a linear, homogeneous system of ordinary differ-
ential equations, namely"

td Ola(t) at ] O(a) + Ola(t) dO(a)} 0o3.19. a. _l

The set of all solutions aa(t) of 3.19 forms a vector space, which, under the
classical "regularity conditions" for the constraints Oa, is finite-dimensional.
Its dimension is the class of.the extremal . (This definition of the class is
slightly different from that given by Carathfiodory [5], but seems to be geo-
metrically more natural, since it does not depend on the choice of a Hamil-
tonian function for the variational problem.)
Now suppose that Z X + O/Ot is a vector field on B R whose integral

curve starting at (x, to) e B )< R is an extremal and such that Z’ leaves
invariant the Lagrangian and the constraints. It should be clear that the
number r defined above is precisely the class of the extremal .

4. A Lagrange problem in Riemannian geometry
We suppose now that L defines a Riemannian metric on B; in local coordi-

nates, L (g.j i j)1/2. Suppose further that the constraints are linear,
i.e., there is a field b -+ Hb C Bb of tangent subspaces (of constant dimen-
sion) on B. P(B, S) consists of those curves [a, b] -- B with a’(t) e H,(,),
a =< -<_ b, i.e., P(B, S) consists of the integral curves of the Pfaffian system
determined by H. In local coordinates, there are 1-forms Wa Aai dx,
(1 =< a, b,..- __< m dim B dim I-I; 1 -< i, j,... _-< n; m + 1<=
u, v,... -< n; summation conventions)such that Wa(a’(t)) O, a <-_ <-_ b.
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Introduce the Lagrange multipliers ha and the Lagrangian L’ L -t- ha Aa.
For b e B, let Vb H$, the orthogonal complement of Hb with respect to
the positive definite quadratic form defined in B by L2. (Think of vectors
in H (resp. V) as horizontal (resp. vertical).) Since
restricted to Vb form a basis for the dual space of V. In accordance with
the remark that the ha transform dually to the wa, we see that (M) are to be
interpreted as the coordinates with respect to the wa of a vector on V, i.e.,
the ha are to be interpreted as functions on the bundle of vertical vectors.
Suppose for the moment that (wa) is part of a globally defined ortho-

normal moving frame (w) of 1-forms, i.e., L2(v) w(v)w(v) for v e T(B).
Let y be the functions on T(B) such that y(v) w(v) for v T(B).
(We simply relabel w by y, since we shall want to consider dye, a 1-form

on T(B), and want to avoid confusion with dw, a 2-form on B. Further,
we want to consider the 1-forms p*(w), where p T(B) --+ B is the proection
map. Introducing the y allows us to simplify notation and denote these
forms also by w.)

Then, (dye, w) forms a basis for the 1-forms of T(B). L’, considered
as a function on T(B) Rm, takes the form (yy)112 + M ya. A short
computation, left to the reader, shows that

4.1. O(L’) y w/(yj

(Since in this problem there is no explicit time dependence, we consider this
as a form on T(B) X R’. The problem is then to find its characteristic
curves lying in the constraint manifold.)

S, the constraint manifold, is defined by ya 0; hence

4.2. O(L’) restricted to

Introduce the components of the Levi-Civita connection with respect to
the frame we are working with, i.e., the forms w with dw w ^ w and
w A- w 0. Let wj denote the same forms pulled up to T(B).
Suppose that z [0, a] --* B is an extremal curve for the Lagrange problem,

i.e., a’ [0, a] --* T(B), the tangent vector curve of , is a characteristic
curve of dO(L’). We can suppose that is parameterized by arc-length,
i.e., a’ lies in the submanifold of S defined by y y 1. So restricted,
d0(L’) takes the form

dye, h w -4- yw h w-4- dha h Wa " ha Wai h Wi.

Set y(t) w(a’(t)) y,(a’(t)). The condition that (a’(t), ha(t))
be a characteristic curve is then, after a short computation,

d
dr- y,(t)w -4- y(t)w(a’(t) )w -4- d ha(t)Wa

"4- ha Wa(a’(t) )W ha(t)wa, y O.

To put these conditions in an invariant form, recall the notion of the co-
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variant derivative Vv of a vector field v along a curve

dw(’(t)) t w,(,(t)) o(’(t))o.(,(t)).

Let r -- ),(t) e B,() be the vertical vector field along a such that wa(h(t)
ha(t) and w(),(t)) 0. The first four terms of 4.3 then take the form

w(vo-’(t) + vx(t))w.

The fifth term in 4.3 depends bilinearly on ,(t) and a’(t); we write it as
-w(Q()(t), a’(t)))w, where (h, v) Q(v, h)eBb is a tensor field on
B defined for h e Hb, v e Vb. As definition,

4.4. wi(Q(h, v) )w Wa(V)Wau w(h).
With this definition, the condition for an extremal takes the form

4.5. V’(t) + V(t) Q(’(t), (t)) for 0 -< <__ a.

Since the condition expressed by 4.5 is independent of choice of moving
frame, and the left-hand side of 4.5 is independent of this choice, the right-
hand side, i.e., 4.4, must be also. Q is then a bona fide tensor field on all of B,
even when B does not admit a global moving frame. This can also be verified
directly, as follows" If (w) is another orthonormal moving frame, with

and with (w’.) as connection forms, a short, well-knownwi Mij w
computation shows that

4.6. wij dMk Mk W MwM
If We 0 also defines I-I, then Ma 0 Ma. Hence, from 4.6

4.7. Wa Mab Why Muv
i.e., the w,u transform tensorially. Summing up, we have proved

THEOREM 4.1. With the above notations, the horizontal curves (r that occur
as solutions of 4.5, parameterized by arc-length, are precisely the extremals of
the Lagrange variational problem defined on integral curves of the Pfaan
system H by the condition that arc-length be stationary. If the metric on M is
complete, then, given b e B, h e I-I, )o e V, there are a unique integral curve
r of I’I: [0, o -- B, parameterized by arc-length, and a vertical vector field
(t), 0 <- < along (r such that both satisfy 4.5, with ’(0) h, (0) ),0.
(If H is not complete, and both exist and are unique, but over a domain
possibly smaller than [0, ), depending on h, b, and o .)

Proof. Since we have seen that the extremals, i.e., solutions of 4.5, are
integral curves of a vector field on the direct product on R and the sphere
bundle of unit horizontal tangent vectors of B, all should be clear except
perhaps the assertion that can be extended over [0, o in case B is complete.
To prove this, of course we try to apply the standard analytic continuation
arguments. Suppose then that and 3, are defined over [0, a), with a < .
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Looking at 4.3, we see that the differential equations for (r) are linear,
nonhomogeneous with continuous coefficients that have a limit as -- a. It
is then a standard fact in the theory of ordinary differential equations that
lim,.a (t) exists, since limta a(t) exists by completeness, Q.E.D.

Suppose that I-I c V(B) continues to define a Pfaffian system b --* Hb on
the Riemannian manifold B. We may ask" When does H have the property
that an ordinary geodesic of B whose tangent vector at one point satisfies the
constraints, i.e., lies in H, must always lie in I-I?

Let us look at this in greater generality, in terms of the notation of Section
3. Since there is no essential loss in generality, we shall only deal with
homogeneous Lagrangians and constraints. Suppose then that L is a La-
grangian on B, i.e., a function on T(B), and that Ca, 1 -< a, b,... -< m,
are constraint functions on T(B). Let S be the subset 0 of T(B). Let
0(L) be the 1-form on T(B) defined by Lemma 3.1. Suppose Z V(T(B))
is a characteristic vector field of dO(L); i.e., Z . dO(L) O. Then

4.8. If Z() lies in the ideal of functions on T(B) generated by the a the
integral curves of Z starting at S lie in S. In particular, if this is true for each
Z satisfying Z . dO(L) 0, then the extremals a [a, b] B of L in B have
the following property: If a’(to)e S for some to e [a, b], then a’(t)e S for
a<=t<_b.

For each Lagrange variational problem, the question arises of interpreting
the conditions involved in the hypothesis of 4.8. We proceed to deal with
this question in the case mentioned above, and then go on to present a generali-
zation in Section 5 to the case where H defines a Pfaffian system with singu-
larities on B. Then, L ds defines a Riemannian metric on B. Suppose
(i) is an orthonormal basis for 1-forms on B, with I-] defined by O3a 0.

(1 <= i, j,’’" <-- n;1 <--_ a, b, <-_ m; m + 1 <= u, v, <= n.)

As before, no notational distinction is made between a form on B and its
image in T(B), and (yi) are the functionson T (B) such that y(v) cos(v).
Then,

O(L) y i/(y y)l/2.
S is defined by Ya O. Further, we can obviously restrict everything to

S(B), the unit sphere handle to B. Then 0(L) y 0, ydy O, there
is a unique Z e V(S(B)) satisfying

4.9. (a) (Z) y, (b) Z(y) - y (X)o 0

( are the connection forms; i.e., d ^ , o. -t- o 0), and Z
then satisfies Z _l dO(L) 0, and is unique subiect to 4.9(a). (Geometri-
cally then, the integral curves of Z when projected down to B are in arc-
length parameterization.) Suppose that

wit Fik 0k.
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Then, we have proved

PROPOSITION 4.2. Z(ya) lies in the ideal generated by the Ya if and only
if Fauv 2ff Favu O. If this condition is satisfied, a geodesic of B whose tan-
gent vector lies in I-I at one point is an integral curve of i-I.

It is seen by using 4.7 that in any case the Fau + Fau transform ten-
sorially under change of frame. In the case the vector field b --+ Vb tt
is completely integrable, i.e., defines a foliation, this tensor field is zero if
the metric is bundle-like in the sense of Reinhart [17] with respect to the folia-
tion V. (This gives another proof of Reinhart’s theorem that a geodesic
perpendicular to one leaf of a bundle-like foliation is perpendicular to all.)
Conversely, it is possible to show, by using Theorem 3.2 of [12], that the
vanishing of this tensor field implies that the metric is bundle-like. (Notice
that this proves that if the geodesics have this property, the metric is bundle-
like.)

5. Application to the study of the geometry of the tangent
bundle of a Riemannian manifold

Let B be a Riemannian manifold, and let M T(B) be its tangent bundle.
Choose the range of indices and summation convention"

1 -< i,j,],... -< n dimB.

The fibre bundle T(B) -+ B has a connection, i.e., a field v -. H of tangent
subspaces complementary to the fibres of the proiection T(B) -- B. H is
defined by the standard Levi-Civita affine connection on B. We shall recall
the definition below. Let X be an infinitesimal isometry vector field on B, a
Killing field, and let X’ be its first-order prolongation to a vector field of
T(B). X’ preserves H; hence for a v e T(B) such that X’(v) e I’Iv we have:
The integral curve of X’ starting at v is an integral curve of H, i.e., is hori-
zontal. If v e Bb, for b e B, and if a [0, a] --* B is the integral curve of X
starting at b, this means that the vector field -- (Exp tX).(v) on a is self-
parallel. Such v T(B) have an evident geometric importance.

Further, T(B) has a natural Riemannian metric (to be described below);
hence we can apply the machinery described above to find the orbits of X’
that are either geodesics of T(B) or extremals of the Lagrange variational
problem defined by the metric and by the horizontal field H. Our aim in
this section is to carry out the details of these calculations and try to find
the natural geometric interpretations of the results.

Since our work will be basically local, we can suppose that B has a global
basis (wi) of 1-forms that defines an orthonormal moving frame for the
Riemannian metric, i.e.,

ds2= w.w (. symmetric product).
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Let (wr) be the 1-form components of the Levi-Civita connection, i.e.,

dw wit ^ w, w + wri O.

As before, we introduce functions y on T(B) such that

y(v) wi(v) for v T(B).

This artifice enables us to make no notational distinction between a differen-
tial form on B and the same form pulled up to T(B) via the projection map.
Define

O dyi wr y
It is easy to see that the field H is defined by setting 0 0. Suppose X is
a Killing field on B, i.e.,

X(w) air wl with aj + aji O.

A standard calculation gives

By definition,
X(wr) dar + aik wk wi akr.

X’(w) X(wi) and X’(y) ay.

It is easy to calculate that
X’(0i) a.i Or.

The metric on T(B) is

It is clear from these facts that X’ is a Killing vector field for this metric
and that the metric is bundle-like in the sense of Reinhart [17] with respect
to the foliation of T(B) defined by the fibres of the projection map T(B) -+ B.
It is also readily verified that the metric on T(B) does not depend on the
moving frame (w) used to define it, and hence is defined even if B cannot
be covered by a global moving frame. Note that

O(X’) (a wj(X)

To calculate the right-hand side of 5.1, use

aw- X _] (w ^ wr) + dXi, where Xi w(X),

wr(X)wr wr Xr + dX

w(X)w + X;o,
with X;r the components with respect to the moving frame of the classical
covariant derivative of the tensor field X.

In general, if T is a tensor field on B with components T.I..., the com-
ponents of the covariant derivative are denoted by Tl...;r, i.e., for
v e B, ,(T) is a tensor at b of the same algebraic type as T, with com-
ponents T...,,;wr(v). (Since we are using orthonormal moving frames,
it is unnecessary to distinguish between contravariant and covariant corn-
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ponents.) For example,

T; w dT w T
TI,.,j w dT,. wT wT, etc.

Note the following classical relation"

5.2. T;; T;; R T, where (R) are the components of $he

Riemann curvature tensor.

Recall that, for v, v, v e B,
5.3. (w(R(v v) (v) w(v)R w(v)w(v) nd

dw w h w R w h w R R R O.

Note now that we cn rewrite 5.1 as

5.4. O(X’) X; y

From this, we see ediately that

5.5. The integral curve ofX’ at v e T B) is horizontal if and only if X O.

To put this result in more geometric language, suppose v e B and suppose
+ Exp ($X) B + B denotes the one-parameter group of isometries of B

generated by X. Let be the curve in B, and let + () Exp ($X).(v)
be the vector field on resulting from translating v by the one-parameter
group Exp (tX). 5.5, then, says that v(t) is a self-parallel vector field along
ffndonlyff VX O.
The necessary nd sufficient condition that X be Killing vector field is

5.6. X; + X; 0.

Applying 5.3, and 5.6 several times, we have"

5.7. X;; X(R-R + R)
X(-R-R + R)
X(Rn R- Rn + R)
2X Rni.

Let (X’, X’) be the squre of the length of X’ in the dg-metric.

5.4, 5.6, and 5.7, we clculte

5.8. d(X’, X’) 2w(X;nX + X;i; yi X; y)

2wn(-Xn;X W 2X X; yi y Rni)

by using 5.3

- 2X., y Xi; k dyk

d(O(X’) ) X; dy -t- X;; yw
X.,k dy "t- 2X, yw Ra.

Using
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PROPOSITION 5.1. With the above notations, the integral cure of X’ at
B is a geodesic of T(B) if and only if the integral curve ofX at b is a geodesic

of B and X O, i.e., X’ (v) is horizontal.

Proof. Suppose that the right-hand side of 5.8 is zero at . In particular,
X;(b)y(v)X;(b) 0. The skew-symmetry of X;. forces X;(b)yi(v) to
be zero. Applying this aguin in the right-hand side of 5.8 forces X;(b)X(b)
to be zero. This means that the integral curve of X at b is a geodesic of
B [14]. The converse is immediate.

Then, there are essentially no new geodesic integral curves of X. How-
ever, the situation is considerably more interesting if we ask for the integral
curves of X’ that are extremals of the Lagrange problem defined by the
Lagrangian ds’ and the constraints 0 0. According to previous results,
to find these extremals, form the new function (X’, X’) - Oi(X’), with
constants ., and find all critical points such that 5.4 is zero. The orbits
of these points will be extremals. By using 5.4, 5.8, and 5.9, these conditions
on v e B become

5.10. (a) XX;(b)-0,

(b) hXh(b)Rhk(b)yj(v) Xk.,(b)X(b)/(X(b), X(b) )ll2.
We now put these conditions in invariant form. Define a vector h e Bb by

i() IX(b) I.
Then 5.10(a) means Tx X 0. 5.10(b) means

R(X, v)(X(b) Vx(b) X.

These two formulas prove formulas 1.3.
Finally, we turn to the following question" If a" [0, a] -- B is a curve

parameterized by arc-length and v" [0, a] -- T(B) is a self-parallel vector
field, on a, (i.e., v, considered as a curve in T(B), is an integral curve of the
Pfaffian system 0i 0), what are the conditions that v be an extremal of the
Lagrange problem defined by ds’ and constraints 0 0? In principle, 4.5
is the condition, but we want to cast it solely in terms of the geometry of B.
To do this, it is more convenient to return to the definition of the extremals
as characteristic curves of the form defined by 4.2. This form, however, is
to be considered as a form on the submanifold of T(T(B)) R consisting
of the (u, ) T(T(B)) X R satisfying" O(y) 0. The details of the
computation are similar to those by which we reached 4.5. Note that

1/2Rdw w ^ w, d w ^ 05 y w ^ w.
If y are the functions on T( T(B) such that y(u) wi(u), for u T( T(B) ),
then 4.2 takes the form"
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Taking the exterior derivative of this form, and expressing the fact that
(a) -- v(t), considered as a curve in T(B) is a characteristic curve, and
(b) (’ (t), z’ (t)) 1, we have (details left to reader)

5.11. (a) (t) z’(t),
(b) (R(a’(t), u(t))((t)), v(t)) 0 for all u(t) eBb(t), with a vector

field on such that w(h) .
Restated, -+ v(t) is an extremal of the Lagrange problem if and only if

there is a vector field }, along z satisfying 5.11 (a) such that v(t) satisfies
5.11 (b). Alternatively, one can regard 5.11 as a system of ordinary differen-
tial equations determining both and v.

Suppose conversely we ask for all satisfying 5.11 for a given v. If and
),1 are solutions, with a 1, we have

5.12. (a) Va 0,
(b) 0 (R(a’(t), u(t))(a(t)), v(t)) for all u(t) B(t)

The solutions of 5.12 (a) and (b) form a finite-dimensional vector space.
Its dimension is called the class of the extremal v, as defined in Section 3.

Suppose for example that B is a symmetric Riemannian space, i.e., the
covariant derivative of the curvature tensor R( )( is zero, and that

is a geodesic of B. It then follows that the class of v is the dimension of
B minus the dimension of subspace R(a’(0), B(0))(v(0)) of B(0). (In
the nonsymmetric cases, the covariant derivatives of R come in and enor-
mously complicate the calculations.)
To put this into more familiar algebraic terms, suppose that B G/K,

where G is a connected semisimple Lie group, K is a compact symmetric
subgroup [15]. Let G (resp. K) be the Lie algebra of G (resp. K), and let
G K - lYI be the reduction of K in G, i.e., [K, lYI] c M, [lYI, lYI] c K.
Suppose that we identify lYl with B(0) in the usual way [15], and that
X (resp. Y) e lYI corresponds to ’(0) (resp. v (0)) under this identification.
Using the Cartan-Nomizu formula for the curvature tensor for a sym-
metric space [15], we see that R(a’(0), B(0))(v(0)) can be identified with
Ad Y Ad X(IVI), i.e., we have

PROIOSITION 5.2. With the above notations, the class of the self-parallel
vector field v is equal to the dimension of the kernel of the endomorphism Ad Y AdX
acting on lYl. In particular the class is never less than the ranlc, of the sym-
metric space G/K (i.e., the dimension of a maximal abelian (Cartan) sub-
algebra of lYl).
We note further that

5.13. The class of ( is equal to the rank of the symmetric space if X and Y
are regular elements of the same Cartan subalgebra of lYl.

5.14. The rank of the symmetric space is equal to the codimension of the
orbit of greatest dimension of the holonomy group of B acting on B(o)
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Now, we turn to further work on the problem begun in Section 4. If tt
is a real subspace of V(B) (possibly with singularities; i.e., dim I-Ix may
vary for x e B), when must a geodesic perpendicular to tt at one point be
perpendicular at all?

If Y is a vector field on B, let gr be the function on S(B), the unit sphere
bundle to B, such that

gr(v) (Y(x),v) forveB, xeB.

If () is an orthonormal basis of 1-forms on B, then

gr o(Y)y with y(v) (v) for v S(B).

Let 0 be the 1-form y o on S(B), and let Z be the vector field satisfying 4.9
whose integral curves projected down to B are the geodesics in arc-length
parameterization. Suppose Y o(X), dY Y; -4- o Y’, etc.
Then,

Y(o) Y,; -f- oo’(Y) )o.,

Y’(yi) (Yi;" A- oa,(Y))y,

dgr (Y; oa + oo Y)y + Y dye,

Y’ _J dO (Y;" + oa(Y))yoa- Ydy q- yoa(Y)oa- y

Y; y o Y dy y Y oa.
5.15. (a) dgr "4- Y’ 2 dO (Y;’-k Y)yoo and hence

(b) Z(gr) (Y;"-t- Y;)yy.

Note that then

5.16. If Y is a Killing vector field, i.e., Y; -4- Y; O, then Z(gr) 0;
i.e., a geodesic perpendicular to a Killing vector field at one point is perpendicular
at all points [2a].

In the general case we have

PROPOSITION 5.3. Suppose that H is a linear space of vector fields on the
Riemannian manifold B. If each geodesic of B that is perpendicular to H at
one point is everywhere perpendicular, then H satisfies the following condition
at each x eB, for Y eH.

5.17. The quadratic form v ---> Y, v) on H is identically zero.

Conversely, this condition is suffwient that I-I have this property, provided
that the ideal generated by the functions {gr Y H} on S(B) is prime.

6. Isoparametric problems
B andM T(B) X R and a LagrangianL onM are as before. In addition,

we are given Lagrangians L, 1 <= a _-< m. The extremal curves of the iso-
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parametric problem determined by L; La} are those curves a’[a, b] -- Bfor which

L(a) L(a’(t), t) dt

has an extremal value, subject to the constraints that the I,a(r) have a fixed
value. The Lagrange multiplier rule suggests introducing new constants
(ha) (not, however, to be allowed to depend on as in the Lagrange problem)
and introducing a new Lagrangian, L’ ha La, with the associated 1-form
O(L’) on M equal to O(L) ha O(La). The formal extremals are those curves
a in B that satisfy the constraints and such that a. is a characteristic curve
of dO(L’) for some choice of the ha. For a given extremal a, the set of all
m-tuples (ha) such that . is a characteristic curve of dS(L’) forms a sub-
space of Rs. Its dimension is called the class of the extremal a.

Let Z X -{- O/Ot be a vector field on B R, with X a one-parameter
family of vector fields on B, such that Z’(L) Z’(La) 0, 1 <= a -< m.
The integral curve of Z at (b0, to) e B R is then, by 3.7, a formal extremal
for the isoparametric problem if and only if it is a critical point for the func-
tion (b, t) -- L(Xt(b) ha La(Xt(b) for some choice of (ha). The class
of this extremal orbit is then

m (dimension of 1-covectors at (b0, to) spanned by the d(La(Xt) ).

We shall restrict our discussion of the isoparametric problem to the classical
isoparametric problem in the plane and a class of problems immediately
generalizing it to other Riemannian manifolds. Suppose then first that B R,
the plane with coordinates (x, y), m 1,

L x y2, L1 (2 2)1/2,
X y O/Ox x O/Oy,

the infinitesimal generator of the one-parameter group of rotations about
the origin. Since there is no time dependence, we are led to finding the critical
points of

L(X) + hLI(X) --x ] -t- h(x + y)ll, i.e., h 2(x -t- y).

Hence, for every b e B, a h which makes b a critical point can be found, and
the integral curve of X starting at b, the circle about the origin, is an extremal.
Obviously the only such extremal whose class is nonzero is the limiting case
of the point circle.
To generalize, suppose that B is a Riemannian manifold with L the La-

grangian determined by the Riemannian metric, and with L the Lagrangian
on B determined by a vector field Y on B: L(v) (Y(b), v) for v ebb,
b e B. If X is a Killing vector field such that IX, Y] 0, the critical points
of (Y, X) W h(X, X)I/, for some value of h, are the origins of the integral
curves of X that are extremals. A point b e B is such a critical point if and
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only if, for all v e Bb,

0 V Y, X) q- (Y, V, X) -4- X(V, X, X)/(X, X)/

V,, Y, X) Vxb X, v) (X/(X, X)11")( Vx X, v)

by using conditions 5.6 that X be a Killing field. An integral curve of X
that is an extremal is then of nonzero class if and only if Vx X 0 along ,
i.e., if and only if is also a geodesic of B.

Suppose that Y is also a Killing vector field. Then, the condition becomes

6.1. VxY+ VrX+ (X/(X,X) 1/2) VxX 0 atb.

But V, Y V r X since IX, Y] 0, i.e., 6.1 becomes

6.2. 2 VrX-4- (k/(X,X)/2) VxX 0 atb.

In particular,

6.3. If Y X, the integral curve of X at B is always an extremal, since X
can be chosen as --2(X, X)/2.

7. Remarks on the Lagrange multiplier rule and its relation to
the Volterra calculus for path spaces

Our aim in this section is to show how the Lagrange multiplier rule for the
Lagrange variational problem can be thought of as an application of Vol-
terra’s ideas on the differential geometry of function spaces [18]. First we
recall how the Lagrange multiplier rule works for functions on finite-dimen-
sional manifolds.

Let N be a manifold, and let f, fa, 1 <= a <= m, be C functions on N. Let
S be a submanifold of N such that fa 0 on S. For any choice of constants
ha, the critical points of f q- ha fa that lie on S are critical points of f restricted
to S. Conversely, if S, {v N, dfa(V) 0} and if x e S is a critical point
of f restricted to S, then there are constants ha such that f q- ha fa has a critical
point at x. Note further, since fa 0 on S, that to look for critical points
of f q- ha fa with ha constant is the same as looking for them with M variable,
regarded as coordinates of an Rm, since fa dha 0 on S X Rz.

If x e N is a critical point of f subiect to. the constraints fa constant,
define the class of x as the dimension of the linear space of m-tuples (ha) such
that ha dfa 0 at X, i.e., the codimension of the space of covectors at x
spanned by the dfa. Then the class zero case may be thought of as the
regular or nondegenerate situation.
Now, the formal aspects of the calculus of variations are best understood

by regarding the space of C curves on a manifold as an "infinite-dimen-
sional manifold" [1]. The Lagrange multiplier device can then be regarded
as a generalization of the Lagrange multiplier idea for finite-dimensional
manifolds recalled above. However, there are often an infinite number of
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constraint functions fa to consider, and summation over a must be replaced,
at least formally, by an integration.
We present a brief outline of Volterra’s ideas as applied to the calculus of

variations, adopting of course an intrinsic, coordinate-free point of view. Let
B be a manifold, with points b0, bl fixed in B. Let P be the space of C
curves on B going from b0 to bl. For convenience, we shall regard an element
PasaCmap" [0,1]--B, with(0) b0,(1) b.
For a e P, P, the "tangent space" to P at a, will consist of the set of C

vector fields v -+ v(t) e B(t), 0 _-< <_- 1, on which vanish at 0 and
1. Since vector fields on can be added pointwise, P has a linear struc-

ture. A deformation as, 0 -<_ s _-< 1, of a (i.e., 0 a), as(0) b0, a,(1) b,
will be thought of as a "curve" in P starting at a. The "tangent vector"
to the "curve" , at s 0 will be a vector field v on a such that v(t) is the
tangent vector to the curve s -- a,(t) at s 0. In general, if (s, t), 0 _-<
s, _-< 1, is a homotopy in B, D, (s, t) (resp. Dt (s, t)) will be the tangent
vector to the curve u -+ ti(u, t) (resp. u - (s, u)) at u s (resp. u t).
If ti(s, t) a8(t), then v, the "tangent vector" to the curve in P at s 0,
will be the vector field -- v(t) D, (0, t). If f is a real-valued function
on P, the "differential" of f at a e P will be (if it exists, of course), a linear
function df’P -+ R, such that

7.1. d- f(o-,) dr(v).
s-0

For example, suppose that L is a (time-independent, homogeneous for sim-
plicity) Lagrangian on B, i.e., L is a real-valued function on T(B). Define
a function L on P by

L(a) Jo L(a’(t)) dt.

The classical "first variation" formula can be interpreted as giving just such
a "differential" for the function L on P. Another example" Suppose in
addition that S is a submanifold of T(B), defined by setting functions a,
1 <_-- a _--< m, on T(B) equal to zero. We want to consider

P(S) lzeP" z’(t) e S for 0__< t_<_ 1}.

Looked at from the point of view of infinite-dimensional differential geometry,
P(S) is a "submanifold" of P, obtained by setting an infinite set of functions
taF indexed by [0, 1] X 11, m}, equal to zero. For e [0, 1], Ft’a(o-)

a(Z(t) ). It is then plausible to extend the Lagrange multiplier rule by
introducing an infinite set of Lagrange multipliers t,, forming

t,a]t,a

considered as a function on P. However, "summation" over t is, by the
"Volterra Principle", to be replaced by integration over t. Rewriting ),t,a



660 ROBERT HERMANN

aS ha(t) leads us to form the new Lagrangian L’ L - ha(t)a as before,
and to find the critical points of L that happen to lie on P(S), which is of
course the starting point of our work in Section 3.

Generalizing the definition of class for a finite-dimensional problem given
above, we may define the class of an extremal e P(S) as follows: The
set of m-tuple functions of t, (ha(t)) such that is an extremal in the usual
sense of L + ha(t)a forms a linear space; its dimension is the class of .
(The point is that the ha(t) satisfying the condition usually satisfy a system
of linear homogeneous ordinary differential equations, and hence form a
vector space of finite dimension.)
We now list the results of the calculation of the differentials of various

functions on P.

7.2. Suppose that f is a function on T(B), e [0, 1], and F is the function on
P such that Ft(a) f(a(t)) for each P. Then,

dFt(v) df(v’(to)) for all v e P.
(Since v can be considered as a curve in T(B), v is, as usual, the tangent-
vector curve to it, a curve in T T(B)).)

7.3. Suppose that B is a Riemannian manifold, with metric ds, and
a L ds Then,

dL(v)
L(a) (Vat(t), v(t) dr,

provided that ( is parameterizedaccording to arc-length, which we can suppose
with no essential loss in generality. refers to covariant differentiation of a
vector field along [12, p. 450].

(b) L ds2. Then,

dL(v) --2 ] Va’(t), v(t)) dt.

c L v X b), v) for each v e Bb where X is a vector field on B. Then,

dL(v) f0 (V() X, ’(t)) (V,() X, v(t)) dt

which, providing that X is a Killing vector field, is equal to

--2 f0 (V,() X, v(t) dr.

LEMMA 7.1. Suppose w, 1 <- a <= m, are 1-forms on a manifold B, con-
sidered as Lagrangians. For e [0, 1], 1 <- a <- m, construct the functions
F’a on P. Suppose ( e P. Suppose that. ha(t), 0 -- 1, are functions
such that formally

ha(t) dF’
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a linear form on P, is identically zero. Then, ha(t) satisfy the differential
equations"

(d ha(t))Wa + ha(t)(Tt(t) .-] dWa 0 at a (t), for 0 <7.. \t /
<= "

Then, if 7.4 has no solutions that are not identically zero, the functions
taF ,0 -_< -<_ 1, on P may be thought of as "functionally independent", and

the subset of P defined by Fa.t Fa.t(a) may, at least locally about a, be
thought of as a "submanifold" of P.

Proof. It is easy to see that the problem is purely local. We can suppose
then that B has a coordinate system of functions x (1 _-< i, j,.-. -< n).
Suppose that w Aai dxi. Suppose (s, t), 0 _-< s, =< 1, is a homotopy
of curves of B with (0, t) (t), D (0, t) v(t), (s, O) bo, (s, 1) bl,
for0 _-< s =< 1. Put x;(s, t) x((s, t)). Then,

0 x(s,t)dx(v(t) - --o

Hence,

0 fo h,(t) dF’a

fo ha(t)dwa(Y(t), (r’(t) dt -- ha(t) Ott Aai Oxios ] .-o
dr.

The second term on the right-hand side, after integration by parts and taking
into account the boundary conditions v(0) 0 v(1) is

fol(d ha(t))Wa(O"! (t)) dt,

whence 7.4.
Let us now express 7.4 in more intrinsic form. Suppose that Wa 0

defines nonsingulr Pfffin system on B, i.e., if H {v e B w(v) 0},
then dim H is constant on B. We cn suppose then that the wa are every-
where linearly independent. Let H {X e V(B) wa(X) 0}. Suppose
that a is n integral curve of H and that X is n element of tt such that
X(a.(t)) a’(t). Suppose w is differential form on B such that w(I-I) 0
nd w ),,(t)w, on . It is readily seen that 7.4 is equivalent to the con-
dition"

7.5. X(w) 0 on a.

Since w(X) 0, we have

7.6. X(w) X_J dw, i.e., 0 dw(X(r(t), Y(r(t))

--w([X, Yl)(a(t)) for0 -<_ _-< 1, all Y ett.
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For X, Y e V(B), define Ad X(Y) inductively so that

Ad X(Y) Y, Ad X(Y) [X, Ad- X(Y)].

Using 7.5 and 7.6, applying Ad X to 7.6, we have

7.7. w(Ad X(Y) 0 on (r for all integers j >- 0, all Y It.

This suggests the following definitions: Let H c V(B) define a Pfaffian
system (possibly with singularities) on a manifold B, i.e., tt is a C(B)-sub-
module of V(B). ForbeB, letHb {X(b) :XeH}. LetXett. Define
a submodule D(H, X), the jh partially derived system of H by X, inductively
as follows: D0(H, X) H; D.(tt, X) is the submodule of V(B) spanned
by D._I(H, X) and IX, D._I(H, X)]. Finally, let

D(H, X) 0. D(H, X).

We can also write D(H, X) D.o(H, X).

7.8. If X(b) 0 for some b B, then D(I-I, Xb) H, for all j.

Proof. Suppose Y D_(H, X) and that X is of the form of X’, f e C(B),
X’ H, with f(b) 0. (Since X(b) 0, X can be written as the sum of
fields of this form.) Then,

[X, Y] -Y(f)Z’ + f[X’, Y], i.e., IX, Y](b) --Y(f)(b)X’(b) H.
Hence, we have proved 7.8 inductively. This result allows us to define
D(H,v) c B,0 -<j =< ,forveH,asfollows" Choose anXeHsuch
that X(b) v and define’D-(H, v) D.(H, X)b.

Returning now to X and w as defined above, e.g. in 7.5, we see that 7.7
implies

7.9. w(D(H, #(t) 0 for 0 <-_ <= 1. In particular, if D(tt, #(t)
B(t) for 0 <- <= 1, then 7.4 admits no nonzero solutions.

We now want to show that if dim D(H, z’(t)) is constant for 0 -< _-< 1
and less than dim B, then 7.4 admits nonzero solutions. This is the Special
case of the following result"

PROPOSITION 7.2. Let H V(B) define a Pfaflan system (possibly with
singularities) on a manifold B. Let S be a submanifold of B such that dim H
is constant for b S. Let X be a vector field on B such that (1) X is tangent to
S, and (2) [X,H] HforbeS. Let wo be a 1-covector to B at bo e S such
that w0(H0) 0. Suppose that X(bo) O. Then, there is a neighborhood
U of bo and a 1-form w on U such that (a) w Wo at bo, (b) w(Hb) O for
b e U o S, and (c) X(w) O on UrnS.

Proof. We can first assume that U is chosen so small that there are every-
where independent 1-forms Wa (1 <= a, b, <-_ m) in U such that

Wa(l)) 0 if and only if v e H for v e Bb, b S n U.
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Then, there are functions (Aab) on S n U such that

X(Wa) Aab Wb onSn U.

We look for w of the form Aa Wa for some functions (Aa) on S. The Aa must
then satisfy

7.10. (a) Aa(bo)wa JOa at b0, (b) X(Aa) AabA.

Let a" [0, 1] -- S n U be an integral curve of X. Then, 7.10 (b) implies
that

d Ab(a(t)) Aa(a(t))A(a(t))
dt

i.e., the Aa along a are the solutions of a system of linear homogeneous differ-
ential equations. Then, to find locally solutions of 7.10 (b), we have only
to choose any hypersurface S’ of S transversal to the integral curves of X
and solve these linear differential equations along the integral curves of X
starting at points of S’, Q.E.D.
We can now give the following heuristic answer to the problem with which

we began. Let tt be a nonsingular Pfaffian system on B. Let P be the
space of C curves on B joining two fixed points b0 and bl. Let P(H) be the
subset of P consisting of the integral curves of H. Then, the formal con-
dition that P(H) be a "submanifold" in a neighborhood of a e P(H) and
that the Lagrange multiplier rule work is that

D(H, a’(t)) B(t), for 0 =< _-< 1.7.11.

Example.
a dxa Aab Xb + Vau y dt O,

1 <-_ a,b, <- m;m 1 <= u,v, <= n,

Aa A(t), Va Vau(t) functions of t, determines a Pfaffian system in
the space B of variables (Xa, y, t). The subspace H c V(B) annihilating
the o is spanned by

X,,-- O/Oy,, Y O/ct + (AabXb + Vau yu) O/OXa.

Introduce a matrix-vector notation"

A (Aab), an (m X m)-matrix function of t.

V (Va), an (m X 1)-vector function of t.

O/Ox (O/OXa), a (1 X m)-vector operator function of t.

In terms of matrix multiplication,

y 0 0 (Ax+ Vuya)
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(u is, in this notation, considered to be merely a counting index and not a
vector index). Introduce a "covariant differentiation" operation 7 on
matrix functions of t"

VV d- V AV,

if V (V) is a 1-vector function of t. Computing, we have

IF, xo] Vo (Vo),

Ix., iV, Xoll o, [IV, xl, Iv, xll 0,

Iv, [Y,X]] 0 V)

etc., i.e.,

AdN(Y)(Xu) ___0 (TN_IV) and [Ad(Y)(Xu) Ad(Y)(X.)] 0
0x

if N and M are > 0. Combining the calculations with W. L. Chow’s ac-
cessibility theorem [11], we have

:PROPOSITION 7.3. Suppose that the dimension of the space of (m X 1)-
vectors spanned by the V(t), V(t), 2V(t), is independent of t;
call it p. Then, every point of (x, u, t)-space can be reached by starting from a
given point along piecewise differentiable integral curves of H if and only if
p=m.

Now suppose Z zX + z0 Y H. We want to calculate dim D(H, Z).
In carrying out these calculations, we might as well suppose that z,, and z0
are constants. Then,

O
V V[Z, X] z0[Y, X] --Zo ),

hence,

()
(ii)

0[Z, Y] z[X, Y] z--= ( 7V);

If z0 0, D(H, Z) D(H).
If Zo 0, dim D(H, Z) dim H 1, unless zVu 0, in which

case D(H, Z) H.

If D(H) V(B), then case (i) implies 7.11 is satisfied. Notice also that
the integral curves of fields Z satisfying (i) (with z0 not necessarily con-
stant) are precisely those which can be reparameterized by so as to be a
solution of the system"

7.12. dxa Aa x(t) - V y(t) for some choice of y(t)
dt
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Returning to the general case where H is a Pfaffian system on a manifold B,
we now investigate another infinitesimal property of P(H). First, we must
make precise what is meant by the tangent space P(H) at a "point" e P(H).

1 <- a,b,...

_
m; m- 1 <- u,v,... <= n.

Suppose (), 1 -<_ i, j, =< n, is a basis of 1-forms such that 0a 0 deter-
mines H. Suppose that

d c0 h o.

Let a [0, 1] -- B be an integral curve of H with a(0) x0, and a*(0) 0.
Change the definition of P(H) slightly" It is now the set of integral curves
of H starting at x0, with the end-point a(1) free to wander. To define
P(H), proceed as follows" Let ,, 0 -<_ s _<- 1, be a curve in P(H), with
(s, t) a,(t). The corresponding infinitesimal deformation v(x)
D,i(0, t) then satisfies a certain set of linear differential equations, the
"linear variational equations" of the Pfaffian system 03a 0 about a; P(H)
is then the set of vector fields satisfying these equations. (It is not a priori
obvious that every solution arises in this way from a curve in P(H). This
question in turn is related to the "submanifold" structure of P(H) but will
not be pursued here.) Now, let P(H) -- B be the mapping a --+ a(1).
The "differential" at , ." P(H) -- B(1) is then the mapping which as-
signs to each v e P(H) the vector v(1) at a(1). is said to be of maximal
rank about if , is onto.
To derive the linear variational equations, suppose then that (s, t) is a

homotopy, with (0, t) a(t). We have

Hence

0 ((D, i))
0

0- (o(D. ) c((s, t) )(D, )o,(D. ).

d__ OJa(V(t)) c(a(t))w(v(t))co,(a’(t)) or
dt

7.14. da(v(t), a’(t) d
o((t)) o.

P(H) is then the set of vector fields v along a satisfying 7.14, and the bound-
ary condition v(0) 0.

THEOREM 7.4. b is Of maximal rank about a if 7.11 is satisfied.

Proof. Given v e B(), we must prove there is a vector field v(t) satisfying
7.13 with v(1) v. Now 7.13 is a differential equation of type 7.12,
with ,(v(t)) identified with Xa(t), O(v(t)) identified with y(t), Aa(t)
identified with c(a(t))(a’(t)), and with v(t) identified with
c(a(t))co(a’(t)). Then, the proof follows from Proposition 7.3 if we
can identify the codimension of the spce of (m X 1)-vectors spanned by
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V, VV, with the codimension of D(I-I, ’(t)) in B,(t). This follows
from the following argument.

Let (E) be a basis of vector fields dual to the 0, i.e., 0(E.) ii. Then,
(E) span H. Let E f E be a field such that is an integral curve of
E, i.e.,

f(a(t) w.(a’(t) ).
Then,

[E, Ev] - f Cuva Ea mod H),

i.e., [E, E,] on can, mod H, be identified with Vau( (T( t) )Ea( (r( t) ). Notice
further that [E, [E, E,]] on can, mod H, be identified with VV)a Ea((t) ),
etc., Q.E.D.

8. The connection with Carathodory’s definition of the class
of an extremal

Let K(x, yi) be a function of 2n real variables (xi, y), (1 _<_ i,j, <- n;
summation convention). Let M be the space of these 2n variables, and
let a be the curve determined by functions x(t), y(t), 0 _-< _<_ 1, that are
solutions of the Hamilton equations"

8.1.
d x(t) OK
d--t (x, y), d OK

t Y(t) (x,y).

The linear variational equations based on a are

d--x(t)- 02K ((t))X(t)-k- O2---K (r(t))Y(t),
dt Oy Oxj Oy Oyj

d Y(t)= OK OK (a(t))Y(t).d--t Oxi Ox
(z(t) )X(t)

Oxi Oy

Consider the solutions of 8.2 for which the X(t) are identically zero, i.e.,
the solutions of

8.3.
d Y(t)-- OK ((r(t))Y(t) OK ((r(t))Y(t)=0.t Ox Oyj Oy Oy

The solutions of 8.3, considered as vector-valued functions of t, form a vector
space. Its dimension is the class of the extremal in the sense of Caratho-
dory [5], C-class for short.
The C-class of has the following geometric meaning" Under certain

additional assumptions [5], if the class is zero, all points of x-space sufficiently
close to x(1) can be joined to x(0) by a curve which is the projection on
x-space of a solution of 8.1.

Let OJa aai dxi be everywhere independent 1-forms such that a 0
defines a nonsingular Pfaffian system I-I, 1 -< a, b, -< m, on B, the space
of the variables (x.). Suppose that

a(x)K,+(x, y) O,
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i.e., the solutions of the Hamilton equations 8.1 when proiected down to
x-space are integral curves of H. Further, suppose that rank (K+,n+.)
n m, i.e., if K,+i,+(x, yO) 0 at a point (x, y0), then the vector

(i) is a linear combination of the vectors (aai(X) ).

(K OK/Ox Kn+ OK/Oy K,+, OK/Oy Ox
K,+,,+ OK/Oy Oy etc.)

Let a(t) (x(t), y(t)) be a solution of 8.1, and let ((t) (x(t)) be
the projection onto x-space. Let Y(t) be a solution of 8.3. Let be a
1-form such that (H) 0 and (a(t)) Y(t) dx, and let X be a vector
field such that X(a(t) a,(t). If o Y dx and X X O/Ox

X() X(Y) dx - Y d(X).

We can suppose that there are functions yi(x) such that

X(x) g+(x, y(x) ), y(x(t) y(t).

(We use the fact that rank K.+,.+. n m.) Then,

dX K,+,(x, y(x) dx K,+,,+ dye(x).

Hence, by using 8.3,

8.4. Z(co)(a,(t)) (dY(t)/dt),dx + YK,+,(a(t)) dx, i.e.,
X(o) 0 at every point of (t).

We are now back to the situation dealt with in Section 7. Applying the
results and notation developed there, we have

THEOREM 8.1. The C-class of the extremal ( is no greater than

min0_<_ t_<_l (dim B dim D(H, a (t)).

for 0 < < 1 the C-class is zero. Then,In particular, if D(H, ((t) B(t)
if in addition the Legendre condition that the quadratic form (K+,+) be
positive semidefinite is satisfied, and if a, is suciently small, every point of
x-space sufficiently near to (1) can be reached as the end-point of an extremal,
i.e., as the projection of a solution of 8.1, starting at (0).

This result has the following intuitive meaning" If D(H) V(B) by
Chow’s accessibility theorem [11], every point of B can be reached as the
end-point of an integral curve of H starting at a fixed point x0 a.(0),
i.e., if P(H) -- B is the space of integral curves of H starting at x0, then
(P(H)) B. As we have seen,

0<t<l,D(H, z,(t) B(t)

is the condition that , P(H),, the differential of at ., be onto
Since P(H) is some sort of infinite-dimensional manifold, the implicit func-
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tion theorem cannot be used a priori to prove that maps a neighborhood
of in P(H) onto a neighborhood of z(1). However, if z is an extremal,
Theorem 8.1 gives conditions that this be so, and even that points near
(1) can be reached on extremMs that are near to z. This stability
phenomenon might be important in applied problems.

9. Appendix. A proof of the local minimizing property of the
formal extremals

Despite the fact that it forms one of the most elegant parts of the classical
theory, Carathtiodory’s proof of the local minimizing property of the ex-
tremMs of a Lagrange variational problem [4] does not seem to be well known.
Of all the classical methods, it is best suited to the needs of applied mathe-
matics, where "nonclassical" problems involving inequality constraints
arise [16]. We present a treatment, based on Carathtiodory’s ideas, for the
case where the Lagrangian and constraint functions are homogeneous and
time-independent. (The general case can be reduced to this one.)
LetB be amanifoldof dimensionn(1 -< i,j,... -< n). Let T(B) be

the tangent bundle to B. Let L (resp. a, 1 <= a, b,... =< m) be real-
valued functions on T(B) such that

9.1. L(rv) rL(v) (resp. Pa(rY) rqa())) for each r > O, v e T(B).

For a curve z:[a, b] -- B1, define

L(z) L(’(t) dt.

Because of 9.1, it is independent of the parameterization of . For x e B,
let L (resp. ) be the function on B resulting from restricting L (resp. Ca)
to B. Introduce local coordinates (x) for B, and the corresponding local
coordinate (x, ) for T(B). Let L(x, 2) and (x, 2) be the expres-
sions for the corresponding functions in local coordinates. Let

OL 0 Lij-
OL

etc.

By Euler’s relations for homogeneous functions (i.e., by suitably differentiat-
ing 9.1), we have

(a) L 2i 0,
(b) L(x, r2) L(x, )
(c) L 2 O.

for r > 0,

(Similar relations hold for the , since they too are homogeneous.) If
we construct the 1-form O(L) Ldx (L L) dt on T(B) R,
notice, by 9.2 (a) that 0(L) Lidx, i.e., O(L) is a form on T(B) alone.
We shall so consider it from now on and shall forget about explicit time
dependence. Similarly, O(a) ,i dx are 1-forms on T(B).
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Let S c T(B) be the constraint manifold defined by the a, i.e.,

S {v T(B) a(V) 0}.

For x e B, let S S n B. We shall suppose that the following classical
conditions are verified.

9.3. The matrix tai has constant ranlc m. In particular, S (resp. S, for
x e B) is an imbedded submanifold of T(B) (resp. B,).

We shall suppose, as explained in Section 3, that Mt, the normal bundle
of S, is S X Rm, with (ha) the coordinates of Rm, i.e., M’ is the subset of
R )< R X R defined by a 0. Consider the form O(L, S) on M:

O(L, S) O(L) - ha O(a) restricted to S X R.
A real-valued function W on B is a solution of the Hamilton-Jacobi equation
if

9.4. There is a cross-section f B -+ M’ S X R and a function F( )
of one variable such that

f*(O(i, S) d(F(W) ).

To see how such conditions on W arise in a natural geometric way, consider
a cross-section g B -+ S and a real-valued function W on B such that

9.5. (a) dW(g(x) l for all x e B.

(b) For each x B, g(x) is a critical point of L restricted to

Sn{veB:dW(v) 1}.

(c) For all x e B, dW and a, considered as functions on B, are func-
tionally independent in a neighborhood of S.
Then, according to the Lagrange multiplier rule for ordinary functions,

for each x e B there is a system of numbers (h(x), ha(x)) such that g(x)
is a critical point of the function L + h(x)(dW(x) 1) + ha(x)q on
B (dW(x) denotes dW restricted to B). Further, the h(x) and ha(X) are,
by 9.5 (c), uniquely determined and hence are differentiable functions of x,
by the implicit function theorem.

In local coordinates, put g(x) ci(g(x) dxi(g(x) and W OW/Oxi
Then, the conditions stated take the form"

9.6. L(x, g(x) + h(x)W(x) + ha(X)ai(X, g(x) 0 for each x e B.

Let f B S X R M’ be the cross-section such that

f(x) (g(x), ha(X))

Then, we see that 9.6 is equivalent to the condition"

9.7. f*(O(L, S) -h(x) dW.

forx
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Further, multiplying each term of 9.6 by gi(x) and summing, we have

0 Li(x, g(x))g(x) + X(x)W(x)gi(x) - a(X)qa(X, g(x))gi(x)

L(x, g(x)) - X(x), by 9.2 and 9.5 (a).

Hence, we have

9.8. g*(L) is a constant on the level surfaces of W if and only if W is a
solution of the Hamilton-Jacobi equation.

THEOREM 9.1. Suppose f B -- M’ S X R and g B ---+ S are cross-
sections such that f(x) (g(x), a(x) for all x e B. If W is a corresponding
solution of the Hamilton-Jacobi equation such that 9.5 (a) is satisfied, then
9.5 (b) is satisfied. Suppose that the further conditions, strengthening 9.5 (b),
are satisfied:

For each x e B, L(g(x) < L(v) for all v such that dW(v) 1
and v g(x).

9.10. The surfaces W constant are connected.

9.11. L(v) > O if v O, v e S.

Let [a, b] --> B be a curve such that (’(t) g(a(t) for a <-_ <- b, i.e.,
(r is an integral curve for the vector field determined by g. If 1 [al bl] --> B
is a curve with W(a(a) W(a(a) ), W(al(bi) W(a(b) and with
((t) S for ax <-_ <- b, then L(al) > L(a) unless a is also an integral curve

of g (with a possible change of parameterization), in which case L(a) L(a).

We may remark that it is, in the classical theory, customary to assure
9.9 by assuming a "Legendre condition" on the second partial derivatives
Li and

Proof. The first part is easily proved by reversing the reasoning which led
to 9.7. To prove the second part, note first that we are free to change the
parameterization of a so that W(a(t)) t, a -<_ -< b.

Case 1. dW(a(t))/dt > 0 for a -<_ _<_ b. We can then, by an allowed
change of parameterization, suppose also that W(a(t)) t. By 9.7, 9.8,
9.9, and 9.10, for x e B

L(g(x) min IL(V) v e S, y eB, dW(v) 1, W(y) W(x)}.

Then, L(((t)) <= L(a’(t)) for W(a) <= <= W(b), and equality holds if
and only if a’ (t) g (al (t)). Then, L(al) >= L(a), and equality holds,
by continuity of a’ and a if and only if a is an integral curve of g.

Turning to the general case, notice that [a, b] can be broken into sub-
intervals in which dW(a(t) )/dt is (a) positive or (b) nonpositive. Since
W(a(t)) must go from W(a(a) to W(a(b) as goes from al to b, and
L(a) over an interval satisfying (a) is >- L(a) over that interval, and
L(a) > 0 over any intervals satisfying (b), the reasoning by which one
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obtains L(zl) >= L() is an obvious consequence of the fact that
L(z) L(zl) L() if a curve z3 is obtained by putting end-to-end
curves a and as.

COROLLARY 9.2. L(a) > L(a) for all other curves satisfying the con-
straints joining a(a) to a(b), if conditions 9.9, 9.10, and 9.11 are satisfied.

This does not exhaust the classical results. The next problem: Given a
sufficiently small formal extremal z of the Lagrange problem, i.e., the pro-
jection into B of a characteristic curve of dO(L, S), can we find cross-sections
f U -- M’, g U ----> S, with f(x) (g(x), (x)), defined in a sufficiently
small neighborhood U of z such that is an integral curve of g and there
is a function W in U with f*(0(L, S)) dW?

This problem can be handled by standard Hamilton-Jacobi theory, as
Carathodory does [4], by showing the equivalence, via a "Legendre trans-
formation", with a Cauchy problem for a first-order partial differential
equation. However, it is also possible to deal with this "Cauchy problem"
directly by using Cartan’s theory of exterior differential systems. We shall
sketch such a treatment here:

First, eliminate consideration of W by noticing that we are looking for a
cross-section f: U --* M’ such that f*(dO(L, S)) O. Consider f(U) as
a submanifold N of dimension n of M’. Notice that it is an integral manifold
of the 2-form dO (= dO(L, S)), i.e., dO restricted to it is zero. The charac-
teristic vector fields X (on M’) of the differential ideal generated by dO are
then the X e V(M’) such that X _J dO 0, i.e., the vector fields defining
what we called the characteristic foliation F of dO in Section 2. The follow-
ing property of the X e F is well known"

If N c M’ is an integral submanifold of dO to which X is nowhere tangent,
there is an integral submanifold of dO of one higher dimension containing N1,
obtained by finding the integral curves of X whose origin lies on N.

Then, we may hope to find integral manifolds of dO of dimension n by
finding integral manifolds of lower dimension which are not tangent to the
characteristic foliation of dO.

DEFINITION. If A is a submanifold of B and r A ---. M’ is a cross-section
map, then r is transversal to A (with respect to the Lagrange variational
problem) if r*(0) 0. Then, r(A) is a submanifold of M’ of the same
dimension as A which is afortiori an integral submanifold of dO.

Under suitable regularity conditions, it is easy to see that (a) r(A) is
not tangent to F, and (b) the existence of such r’s, given A with dim A <
dim B, can be proved by invoking the implicit function theorem only. Rather
than work out these points in the general case, it is more instructive to look
at the special case considered in Section 4.
Suppose then that L defines a Riemannian metric on B and that the con-
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straints are linear. As before, let (wi) be an orthonormal moving frame of
1-forms on B, pulled up and considered as 1-forms on T(B), and let (yi) be
the functions on T(B) such that w(v) y(v) for v e T(B). Then, L
(y y)1/.. Further, let the (wi) be chosen so that ya 0 defines the con-
straint submanifold S of T(B). (1 _-< a, b, _-< m; m -t- 1 _-< u, v, _-< n.)
The 1-form 0(L, S) (= 0) on S ( R is then

y w/(y y)’ / .
Let A be a submanifold of B, and let T A -* S X R be a cross-section
defined by giving y and a as functions of x e A, say y(x) and a(x). The
condition for transversality is then

9.12. y(x)w/(y(x)y(x))+ )(x)w 0

for x e A, (w) restricted to A.

For x e B, consider H (resp. V), the set of horizontal (resp. vertical) vec-
tors that satisfy w, 0 (resp. w 0). Let h (resp.)) A -- T(B) be
the horizontal (resp. vertical) tangent vector field on A such that

w,,(h(x) y(x) (resp. w()(x) )(x) ).

Then, 9.12 is equivalent to

9.13. (h(x), v)/I h(x) " ((x), v) 0 for all x A, v A.
This suggests making the following definition:

DEFINITION. Let H’x H be a field of tangent space subspaces of
constant dimension on a Riemannian manifold B. For x e B, let P B --* H
(resp. P" B --. H) be the corresponding projections. A tangent vector
v e B is said to be transversal to a v e B if

9.14. (P(v), v)/] P(v) - (P(v), v) O.

(Notice that this is not necessarily a transitive relation, i.e., v is not neces-
sarily transversal to v, unless dim H 0, when the condition reduces to the
standard notion of perpendicular vectors. This is, of course, typical of
variational problems more general than those provided by Riemannian
metrics.
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