
THE MODULAR REPRESENTATION ALGEBRA OF A FINITE GROUP

:BY

J. A,. GREEN

1. Representation algebras
1.1. Notation and terminology.
G is a finite group, with unit element e.
k is a field of characteristic p.
By a G-module M is meant a (/c, G)-module. Elements of G act as right

operators on M, and me m (m M). The k-dimension dim M of M is
assumed finite. For example,
F F(k, G) is the regular G-module, i.e., the group algebra of G over k,

regarded as G-module, and
]ca is the unit G-module, i.e., the field ]c, made into a "trivial" G-module,

i.e.,Kx K (ek, xeG). For any G-moduleM,
{M} is the class of all G-modules isomorphic to M.
V (i runs over a suitable index set I) is a set of representatives of the

classes {V} of indecomposable G-modules. The number of these indecom-
posable classes is finite if and only if either p 0, or p is a finite prime such
that the Sylow p-subgroups of G are cyclic (D. G. Higman [5]).
F (j 1, n) is a set of representatives of the classes {FA of irreducible

G-modules. The number n of these is always finite. If k is algebraically
closed, n is equal to the number of p-regular classes of G (R. Brauer, see
[1], [2]).

If M’, M" are G-modules, M’ M" denotes their direct sum. If M is a
G-module, and s a nonnegative integer, sM denotes the direct sum of s iso-
morphic copies of M.

1.2. Let c be an arbitrary commutative ring with identity element. Then
the representation algebra At(k, G) of the pair (], G), with coefficients in
is defined as follows. It is the c-module generated by the set of all isomor-
phism classes M} of G-modules, subject to relations {M}
for all M, M’, M" such that M - M’ M’, and equipped with the bilinear
multiplication given by IM}IM’} {M (R) M’}. Here M (R) M M(R)k M’
is made G-module by (m (R) m’)x mx (R) m’x (m M, m Mr, x G). By
the Krull-Schmidt theorem for G-modules, At(It, G) is free as c-module, and
the V} (i e I) form a c-basis. A (], G) is a commutative, associative al-
gebra over c, and has identity element 1
The Grothendieclc algebra A* (t, G) is the quotient of A (1, G) by the ideal J
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generated by all elements {M’} {M} + {M"} such that there exists an exact
sequence (of G-modules and G-module homomorphisms)

1.2a)

By the Jordan-HSlder theorem for G-modules, the elements {F.} + J
(j 1, n) form a c-basis of A*(/c, G), which is therefore always finite-
dimensional.

If p 0, or if p is a finite prime not dividing the order of G, then every
exact sequence (1.2a) splits, i.e., J 0 and A(/c, G) -- A* (k, G).

1.3. Returning to the general case, let now k’ be an extension field of k.
Each (k, G)-module M gives rise to a (k’, G)-module Mk, /’ (R)k M ("ex-
tension of coefficient field"). The mapping {M} --. {Mk,} gives a natural
homomorphism

(1.3a) At(k, G) -- A,(k’, G),

and by a theorem of E. Noether (see e.g. Deuring [3]), which says that two
(k, G)-modules M, M’ are isomorphic if Mk, M,, it follows that (1.3a)
is a monomorphism. Clearly (1.3a) also induces a map

(1.3b) A*(k, G) -+ A*(k’, G),

and it is readily shown that this, again, is a monomorphism.

1.4. From now on we shall take c to be the field of complex numbers, and
write A (k, G), A* (/, G) for A(/, G), A* (/c, G), respectively. We prove in
1.5, as an immediate consequence of R. Brauer’s representation theory,

THEOREM 1. For any field l, and any finite group G, the algebra A*(tc, G)
is semisimple.

If p 0 or if p is a finite prime not dividing the order of G, then A (k, G)
coincides with A*(k, G), and so is semisimple by Theorem 1. If p is a finite
prime dividing the order of G, very little is known about A (k, G), even in the
case where this is a finite-dimensional algebra, i.e., when the Sylow p-subgroups
of G are cyclic. The greater part of this paper (2) is devoted to the proof of

THEOREM 2. If tc has finite prime characteristic p, and if G is a cyclic
group of order a power of p, then A (k, G) is semisimple.

Corollary. A (k, G) is semisimple, for any finite cyclic group G.

For the proof of this corollary, see 2.11.
Let k’ (R) Fj Fjl -Jr- F3"2 -1- where Fil Fa’ are irreducible (k’, G)-modules.

If {Fh}, {Fj} are distinct classes of irreducible (k, G)-modules then no one of
F2, can be isomorphic to any one of Fjl F, by Schur’s lemrna. Therefore
the basis elements {F} + J (j 1, n) of A*(k, G), are mapped into linearIy inde-
pendent elements of A* (k’, G).
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1.5. If A is any commutative complex algebra with identity element 1,
define a character of A to be a nonzero algebra homomorphism A --+ c. By
definition, A is semisimple if and only if, given any nonzero element a e A,
there exists some character of A such that (a) 0. If A has finite di-
mension s, say, then this condition is equivalent to the condition that A should
have s distinct characters.

Proof of Theorem 1. Let/’ be the algebraic closure of k. If A*(k’:, G) is
semisimple, then so is A*(k, G), because, by (1.3b), A*(k, G) is isomorphic
to a subalgebra of A*(]c’, G). So we may assume ]c is algebraically closed. By
Brauer’s theorem (see 1.1), A*(k, G) has dimension n number of p-
regular classes of G. For each p-regular class K, 1,... n, we may
define a function on A*(/c, G), as follows: Each class {M} of G-modules
determines a class of equivalent matrix representations of G over k; let M be
one of these matrix representations. Define ({M} -4- J) to be the value, at
an element of the conjugacy class K, of the Brauer character of M (see [1]).
For example, taking K1 le}, we have tI({M} -t- J) dim M. Well-known
properties of the Brauer character ensure that is well-defined and is a
character of A*(k, G). Moreover/, tn are distinct, so A*(k, G) has
as many characters as its dimension, which proves the theoreml

1.6. We collect here some general facts which will be used in 2. Let
G, H be two groups, and 0 H -, G a homomorphism. If M is a G-module, let
MO* denote the restricted H-module, i.e., MO* has the same underlying It-space
as M, and y e H operates by my m(yO) (m M). If L is an H-module,
let LO. denote the induced G-module, i.e., LO. is generated, as It-space, by
symbols (R) (1 L, , I’ I’ (/c, G) subject to the relations which make @
bilinear over k, and also

ly (R) l(R) (yO)/ (l eL, e F, y H).

An element x e G acts on L0. by the rule (1 (R) ,)x (R) x.
morphic, we have

If 0 is mono-

(1.6a) dim LO. (G HO) dim L.

The maps {M} -+ {M0*} and {L} - {L0.} induce linear mappings

0" A (k, G) --+ A (It, H) and 0. A (k, H) -- A (/, G),

respectively.
identity

(1.6b)

0" is clearly an algebra homomorphism; for 0. we have the

L0. (R) M --- (L (R) M0")0.
(see e.g. Swan [7]).
3Any character of A*(]c, G) is determined by the values i ({F} W J)

(j 1, n). The n X n matrix () ( row, j column affix) is just the transpose of
Brauer’s matrix of modular characters (called in [2]), and hence is nonsingular.
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In particular, if 0 is the inclusion map of the subgroup H {e} in G, and
if L ]tie we find LO.

_
I’; hence (1.6b) gives

(1.6c) r (R) M (dim M)I’, for any G-module M.

Let4 be any character of A(k, G). We write 4(M) in place of 4({M}) for
convenience. Then (1.6c) shows that (I’)(M) (dim M)(F) hence
if (I’) 0, we have (M) dim M for all M.

(1.6d) The only character of A (t, G) for which (r) 0, is the "dimension
character" (M) dim M.

Finally we note the following theorem of Schanuel (see e.g. Swan [8]).

(1.6e) If 0 -+ A -- P -- B -- 0 and 0 -+ A’ -+ P’ -- B -- 0 are two exact
sequences of G-modules, with P, P’ both projective, and if B " B, then

AWP’-’A’WP.
We shall use (1.6e) only in the case where P, P’ are both free G-modules,

P sF, P’= s’F, say. If s >= s’, the theorem gives

AA’+ (s- s’)F.

2. The representation algebra of a finite cyclic group
2.1. Throughout 2 we make the following conventions.

k is a field of finite prime characteristic p.
a is a nonnegative integer, q p".
G, is a cyclic group of order q p", and F, F(k, G,).
A.= A(k,G.).

Any G.-module can be regarded as a r.-module, and conversely. If x. is a
qgenerator of G., and if o. x. e, then 0. 0, and

Vr. r./o, r. (r 1, .-.,

form a set of representatives of the classes of indecomposable G-modules. We
write also V0. {0}, the zero G.-module.

If a is a module generator of Vr. ,then the elements a0. (i 0, 1, r 1)
form a k-basis of V.. With respect to this basis, x. is represented by the
r X r matrix

Xr

1 1 0 0 0
1 1 0

0 0 1
0 0 0

The only submodules of V. are Wra (.oi (i O, 1, r). If r, s are in-
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tegers such that 0 _-< r _-< s =< q p then there is an obvious exact sequence

(2.1a) 0 -+ Vr, -+ V, -- V_r,, -- 0.

2.2. If a,/ are integers such that/3 >__ a >= 0, there is a homomorphism
0 Gs-- G. which takes xs onto x,. It is clear that V, 0* Vs(1 <_r<_p_"),
and in most contexts we write simply V for V,. The mapping 0* A, -+ As
is a monomorphism, and we shall identify A, with the appropriate part of
As according to 0", and write vr Vr,} Vsl. Thus A0, A1, As, are
subalgebras of a commutative algebra A (J,--0 A,. A has basis vl, v2,
and identity element v 1. A. has basis v,..., v.. We shall write
v0=0.

2.3. Tke fixed c >= 0, q p. The nex heorem gives relations which
describe A,+t as an extension of A..

THEOREM 3. Let W Vq+l Yq--1.

(2.3a) Vr W Vr+q- Yq--r

(2.3b) l)r W I)r+q .9[_ )r--q

(2.3c)

Then

Yr W l)r--q + 2Ypq l)2pq--(rTq)

(1-<r=<q),

(q < r < (p-- 1)q),

(p- 1)q <- r <- pq).

These formulae show that A,+t A,[w]. However we prefer to regard
A,+i as the ring generated over A, by the p,+l p, elements vr
(q 1 <= r <= pq), and then

(2.3d) Relations (2.3a), (2.3b), (2.3c) are defining relations for this ex-
tension.

For let B A,[vq+t, v,q] be the commutative ring obtained by adjoining
to A, symbols vq+l, vq which satisfy these relations, and let r" B -- Abe the natural epimorphism of B onto A,+. The given relations obviously
imply that B is spanned linearly by vl, v,q hence by comparison of
dimensions of B and A,+, r must be an isomorphism.

2.4. In this paragraph, a is again fixed, all modules are G,-modules, and
we writeV V,, F F,,o 0, x.- e. By a partition we under-
stand a sequence (M, h2, whose terms are nonnegative integers, almost
all zero, and such that hi ->_ h. _-> Those terms which are positive are
called parts of h. For each integer i >= 1, write hi(h) for the number of parts
equal to i, and bi(h) for the number of parts _>_ i. Either of the sequences

The multiplication in A is that determined by the Kronecker product of the matrices
X, i.e., if X, X X, has Jordan form a, X then v v, a, v For matrices
over a field of characteristic zero, Littlewood [6, p. 195] has calculated these coefficients
a, explicitly. We have not been able to find such an explicit description of this product
in the modular case.
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(n, n., or (b b, ) determines , uniquely, and

n(,) b() b+(,).

b(,) is the number of parts of .
Let V be any G,-module. There is a unique expansion

(2.4a) V
_

Vx, + + Vx ( >- _>- > 0),

and we write A(V) for the partition (, h, O, O,
of (V) lie between 1 and q p", and hi dim V.
be invariantly described by the well-known formulae

(2.4b) b,((V) ) dim (Vco’-l/Vo’) (i 1, 2, ).

It will be useful to have the particular notations

l(V) M least integer such that V 0, and
b(V) bl(h(V)) dim (V/Vow) number of summands in (2.4a).

We observe that if V’ is a homomorphic image of V, then b(V) _-> b(V’).

If l <= r, s <- q, and if
V (R) V,_ V, + / V

then s >= b, and

). All the parts
Moreover (V) can

(x >__ -> X > 0),

Vq_r (R) Va----- Vq-x, + + Vq_xb+ (s-- b)

Since F Vq, there is an exact sequence

O--> Vq_-- r- V,-- O,

If A. --> c is any character of A. there exists an integer T() :t:1
such that (vq_a) + T()(v,) (vq) (0 _-< s _-< q).

from which, taking tensor products with V, and using (1.6c), we get an exact
sequence

0 --+ Vq_ @ V -- sr -- V @ V, -o 0.

It is clear that b(sF) s; hence by the remark at the end of 2.4,
s R b(V @ V,) b. But we can also present Vx by an exact sequence

o
Then Schanuel’s theorem (1.6e) gives the result.
Take the special case r 1. We have V V, V ;hence

(2.5b) Vq_ @ V, Vq_, + (s 1) Vq (1 s q).

From this we deduce

(2.5c)
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Proof. If is the dimension character (see (1.6d)), (va) s, so we may
take T() 1. If 6 is not the dimension, then by (1.6d), (Vq) 0. By
(2.5b), (vq_) + T()(va) 0, where T() -(Vq_I). Again, if we
put s q 1 in (2.5b), we find ((Vq_I))2 (V) 1; hence T() d:l,
and this completes the proof.

2.6. Any partition h can be associated with a graph (see e.g. Littlewood
[6, Ch. V]) consisting of rows of symbols called nodes, in the first row, 2 in
the second, and so on.
A partition # is said to be obtained from X by regular adjunction of r nodes

if there is a sequence of partitions

such that for each h 1, r, the graph of Xh is obtained from that of Xh-1 by
adding one new node ah, in such a way that no two of the r added nodes
a, ar appear in the same column. For example, the diagram

a3

al a.

shows how (4, 3, 3, 2, O, .--) can be obtained from (3, 3, 2, O, by regular
adunetion of 4: nodes.

(2.6b) Let , be two partitions. Then can be obtained from by regular
adjunction of r nodes, if and only if there exist r distinct positive integers
i ir such that

b() b(h) 1 if i e li, ir}, and
(2.6c)

0 if i . {il, ...,
Proof. We observe that, for any partition h, b(h) is the number of nodes

in the ith column of the diagram of . Thus (2.6b) follows at once from the
definition of regular adjunction, because (2.6c) is simply the condition that
be obtainable from h by adding new nodes to the distinct columns i, i.
We are now in a position to prove the following lemma, which is a very

special case of a theorem (proof unpublished) of P. Hall (see [4, Theorem 2]).

(2.6d) Let V Vr,, (0 <= r <- q), and let V, W be any G,,-modules. If there
exists an exact sequence

then ( V) can be obtained from A(W) by regular adjunction of r nodes.

The author is much indebted to the referee for simplifying the original proofs of
(2.6b) and (2.6d).
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Proof. Since dim V dim W -{- r, the graph of (V) has r more nodes
than that of (W). We have to prove that we can obtain ),(V) from (W)
by regular adjunction.
We may assume that Vr is a submodule of V, and that is the inclusion map.

For each i 1, 2, c induces an epimorphism

Vi-’/V _-. W-’/W,
whose kernel is annihilated by , and is also a cyclic module, being an image
of Vr n Vi-1. Therefore this kernel is either V0 or V1, so that

bi(X(V) b(h(W) 0 or 1,

by (2.4b). The conclusion now follows from (2.6b).

2.7. Let, G --+ G,+ be the monomorphism which takes x to x,+(q p"
as before). If V, (1 <__ r <= pq p"+) is the G,+l-module V,,+I, we obtain

V), from which it followsthe G-module V * by defining vx vx+ (v
q

X
q e)(using ,+ ,+

q (i 0, 1 "’)Vr I,: (,O Vr Ooa..F1

*),Hence if (V we have by (2.4b)
(-)q q (i 1 2 ...).be(X) dimVo.+ dimV.+l

Now dim V "o.+ r-j(0 =<j-< r) or0(j> r). Writing

(2.7a) r r0 q -4- r (0 -< r < q),

we have then

bi(h) q (1 _-< i _-< r0), br0+(), r, b(h) 0 (i > ro-4- 1).

Thusn(h) 0if 1 _<_ i -<_ roorifi > ro-t- 1, whileno(h) q- rand
no+l(h rl. Therefore

(2.7b) If 1 <= r <= pq, and r is given by (2.7a), we have

V,.+ (q r) Vo,x - rl Wro+l,1.

It is easy to compute the induced map e.. If 1 -<_ s _-< p, we find that V,I e.
is indecomposable; and since its dimension is qs, we have

(2.7c) V,i . Vq,.+ (1 __< s =< p).

In particular, Vx,x . --_ Vq,.+x. Then from (1.6b), with 0 t, L V,,
and M V,.+x, (2.7b) and (2.7c) give

(2.7d) If r is given by (2.7a), 1 <__ r <= pq, and all modules are G.+i-modules,
then

V (R) Vq - (q rl) Vq -q- r Vq(ro+).
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In particular, the graph of ),(V (R) Vq) consists of rl rows of length q(ro 1),
and (q rl) rows of length qro.

2.8. In this and the next paragraph, all modules are G,+l-modules, q p",
x x,+l, w- o,+, andr is an integer such that 1 < r < pq p"+
r r0q-l-r(0 =< r < q).
By taking the tensor product of the exact sequence

0 - V -+ Vq+ - Vq - 0

with Vr, we obtain the exact sequence

0-- V-- V (R) Vq+- V @ Vq-- 0.

Hence by (2.6d)

(2.8a) ,(V @ Vq+) is obtained from h(V (R) Vq) by regular adjunction oft
nodes.

Next we prove

(2.8b) If l <__ r < (p-- 1)q, thenl(Vr(R) Vq+) q-l-r.

Proof. Let a, b be any elements of V, Vq+ respectively. Then

a (R) b)w a (R) b) (x e) ax (R) bx a (R) b aw (R) bx + a (R) bw

(a (R) b)(w (R) x +e (R)w),

where 0 (R) x + e (R) w is an element of the product algebra F,+ (R) F,+,
which operates naturally on V (R) V+. Since w @ x and e (R) w commute,
and since aw bwq+ 0, we find by the binomial theorem that for any
integer >_- 0,

(a (R) b)wq(r+l)+ (ro -- 1)(a (R) b)(50qrO+ ( xqrO+Wq).

Now r0 + 1 0, because r0 -< p 2. Hence (V (R) Vq+)wq(+)+ is zero for
rl but not zero for r- 1. Sol(Vr(R) Vq+) q(ro+ 1) +r

q+r.

(2.8c) If l <= r <- q, then V (R) Vq+

Proof. )(V (R) Vq) consists of r rows of q nodes. The only way to make
a graph by regular adjunction of r nodes, in such a way that the first part
should be q + r, is to adjoin all nodes to the first row. Thus the graph of
(V (R) Vq+) has one part q + r, and r 1 parts q.

(2.8d) If q < r < p 1) q, then

Vr (R) Vq+ V_q

+ (rl- 1)V(r0+)q + V+q.
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Proof. Since l(Vr (R) Vq+l) q -b r, the module Vr (R) Vq+l must have a
component Vq+r. Applying (2.8b) to Vq_r, we see that Vq_ (R) Vq+l has
a component Vpq-r-Fq Vpq-(r_q). Then (2.5a) shows that V (R) Vq+ has a
component V,_q. Hence h(V, (R) Vq+) has a part r -b q, and a part r q.
It is easy to verify, that the only partition which has a part r -F q, a part
r q, and can be obtained from k(V (R) Vq) by regular adjunction of r nodes,
is the partition of the module on the right of (2.8d).
By another application of (2.5a) we deduce from (2.8c)

2.9.

O V- Vq

we get the exact sequence

0---’> Vr-- Vr @ Vq
therefore

(2.9a)

If(p-- 1)q <- r < pq, then

V (R) Vq+- V_q + (q r- 1)V(_I)q + (r + 1)

We consider next the module V (R) Vq_. From the exact sequence

--. Vq_ -0,

(V (R) Vq) can be obtained from (V @ Vq__) by regular adjunction
of r nodes.

(2.9b) b(V (R) Vq_) r if r <- q- 1,

--q-- 1 if r>_q- 1.

Proof. Put V Vr (R) Vq_ ;then b(V) dim (V/Voo) (see 2.4). Let
a, b be module generators for Vr, Vq_ respectively. The elements

ui aoox (R) bo (0 <- i <- r- 1,0 <-_j <- q-- 2)

form a basis of V. We writeui. 0ifi >- rorifj >_- q 1. Then

ui oo u+. -F u,+ for all i, j -> 0;

hence if i u. -t- V0, then +1.. -i,-+1. It follows that V/Voo has
a k-basis either

i,0 (0 =< i=< r- 1) if r-<_ q- 1, or

20, (0 =<j =< q- 2) if r => q- 1.

(2.9c) If q =< r-_< pq, then

Vr @ Vq_ ._ (rl 1)Vq(0+ -t- Vq(o+)-,, -F (q r 1)Vqo.

Proof. b(V (R) Vq) q, by (2.7d), and b(V (R) Vq_) q 1 by (2.9b).
Therefore the whole of the last row of the graph of ,,(V (8) Vq) (considered
to be obtained from X(V (R) Vq_l) by regular adjunction of r nodes) must
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consist of added nodes. This means that X(Vr (R) V_I) must be the partition
of the module on the right of (2.9c).
By applying a similar argument, or else by using (2.5a) on this last formula,

we find also

(2.9d) If l <= r <= q, then Vr (R) Vq_--- Vq_ + (r 1)Vq.

The formulae in 2.8 and 2.9 yield immediately the proof of Theorem 3.

2.10. Proof of Theorem 2. We wish to show that, for any a >- 0, the algebra
A, has p" characters. For a 0 this is clear; now suppose a => 0 is such
that A, does have p" q characters; we complete the induction by showing
that A,+I has p"+ characters. This will be achieved when we prove

(2.10a) If A c is any character of A, then there are p distinct charac-
ters of A,+I which extend .

Put z (v) (0 <_- i =< q). Finding an extension* of to A,+ is equiva-
lent to finding pq q complex numbers z (q + 1 <= r <= pq) such that

(2.10b) z y z+q zq_r (1 =< r =< q)

(2.10c) z y z+q + z_q (q < r < (p 1)q),

(2.10d) z y zr_q + 2zvq zvq_(+q) ((p 1)q <- r <= pq),

where y zq+ zq_. For if * is such an extension, then by Theorem 3,
z, *(v) will satisfy these relations; conversely given such z we define b* by
*(vr) Zr, and then by (2.3d), * is a character of A,+.

Let be an indeterminate over c, and define for each s -> -1 the function
(polynomial in t, -i)

L.(t) _- -++
=o t-)/(t- -1)

so that L_(t) --1, Lo(t) O, L(t) 1, L(t) - + t, etc. Notice
L(t) L,(t-). We find also

(2.10e) L,(t)L(t) L+l(t) + L_(t) (s >- 0).

Now let z (v,) (0 -_< r =< q) as before, and let be a nonzero complex
number. Define z (Vr) (0 <-- r <= pq) by putting r roq r (0 <- r < q)
and

(2.10f) z zr L0+(e + zq_ Lo().
Then y zq+ Zq_ L.(e). We find, using (2.10e), that (2.10b) and
(2.10c) are satisfied by these z, for any 0. Also for r (p -1)q r
(0 ri q) we have

zr y z-q + 2Zq Z2pq-(r+q)}
(2.10g)

Zr (Lp+i - L_) + 2Zq-r Lp 2Zq
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where we have written L, in place of L,(e), for short. The right-hand side of
(2.10g) is zero, and hence (2.10d) is satisfied in the following cases-

(i) If 2 is a primitive pth root of unity (i.e., e exp(iw/p),
1 _-< w _-< (p 1)). For thenL() 0;henceL+l() -[- L_l(e) 0
by (2.10e). We have in this way (p 1) distinct extensions of , with
zq+ zq_l L2() 2 cos (rw/p), w 1, p 1.

(ii) If T() (see (2.5c)). For then +/-1, so that L,(
and the right-hand side of (2.10g) becomes

2pe-l( ez,1 + zq_,, zq)

and this is zero by (2.5c). Thus there are p distinct extensions of . This
proves (2.10a) and hence Theorem 2.

Remarlcs. If we take a 0, our argument shows that A has p characters

0 vr-* r, and

Cw "vr-- L(e)
sin (rrw/p) (r 1,..., p),
sin (rw/p)

w 1, p 1. The field generated by the values (v), for all charac-
ters of A,, and r 1, p is independent of a (provided a >= 1), and
is the maximal real subfield of the field of (2p) h roots of unity.

2.11. We conclude with a proof of the Corollary to Theorem 2, that
A(k, G) is semisimple for any finite cyclic group G. G can be written
G H X H., where H1, H. are cyclic groups, respectively of order prime
to p, and of order a power of p. As in the proof of Theorem 1, we may as-
sume k is algebraically closed. Then it is easy to see that any indecomposable
G-module V has the form V (R) V where V is an irreducible Hi-module
(hence dim V 1), and V. is an indecomposable H-module, and V (R) V2 is
an H1XH-module by the rule

( (R) w.) (hi, h.) v h (R) w. h2 (vi Vi, hi eHi, i 1, 2).

The map
(R)

defines an isomorphism from A(k, G) onto A(k, H) (R) A(k, H2). Both
factors are semisimple; therefore so is A (/c, G).
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