ASYMPTOTIC BEHAVIOR OF SUCCESSIVE COEFFICIENTS OF SOME
POWER SERIES

BY
A. M. Gagsia, S. Orey, anp E. RopeMmIcH!

Introduction

Suppose that fi, f» ... is a sequence of numbers satisfying the two con-
ditions:

(1) 2hafa=1,
(ii) f. = 0, and the greatest common divisor of the indices k such that
fr ¥ 0 is one.

We shall set
F(t) = 2 nafut”y, U@ = 2Zrouat’,
where
I1 U@ =1/(1 — F(1)).
We are interested in the behavior of the ratio

Tn = un+1/ Un
asn — «. It was shown in [2] that as n tends to infinity
u, — (F'(1))7,

with the expression on the right being interpreted as zero when F’(1) is infi-
nite. We seek conditions on the f; which do not imply F/(1) < o but
insure’

lim inf,,e rn = lim'sUppae rn = 1.

The simplest condition we found was

lim SUPsse fr1/fo = 1.

This condition has the serious drawback that it does not permit f, = 0 for
infinitely many k. We have found more satisfactory conditions which include
the above condition as a special case. Nevertheless this special case is of
special interest because the arguments then are simpler and more transparent.

We shall proceed with stating the above-mentioned conditions. Let
M1, M2, *"° , Mn—1, A be real numbers, and suppose uy— #= 0, A > 0. We
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shall say that the sequence fi , fa, -+, fu, - - - satisfies condition
AN(NI)F'&: e ’”N—l;)‘)

if and only if the expression f, + p1fat1 + -+ + py—1 fosrn—1 becomes greater
than zero for large n, and in addition

. o + w1 fore + o0+ pvaa farw
1.2 lim =\
nj:lp fot wmfona + o0+ wvaafowa

We shall say that the sequence fi , f2 , - - - satisfies condition By when it satis-
fies Ay(1,1, ---,1;1).

We can now state more precisely the results that will be presented in this
paper. First of all we shall show that (i), (ii), and Ax(p1, -+, uv—1, A)
imply that as n — o« lim sup 7, < « and lim inf , > 0. In addition it will
be shown that in any case, given (i) and (ii) we have®

1.3 lim SUPnse Unt1/Un = (lim sup fup/fn) o 1.
Finally, it will be established that (i), (ii), and By imply that
14 lim SUPnow Unir/Un = 1.

The latter inequality will be shown to imply the convergence of u,y1/u, to
one,

The methods developed in this paper have been used to deduce r, — 1 using
only (i), (i1), and Ax(p1, pe, * -+, uy—1; 1) where py, ps, «++ pny— are to be
nonnegative. However, the proof of this extension is somewhat technical
and will not be included.

In the Remark at the end of Section 2 we show that the condition r, — 1 is
equivalent to each of two other conditions.

Two questions are left unanswered.

(1) Do (i), (ii), and condition Ay(u1, p2, - , pny—1 ; A\) imply the con-
vergence of Uyy1/u, P (In particular, does lim sup fuoii/fa < o imply
7o —> 1?)

(2) Does a result of the type 1.3 hold in general? In other words, do
(i), (ii), and An(u1, w2, - -, uy—1 ; A) imply at least

lim SUppsw Unss/Un = X 12
1.
We shall start by establishing a few identities and inequalities.

1.1. We observe that I.1 implies that uo = 1, and that
1.11 Untr = f1Un + fothna + -+ + fapruo.

3 We write @ . b for the maximum of a and b.
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By induction it is easy to show that
1.12 Un

IIA

1.

On the other hand, (ii) implies that we can find p 4 1 natural numbers
No, ki, key -+, k, with the following properties:

(@) fu, #0, =12/ -+ p;

(b) every natural number n = N, can be written in the form
1.13 n="rkn+knt+--+kn,,
where the n; are nonnegative integers.

From 1.11 when n = N, it is easily deduced that 1.13 implies
1.14 Un Z (o) ™ (fe) ™ -+ (fi,) ™.
We thus conclude that u, # 0 at least whenn = N,.

1.2. Given a set of constants p; , ps, - -+ , uy—1 wWe shall set

M) = mt+wt + - + pya 8"
From I.1 we get

B 1+ M(¢)
121 U = =10 F s Fe = M@

so that setting

1.22 FH(1) = 2t = L+ M@)F(t) — M),
we shall have (forn > N — 2)

1.23 Unr = F1Un + D it Firt Ynt

and also (forn > N — 1)

1.24 Un = D ot S Ui -

For convenience of notation, N = 1 shall mean M (¢) = 0, so that when
N = 1, the f' in our formulas are to represent the old f;, .
We divide 1.24 by w«, and manipulate to obtain (forn = N 4+ N, 4+ N;)

Ni f]ﬂl
1.25 1= _—_—
- kgl Tn1Tn—2 *** Tnk

provided only fi' = 0fork > N;.
Let A be a real number greater than one. Multiplying 1.24 by A and sub-
tracting from 1.23 we get

1.26 Ungr = (A + f1)Un + Dbmr (i — M) tUn
Suppose now that

1.27 fla— My <0 for k= N,.
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Using this inequality in 1.26, dividing by u, , and manipulating, we obtain

w | NN fen — Mi
1.28 ra SN D S
k=1 Tpn—1"n—2 *** Tn-k

whenn = N+ Ny + N;and N; = N..
1.3. To simplify the exposition we shall introduce a new term. Let

n1<n2<...<nk<...

be integers. The set of numbers 7y, ne, -+, ng, + -+ will be called a “de-

termining subsequence” if and only if, for « = 0, &1, &2, - .-, ete., the

variable 7,4, converges as k — o,

We set

1.31 limysew Poptre = Ra .

Ifn,,ny, -+, m, -+ is a determining subsequence and 1.31 holds, passing

to the limit for n = n; + o in 1.25 and (if 1.27 is valid) in 1.28, we obtain
Ny fM

1.32 1= k

= b
k=1 Ra—l Ra—2 e Ra—k

M ua flz—l - )\flﬁl
< .
1.33 Re =N+ fi + ;Ra_,Ra_g - R

Notice now that since the left-hand side of 1.32 is independent of N, , we must
also have

) fllcll
. 1= .
134 - kgl Re 1Roy - Ra

On the other hand, if 1.27 is valid, the tail of the sum in 1.33 can be estimated
by means of the tail of the series in 1.34. So we can also write

135 RSk+f¥+§:—fkﬂil————)\i—L.
' = =1 Ray + o+ Ros =1 Roo1 -+ Rok

When N = 1 (M (t) = 0), this relation will be used in the form

0 fk
— A= —— (Rasr — N).
1.36 R, —\ = kEﬂ; e o, Be = M)

1.4. We can now deduce a few consequences of the inequalities that we
have established. For convenience, here and in the following we shall set

lim inf,. 7, = m, lim supsse . = M.
LemMa 1.41. If M < «, then M = 1, and
1.41 m = F(1/M)M.
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Proof. The inequality in 1.34 for « + 1 can be written in the form

) M
142 .z i _ Jen
R - fl + ’;i Ra—l ce Ra—k

For M (¢) = 0 this relation yields
1.43 Re 2 fi + 2 fur/M".

Since for any given o there are determining sequences such that R, = m,
1.43 yields* 1.41.

LemMa 142, If M £ 1, then r, converges, and lim,., 7, = 1.
Proof. The assertion follows immediately from 1.41 and assumption (i).
Lemma 1.43. If liminf,.e %ny1/u, > 0, then

lim SUPyse Uny1/Un = (im sup fop/fa) 1.

Proof. If lim SUPnse fat1/fn = oo, there is nothing to prove. Suppose
then that

1.44 N = (lim SUPnsw fos1/fn) w1 < .

Since 1.27 has to hold for each N > A\’ and suitable N,, 1.28 is valid
for M(t) = 0, and passing to the limit we obtain

Ny -
MS x4+ L =Nl
k=1 m/
We can thus pick a determining sequence such that By = M.
We now observe that 1.36 will necessarily hold for each A > \’; therefore
we shall have also

_ ’ S S fk — ’ .
Ra >\ - kz=:1 Ra—] Ra—2 cet Ra—k (Ra—-lc >\ )

For o = 0 we obtain
S fe R < (v — ( _3 ___I____>
,;R_IR_sz_k(M Ba) =V —M)\1 ,f\;?lR_lR_z--.R_k :

Since M = R_;, the assumption that N = M (in view of 1.34 written for
M(t) = 0) implies that B_; = M for all k such that f; £ 0, say for k = «a .
Using this fact for o = —ay we get

0 (N — M) — D piafi/M").

Observe now that if M > 1, we necessarily have Y o fi/ M ¥ < 1, and thus
we must conclude that

Nz M.

4 The use of such a sequence was suggested by a new proof of the renewal theorem
due to W. Feller [3]. See also Choquet and Deny [1].
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2.

We shall proceed to show that condition 4, (u1, 2, «*+ , uy— ; A) is suffi-
cient to guarantee that m > 0 and M < .

2.1. We begin by establishing

LemMma 2.1.  Under the assumption (ii) (and therefore also (a), (b) of Section
1) for every k = N, there exists a constant C'(k) > 0 such that forn = Ny + k

2.11 PniTuog - Tng = C(K).
Proof. We observe first that by (b) there exist p and &y, --- k, such
that every £ = N, can be written in the form
2.12 kE=Fkn + kanyg + - + k,m, (n; = 0).
On the other hand, from 1.24 (M (t) = 0) we obtain foreach k < n
2.13 Un = fo Un—k ,
and for k = k;
2.14 Taei Tue2 *** Tuek; = Siog forn = Ny + k;.

Using 2.12, 2.13, and 2.14 we get (by grouping terms)
TaciTuog * o Taok 2 (fo) " ()™ -0 (i)™
for £ =2 Noand n > k. Thus we get 2.11 with
Ck) = (fe) " (fa) "™ -+ (fi,) ™

2.2. To obtain a lower bound for 7, 3 7,2 * + + 7, for small & it is necessary
to assume some condition in addition to (ii). In fact, it can be shown by
examples that if f; = 0, then m need not be greater than zero. We shall also

show that it is sufficient to assume condition Ay(us, pa, =+, uwv—1 ; N').
Lemma 2.21.  If for each k > N, there exist n(k) and C(k) such that
2.21 TonaTong T = C(k) >0 for n = n(k)

and condition Ax(u1, us, + -+, unv—1 ; N') holds, then there exist constants C(k)
and n(k) such that 2.21 holds also for 1 < k < No. In addition we have that

2.22 M = lim SUPpsew Unt1/Un < .

Proof. We shall proceed by reverse induction. We assume that for each
k = ko > 1 there exist constants C'(k) and n(k) (n(k) > k) so that 2.21 is
satisfied and shall deduce the same result for &k = ky — 1.

Let A be a given number greater than N. In view of the hypothesis, 1.27
will hold for a sufficiently large N,. Thus 1.28 holds, and we get

N M M
293 rﬂé)\+|f{”|+zzML‘_,

k=17Tn—1"Tn—2 *** Tn-k
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Dividing this inequality by 7, 741 - * Patre— , in view of the induction hy-
pothesis, we obtain that

2.24 1 <M AT S = M|
Tagl *** Tngho—1 C(ko) =t C(ko + k)

at least when
2.25 n = max {No, n(ko), -+, n(ko + N2)}.

We then define [C'(ko — 1)]™" to be equal to the right-hand side of 2.24, and
n(ky — 1) to be equal to the right-hand side of 2.25 plus ko .

To prove the last assertion of the lemma, we observe that from 2.23 we
obtain

S h | g P ]

2.3. We can now combine the results in Lemmas 1.41, 1.42, 1.43, and 2.21
to obtain the following:

TueoreMm 2.3. If (i) and (ii) hold and

1 O lim supnae fai1/fo = N < o,
we have
AF(1/0) = lim inf, e U1/t < 1IN SUPnow Unt1/Un = A,

If, in addition N = 1, then w,41/un is convergent, and
limy e Uny1/Un = 1.

Remark. The work of the last section makes evident that r, — 1 if and only
if equality always holds in 1.34. Each of these conditions is equivalent to

lim [sup _Z_EEM:’“] = 0.

N->w |_n2=N U

Clearly 7, — 1 implies the truth of this condition. Conversely if the con-
dition holds, we can pass to the limit in 1.24 along {n; + o} (with M (¢) = 0)
and obtain equality in 1.34.

3.
In this section we shall be concerned with the proof of the following:
TuroreMm 3. If the sequence fy, fa, -+, fu, - satisfies (i), (ii), and

condition By , then
limy,e Uni1/Un = 1.

3.1. Beforeproceeding with ourarguments we need toestablishan auxiliary
result which is of some intrinsic interest.
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TueoreM 3.1. Under the assumptions (i), (ii), and M < <, we shall have’
3.11 lim suppw Untn/Un = 1
for some N = 1 only if
3.12 oo Unpr/Un = 1.

Proof. For N = 1 the theorem follows from Lemma 1.41. Suppose N = 2,
and let n;, be a determining subsequence such that Ry = M. The assumption
in 3.11 implies that

3.13, RoyRos - Ry =1, a=0,=x1,+2 ...
Suppose we set

3.14 Fe=Ro2 - Ronw+Ros " Ron+ -+ Row+ 1L

The inequality 3.13,—; can also be written in the form

3.15, ToRona S Tos.

A repeated application of 3.15 yields

3.16 ToRonvaRows  Roovoie £ Ta.

We thus have that

3.17 3 b Pok s S =1

=i Rowvay o+ Roewie To = 421

On the other hand, in view of 1.34 written for M (¢) = 0 and witha — 7 + 1
in place of « we shall have

k=1 Ra—j ce Ra——N Ra—N—l cet Ra—N—k k=1 Ra—j M Ra—j+1—k

3.18 zw: flc Ra—k—~j M Ra——-k—N < flc

IIA

L
and this implies that
5.

k=1 Ra—y—1 *+* Ray—t

I‘a—-k é Fa .

Therefore equality must hold in 3.17 and 3.18. Since o is arbitrary, we
shall have

0 fk
T L = 1 -
1;:1 R R fora = 0, 1, 42, ;
thus also
0 fk

1 R, =2, 5—"— Rax.
3 9 k;lRa-—] et Ra—k t
By assumption Ry = M, and of course R, < M for all other «. We deduce
that R_;, = M for each k such that f; # 0. And by (ii) for a suitable ay,

5 The theorem remains true even if 3.11 is weakened to lim sup u@m+iyn/unvy = 1 as
n— o,
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we shall have
R.=M forall @« < ap.

On the other hand, 3.19 written for & = ap gives
M= 32 fi/M7,
but because of (i) this equality can only hold for M =

3.2. We proceed with the proof of Theorem 3. Since condition By guaran-
tees (by Lemmas 2.1 and 2.21) that M < o, in view of Theorem 3.1 we need
only establish that

3.21 lim SUpnsw Unin/un = 1.
We shall thus pick a determining subsequence n, , ny, * -« , %, « * - such that
3.22 RoR; -+ Ry_y = lim SUPpac Unin/Un = M™,

and suppose M* > 1. We let M(t) = ¢ + £ + --- + ' Condition
By guarantees that 1.35 will be satisfied for any A > 1. We shall therefore
have also

R+ + 2 fin — ﬁ; .
a—1 °°° a—k

This inequality can be written for « — 1 in the form

1+ £ foa — il
323 1= o ; TS

From 1.22 an easy calculation yields
fiu +1="r, fgl —fiu =Ja, -, f:’l—-l — fr-e = fyva;
= fia=fxr+1,

and fork = 1
f:rl+k - le\lrl+k-1 = fN+lc - fk .
Substituting in 3.23 we obtain
S fr 1 S Ju
324 1= _ .
- kz=:1 Rosy +++ Ras + Rey - Ran l; Roy +++ Rawah

Observe now that for each k we can write

1 — 1 Ra—k—l e Ra-—k—N
Ra—l ce Ra-k Ra——l M Ra—-N Ra—N—l ce Ra—N—k ’

so that 3.24 can be given the more suggestive form

Roes -+ Ronv—15% Z fk (Ra—k—l <o+ Ropn — 1)'

k=1t Ra—n—1 + -+ Ra—ns
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For convenience we shall set R,y Ras - -+ Ra—y = Po, so that we get
0 f]‘;

3.25 P,—1= P, —1).
7;. Ra-—N—l cer Ra—N—k ( * )

The assumptions imply that P, £ M* and Py = M*. From 3.25 we obtain
that if, for some ap , Poy = M * then necessarily Pyrv=M *for all k such that
fr % 0. In addition we must have

i S 1

k=1 Rao—N—l M Rao—N—k

In view of (ii) we deduce that there is an ap such that for all & < a
00 fk
—_ * — =
(e) P,= M* and (ee) kgﬁi R Ro 1.

From (e) we deduce that R, = R,y for all @ < op. On the other hand
(ee) for a + 1 in place of @ can be written in the form

Let R = max (Rag—1, Ray—2, -+, Ray—n). For a < ay we have also
R—Ru=3 p—tt o (R— R,
Consequently if R,, = R for some oy, we have R,,—, = R for all k such that
fe% 0. This implies (in view of (ii)) that
R,=R forall a < ay.

Writing (e) and (ee) for such an a we obtain

R" =M%, 2L f/R =1,
and this, in view of (i), gives the desired contradiction.
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