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1. Introduction

The theory of rtional representations of lgebric linear groups over
fields of characteristic 0 hs, for some time, been in a sufficiently well de-
veloped state to call for n adaptation of homologicl lgebr to the requisite
ctegory of "rational modules". The most elementary portion of this pro-
gram is crried out in Section 2 below, and this sets the stage for wht follows.

In the later results, vital role is played by the decomposition of n lgebric
linear group into semidirect product of the mximum unipotent normal
subgroup by fully reducible subgroup. This ws established, for not
necessarily irreducible lgebmic linear groups over fields of characteristic
0, by Mostow in [7]. In the irreducible case, the group decomposition follows
easily from the corresponding decomposition of the Lie algebra. However,
the proof of the general cse seems to require Mostow’s result on the con-
jugacy of the mximl fully reducible subgroups. For this reson, and lso
by wy of illustration, we pply (in Section 3) the elementary theory of
rtionl modules to obtain simple direct proof of the conjugcy theorem.
At the sme time, we sketch the resulting simplification in the proof of the
decomposition theorem, nd we discuss the decomposition with reference
to representations nd group extensions.

Sectons 4 nd 5 contain the min results. The suggestion for these comes
from the results of vn Est [9] on the differentible cohomology of Lie groups.
They concern the relations between the rtionl group cohomology, the
ordinary Lie lgebr cohomology, nd the cohomology of the differential
forms. It is due to the semidirect product decomposition that the results
for lgebmic linear groups re more precise thn vn Est’s results for Lie
groups, which concern situation that is somewhat more general thn the
straight analogue of wht is considered here.
Van Est’s theory has been rounded out nd strengthened by Mostow (in

[8]), and it has become clear from Mostow’s approach that cohomology
theory of groups that tkes account of dditionl structure (topological,
differentible, or lgebric) must be bsed on injective resolutions in the
requisite category of modules while, contrary to the cse of discrete groups,
the projective prt of the machinery of homologicl lgebr is inapplicable.
This realization ws the point of departure for the present investigation.

In Section 6, we pply the results on the rtionl group cohomology to
obtain the expected interpretation of the 2-dimensional rational cohomology
groups s groups of equivalence classes of rational group extensions. This
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may be regarded as a test case which illustrates how the passage from group
to Lie algebra extends in a natural and smooth way to the superstructure of
rational eohomology.

2. Rational modules
Let G be an algebraic linear group over a field F and suppose that G acts as

a group of linear automorphisms on some vector space M over F. We shall
say that M is a rational G-module if it is the sum of finite-dimensional G-stable
subspaees V such that the representation of G on each V is a rational repre-
sentation of G in the usual sense.
A rational G-module M is said to be rationally injective if, whenever U is

a rational G-module, and is a G-module homomorphism of a G-submodule
V of U into M, can be extended to a G-module homomorphism of U into M.
Dually, M is said to be rationally projective if, with U and V as above, every
G-module homomorphism of M into U/V can be "lifted" to a G-module
homomorphism of M into U.

Let FIG] denote the ordinary group algebra of G over F. If A is any uni-
tary F[G]-module, then the sum of all finite-dimensional F[G]-submodules V
of A such that the representation of G on V is a rational representation is evi-
dently the unique maximum rational submodule of A; we shall denote it A*.
Clearly, every G-module homomorphism of a rational G-module M into A
sends M into A*.

PROPOSITION 2.1. Every rational G-module can be G-monomorphically im-
bedded in a rationally injective G-module.

Proof. Let M be a rational G-module. By the theory of ordinary modules
over a ring, there exists an iniective unitary F[G]-module A and an F[G]-mono-
morphism M -- A. Now, by our above remark, (M) A*, and the
same remark shows that A* is rationally iniective.
On the other hand, it is not generally true that every rational G-module is a

G-homomorphic image of a rationally proiective G-module. This is shown by
the following example. Let F be a field of characteristic 0, and let G be the
additive group of F, with its natural structure of an algebraic (linear) group,
so that the polynomial functions on G are the polynomials in the identity map
of F onto itself. Regard F as a rational G-module, with G operating trivially.
Let F(t) be the ring of all integral power series in the variable with coefficients
in F. Operate with G on F(t) by associating with each element x of G the
multiplication by exp(xt). For every positive integer n, let Fn be the
G-module F(t)/F(t)tn. Evidently, Fn is a rational G-module, and the map
f(t) f(O) induces a G-module epimorphism n :F -- F. Now suppose
that there is a rationally projective G-module A and a G-module epimorphism
a A -+ F. Then there is a G-module homomorphism a A ---+ Fn such that
oa a. Let a be an element of A such thata(a) 1. Letpbethe
representation of G on A. Since every rational representation of G is
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unipotent (by [7, Prop. 3.2]), there is a positive integer q such that
(o(x) 1)q(a) 0, for every x G, where 1 stands for the identity map.
Let a be the representation of G on F. Then we must have
(an (X) 1 (a(a)) 0, for every x G. Now a representative of am (a)
in F(t) is of the form 1 + tg (t), with g (t) F(t). Our last result therefore
means that (exp (xt) 1) 1 + tg (t)) lies in F(t) n, for every x G. This
means that q >= n, so that, for large enough n, we have reached a contradiction.
Thus (A, a) cannot exist.

In the category of the rational G-modules, the derived functors Ext of
Homo must therefore be defined from injective resolutions; these exist, in the
appropriate sense, in virtue of Proposition 2.1. By a rationally injective reso-
lution of the rational G-module M we mean an exact sequence of G-module
homomorphisms: (0) -- M - X0 X1 - where the X are rationally
injective G-modules. If A is any other rational G-module, we define
Ext,(A, M) as the nth cohomology group of the complex"

(0) -* Homo(A, X0) -- Homo(A, X1) ---*

noting that, as in the ordinary case, these cohomology groups are, to within
natural isomorphisms, independent of the particular choice of the rationally
injective resolution X. It is clear that Ext(A, M) may be identified with
Homo(A, M).
A familiar development shows that Ext (A, M) may be identified with the

F-space of the equivalence classes of the rational G-module extensions

(o) M A -, (o)

of M by A. In fact, such an extension gives rise to an element of Ext (A, M)
as follows: Let X be a rationally injective resolution of M, and let, M -+ X be its "augmentation". Since X0 is rationally iniective, there
exists a G-module homomorphism E -- X0 such that i ,. Given
a A, the elements (e), with e E such that j(e) a, constitute precisely a
coset p(a)eXo/’/(M), and p Homo(A, Xo/’(M)). The image of p in
Homo(A, X1) (by the map induced from X0 -* X1) is the representative of an
element of Ext’(A, M), which depends only on the equivalence class of the
given extension of M by A. Conversely, an element of Ext’(A, M) is repre-
sented by an element h Homo(A, Xo/’/(M)), and we define E as the sub-
module of A (R) X0 consisting of all pairs (a, x) such that h(a) x + .(M).
Evidently, E is a rational G-module, and we have an exact sequence of
G-module homomorphisms:

(0) -. M i j.. E A --. (0),

where i(rn) (0, /(m)) and j(a, x) a. The equivalence class of this
rational extension of M by A depends only on the element of Ext’(A, M)
represented by h, and not on the particular choice of h. Now it is simple
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routine to check that the above constructions give mutually inverse maps es-
Exto(A, M) and the space of thetablishing a natural isomorphism between

equivalence classes of the rational extensions of M by A.
For our later applications, a certain standard rationally injective resolution

will be important, which we proceed to develop now. An F-valued function
on the algebraic linear group G is called a rational representative function if it
is a rational function defined at every point of G and if its translates by ele-
ments of G span only a finite-dimensional space of functions. As is well known
(see the proof of Lemma 10.1 in [5]), the second requirement is a consequence
of the first whenever F is algebraically closed. In general, the rational repre-
sentative functions are precisely the composites of the rational representations
of G with the linear functionals on the endomorphism algebras of the corre-
sponding representation spaces (of. [5, Section 2]), and every rational repre-
sentative function on G is of the form d-Up, where p is a polynomial function
on (;, n is a nonnegative integer, and d is the determinant function on G
[5, Lemma 10.1]. If H is any other algebraic linear group over F, a map

G -- H is called a rational representative map if, for every rational repre-
sentative function f on H, f is a rational representative function on G.
The rational representative functions on G constitute an F-algebra, which

we shall denote by R, or by R(G) if the group is to be mentioned. If f R
and x G, the left and right translates, x.f and f.x, of f by x are defined by
(x.f)(y) f(yx), (f.x)(y) y(xy). Let M be a rational G-module. We
make the tensor product R (R) M (taken relative to F) into a G-module such
that x. (f (R) m) (f. x-) (R) (x.m). As a tensor product of the two rational
G-modules R and M, R (R) M is evidently a rational G-module. We wish to
prove that R (R) M is rationally injcctive. However, for later use, we shall
actually prove the following more general fact.

PROPOSITION 2.2. Let G be an algebraic linear group oer a field F, and let
H be an algebraic subgroup of G. Suppose that there is a rational representative
map p G --+ H such that p(yx) yp(x), for eery y e H and eery x G. Let
M be a rational H-module, and let R (R) M be the rational H-module
with y. (f (R) m) (f y-i) (R) (y.m). Then R (R) M is rationally injective. If
A is any rationally injective G-module, then A (R) M is rationally injective as an
H-module.

Proof. Let B be a rational H-module, and let /be an H-module homo-
morphism of a submodulc C of B into R (R) M. Let, be any F-linear projec-
tion of B onto C. Whenever convenient, we shall identify elements of R (R) M
with the naturally corresponding maps of G into M. For b B, define the
map (b) G--) M by

t(b)(x) o(x) .[,,,y,((p(x)--l.b) )(o(x)--lx)].
We show first that f(b) R (R) M. Let (bl D,) be a basis for the finite-
dimensional rational H-module generated by b. Then we may write
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(p(x)-l"b) ,1 gi(p(x) )(bi),

where the gi’s are rational representative functions on H. If fi gi p, then
f R, and we have

",/ , p x b _, ,,’= f x u,i

where u ,((b)) R (R) M. Write u . g,i (R) m,i, with g. R and
mi e M. Then we have

(b) (x) ,i,jf(x)gij(p(x)-lx)p(x).m,ij.

Finally, let (ml, ’’’, mq) be a basis for the finite-dimensional rational
H-module that is generated by the m."s. Then we may write

(b) (x) --,i, f(x)g.(p(x)-Ix)hij(p(x) )m
Since p is a rational representative map, hi o R, and the map x--. o(x)-lx
is a rational representative map of G into G. Hence it is clear that
(b) R (R) M.

If y H, we have (y.(b)) (x) y.(b) (y-ix), and if we substitute this in
the definition of (b) and use p(y-lx) y-p(x) we find that (y.fl(b))(x)
l(y.b)(x). Thus is an H-module homomorphism of B into R (R) M.
Finally, if b C, we have

(b)(x) p(x).b(o(x)-.b)(p(x)-lx)] (p(x).3,(p(x)-l’b))(x) (b)(x),

i.e.,/ coincides with , on C. Thus R (R) M is rationally inieetive.
Now the rationally iniective G-module A becomes identified with a direct

G-modulesummandofR (R) A, bythemapa--l (R) a. HenceA (R) Mis
isomorphic, as an H-module, with a direct H-module summand of R (R) A (R) M.
By the above, applied to A (R) M in the place of M, it follows that A (R) M is
rationally iniective. This completes the proof of Proposition 2.2.

Let ._ be the natural G-module monomorphism M -- R (R) M, where
_l(m) 1 (R) m. Dene C-(M) M, C+I(M) R (R) C(M), and sup-
pose that we have already defined a G-module homomorphism

Oq Cq(M) "---’z cq/l(M).

Then we define ,+1 such that +t(f (R) u) 1 (R) f (R) u f (R) ,(u), where
f R and u e Cq(M). Then q+ 0, and we have a G-module complex
(0) -- M -- C(M) . CI(M) .... By Proposition 2.2, C(M) is ration-
ally injective, for every q -> 0. Define "C(M) ----> C-(M) such
that b(f (R) u) f(1)u (and -1 0). Then one verifies directly that_

+ Cq+ is the identity map on each C(M). Hence our complex
is a rationally injective resolution of M.

In prticular, the cohomology groups Hn(G, M) Ext (F, M) are the
cohomology groups of the complex formed with the G-fixed parts Cq(M) of
the C(M), with q >= O. Now, for q >= O, Cq(M) is isomorphic, as an
F-space, with Cq-(M);in the functional notation, such an isomorphism is



COttOMOLOGY OF ALGEBRAIC LINEAR GROUPS 497

given by g --+ g’, where g’(xl, Xq) g(1, xl, x x.,
inverse being given by f-- f*, where

f*(x0, xa) xo.f(xjx xa_ x).

xl... x), its

The coboundary, for these nonhomogeneous rational representative cochains
becomes f -- f, where

3. Decompositions and factor groups
Let F be a field of characteristic 0, and let G be an algebraic group of linear

automorphisms of a finite-dimensional F-space V. Let V’ denote the semi-
simple rational G-module associated with V, i.e., take V’ to be the direct sum
of the factor modules formed witJh successive tJerms in a composition series for
the rational G-module V. Let denote the rational representation of G on

V’, and let N be the kernel of . Then N is evidently the unique maximum
unipotent normal algebraic subgroup of G. Let (R) denote the Lie algebra of
G, the Lie algebra of N. Then T is the unique maximum ideal of nilpotent
elements of (R). By [2, Prop. 5, p. 144], there is a fully reducible subalgebra

of (R) such that @ is the semidirect sum s) -k $. Using that an ideal of a

fully reducible Lie algebra of linear transformations is fully reducible and
that has no nonzero fully reducible subalgebrs, we see that is a maximal
fully reducible subalgebra of (9. Hence is the Lie algebra of an irreducible
algebraic subgroup K1 of G, and K is fully reducible as a group of linear
transformalions. Let G be the irreducible component of the identity in G.
Since N is unipotent, it is irreducible. Since T (, which is also the Lie
algebra of G, we must have N G. Similarly, K1 G. Consider

K n N. As a subgroup of N, this is unipotent, and, as a normal subgroup
of K, it is fully reducible. Hence K n N (l.). Now the argument on

pp. 131-132 of [2], which deals with this situation in the case where G1 is
solvable, shows also in our general case that G is the semidirect product
N.K

Since K is fully reducible, there is a K-module isomorphism between V
and V’. This yields a rational isomorphism r z(K) -+ K such that r

is the identity map on K. Clearly, z(K1) (G). Hence, if p denotes
the composite of the restriction of to G with r, then p is a rational group
epimorphism of G onto K with kernel N, nd p is the identity map on K.
Now let us assume, which has already been proved in the case G Gt,

that G is a semidirect product N.K, where K is a fully reducible algebraic
subgroup of G, and that the corresponding projectio p of G onto K is rational.
Let [G, N] denote the subgroup of N that is generated by the commutators

--1 --1xyx y with x e G and y N. Let L be ny fully reducible algebraic sub-
group of G. We wish to prove the result due to Mostow [7, Th. 7.1] accord-
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ing to which there is an element [G, N] such that tLt--1 c:_ K. For every
x L, write (x) xp(x) -1 N. Then (xy) (x)p(x)(y)p(x) -1, for
all x and y in L. Since N is unipotent, the exponential map, exp 9--> N,
and the logarithm map, log:N---, are defined as polynomial maps and
are mutually inverse. Let f(x) denote the coset rood [, ] of log((x)).
The adjoint representation of G induces the structure of a rational L-module
on and hence on 9/[, ]. For x L and u 9/[9, 9], x.u denotes the
corresponding transform of u by x. The above identity for yields:

f(xy) x.f(y) - f(x), for all x and y in L.

Now we define the structure of a rational L-module on the direct sum
F (R) 9/[!, ] such that x. (a, u) (a, af(x) + x.u). Since L is fully re-
ducible, this rational L-module is semisimple [7, Prop. 3.2]. Hence /[,
has a module complement in F (R) t/[, ]. This complement contains one
and only one element of the form (1, u). Operating with L, we see that
we must have f(x) u x.u. Moreover, since Tt/[gl, ] is semisimple as
an L-module, u is the sum of an L-fixed element and an element v that is
sum of elements of the form w- y.w, with w e 9/[92, 92] and y L. We
have f(x) v x.v. Now v has a representative v’ in 9l that is of a form
analogous to that of v, and it is clear from the properties of the exponential
map that then exp(v’) [G, N]. Put s exp(v’). Now, denoting the com-
mutator subgroup of N by N’, we haw (x)eexp(v’- z.v’)N’, whence
(x) sxs-lx-N’. Also (x)s(x)-ls-e N’, so that, with the last result, we
get sxs-lx-ls(x)-ls-1 -1-1 -1N’, whence also xs x s(x) e This gives
--1 -1 -1 (x)N’ p(x)-lN KN’ Thus we have s-Ls KN’. Re-
placing L by s-Ls, we may therefore suppose now that L KN’. We may
now repeat the above argument with N’ in the place of N to conclude that
L can be conjugated into KN’, etc. Finally, we reach the desired result.
With this con]ugacy result established, for G1, the arguments supplied in

[7, Section 6] prove that there is a fully reducible algebraic subgroup K of G
above for G N K1such that G is the semidirect product N.K. Exactly as

we see now that the projection of G onto K with kernel N is a rational group
epimorphism, so that the eoniugacy result holds generally, by the proof above.
Now we can apply [5, Prop. 2.4] to conclude that the algebra R of the

tional representative functions on G is the tensor product of the subalgebra
R of its N-fixed elements by another subalgebra S whose elements satisfy
f(xy) f(y), for all z K and all y N. Moreover, this implies that the
restrictions of the elements of S to N make up the algebra of all rational
representative functions, i.e., the algebra of all polynomial functions on N.
On the other hand, if o is our projection G--> K, the map f--> f p is an
isomorphism of the algebra of all rational representative functions on K
onto R.
LEMMA 3.1. Let G be an algebraic group of linear automorphisms of the
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finite-dimensional F-space V. Then every proper automorphism of R, i.e., every
automorphism leaving the constants fixed and commuting with the right trans-
lations, is a left translation.

Proof. Let c be a proper automorphism of R. Then a defines an F-homo-
morphism c’:R-- F, where a’(f) a(f)(1), for every f eR. Now
R P[d-1], where P is the algebra of all polynomial functions on G, and d
is the determinant function on G. Hence it is clear that a’ determines an
element x G such that ’(f) f(x), for every f R. Now, for every y G,

c(f)(y) ((f).y)(1) a(f.y)(1) oz’(f.y) (f.y)(x) -f(yx).

Thus a(f) x.f, Q.E.D.

THEOREM 3.1. Let U be a unipotent normal algebraic subgroup of the alge-
braic linear group G over the field F of characteristic O. Then G/U can be given
the structure of an algebraic linear group such that R(G/U) is canonically iso-
morphic with R(G) v. Moreover, there exists a rational representative map

G/U -- G such that, if r is the rational epimorphism G --) G/U, r is the
identity map on G/ U.

Proof. Let N be the maximum normal unipotcnt subgroup of G, so that
U cN. We shall first deal with the case where G N. By [2, p. 119,
Prop. 11], there exists a rational representation o of N whose kernel is pre-
cisely U. Let 0" denote the Lie algebra homomorphism on the Lie algebra
t of N that is induced by . Then ’() is a Lie algebra consisting of nil-
potent linear endomorphisms. By [2, p. 123, Prop. 14], the exponentials of
the elements of p’() constitute a unipotent algebraic linear group. For
every u e , we have p(exp(u)) exp(p’(u)). Hence the group consisting
of the exponentials of the elements of o’(t) coincides with p(N), so that
p(N) is an algebraic linear group. Now let , be a linear map of p’(9) into
9 such that o’o , is the identity map on p’(9). Define the polynomial
map : o(N) -+ N as the composite exp /o logp(N) Then p is the
identity map on p(N). Now it is easily checked that the map f -f p is
an isomorphism of R(p(N) onto R(N) whose inverse is the map g --+ g .
We have R (G) R(G) N (R) R(N) +, where R(N) + is the image of R(N)

in R(G) by the map f -f+, with f+(xy) f(y), for every x K and every
y e N. It follows that R(G) R(G)v (R) (R(N)+) . Let a be a proper
automorphism of R(G)v. We wish to prove that a is the left translation by
an element of G. Since R(G) may be identified with R(K), it follows from
Lemma 3.1 that there is an element z K such that a coincides on R(G)N

with the left translation by x. Hence we may now suppose that a leaves the
elements of R(G)N fixed. Now consider the homomorphism a’ R(N) -- Fdefined by a’(f) a(f+)(1). By [5, Prop. 2.5], there is a proper auto-
morphism of R(N) such that a’(f) (f)(1), for cvcryf R(N) . Now
we have shown above that R(N) v is isomorphic with R(p(N)). Applying
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Lemma 3.1 to the proper automorphism of R(p(N) that is induced by , we
see that is the left translation by an element y N. Hence we have
a(f+)(1) f(y) f+(y), for every f eR(N)V. Since (R(N)+)
(R(N) v) +, and since a(g) (1) g(y), for every g R(G)v, it follows that we
have a(h)(1) h(y), for every h R(G) . But this means that a is the
left translation by y. Thus we have proved that every proper automorphism
of R(G) is the left translation by an element of G.

Since R(G)v is isomorphic with R(K), and (R(N) +) v is isomorphic with
R(p(N)), it is clear that R(G) v is finitely generated as an F-algebra. Let T
be a finite-dimensional two-sidedly G-stable subspace of R(G) v such that
R(G) v F[T]. Let be the representation of G by left translations on T.
Then the kernel of z is precisely U. It follows from [5, Prop. 2.6] and our
above result on the proper automorphisms that (G) is an algebraic linear
group. Clearly, R(o-(G)) R(G)v. Thus the first part of Theorem 3.1 is
proved.
We have (G) (N)r(K). Since (K) is fully reducible and z(N)

unipotent, it is clear that (N) is the kernel of the semisimple representation
associated with the identity representation of z(G), and that z(K) is a
maximal fully reducible subgroup of (G). Hence z(K) is an algebraic
linear group, and z(G) (N).z(K) is a standard decomposition of z(G).
Hence R((r(K)) R((r(G))(N), which may be identified with R(G)v, and
hence with R(K). The restriction of to K is a rational isomorphism, and

1
our result on the representative functions means that its inverse z/ s a
rational isomorphism of (K) onto K. On the other hand, we have already
shown in the beginning of this proof that there is a polynomial map of
(N) into N such that is the identity map on z(N). Let a and be
the projections of (G) onto (N) and a(K), respectively, corresponding to
our decomposition (G) z(N).(K). We know from the decomposition
theory that they are rational representative maps. Now define the map

(G) -" G by (x) /(a(z))(C(z)). If we identify z(G) with G/U,
then satisfies the requirements of Theorem 3.1.. This completes the proof
of Theorem 3.1.

If the base field F is algebraically closed, the first part of Theorem 3.1
holds for any (not necessarily unipotent) normal algebraic subgroup U of G,
because then the image of a rational group homomorphism is always an alge-
braic group, and the inverse of a rational isomorphism is always rational [5,
Lemma 10.2]. However, the second part of the theorem may fail to hold if
U is not unipotent. This is shown by the following example. Let G be the
group of all linear automorphisms of a 2-dimensional vector space over the
field C of the complex numbers. Let U be the subgroup consisting of the
scalar multiplications. We claim that, in this case, there is not even a con-
tinuous map of G/U into G whose composite with the canonical map G --." G/U
is the identity map. Indeed, if such a map existed, it would follow that the
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underlying topological space of G is homeomorphie with the Cartesian product
of the spaces underlying U and G/U. Let E denote real n-space, and let
S denote the n-sphere. Then U is homeomorphie with E St, and G/U
is homeomorphie with E3X P3, where Pa is projective 3-space, so that
U (G/U) is homeomorphie with E Pa St. On the other hand, G
is homeomorphie with E X S X St. Hence the fundamental group of G
is isomorphic with the additive group Z of the integers, while the fundamental
group of U X (G/U) is isomorphic with the direct product of Z by a group
of order 2. Thus G is not homeomorphie with U X (G/U).

If F is not algebraically closed and U is not unipotent, it can happen that
G/U cannot be given an algebraic structure such that there is a rational
epimorphism G-- G/U. This is shown by the following example. Let F
be the field of the real numbers, and let G be the group of all matrices

( a :),withal b2x
--b + 0. Let U be the subgroup of all elements of

determinant 1. Define the functions a and on G by a(x) a, (x) b.
Then R(G) F[a, , d-l], where d is the determinant function a + on
G. It is straightforward to verify that R(G) F[d, d-]. Now the group
of the G-translations on F[d, d-I] is the group of automorphisms whose ele-
ments send d onto cd, where c ranges over the positive real numbers. Now
suppose that there exists a rational representation a of G such that a(G) is
an algebraic linear group and the kernel of a is precisely U. Then it follows
from Lemma 3.1 that there is a two-sidedly G-stable subalgebra S of R(G),
namely the subalgebra generated by the constants and the representative
functions associated with a, such that the representation of G/U by left
translations on S is faithful and sends G/U onto the group of all proper auto-
morphisms of S. For every nonzero real number s, there is a proper auto-
morphism of F[d, d-1] that sends d onto sd. Since S is stable under the group
of all proper automorphisms of F[d, d-t], wc deduce easily that S is generated
by a set of powers of d (with positive or negative exponents). Now let q
denote the highest power of 2 such that S F[dq, d-q]. The automorphism
of F[dq, d-q] that sends dq onto --d induces a proper automorphism of S.
By the maximal property of q, S contains an odd power of dq, whence we see
that this proper automorphism of S is not a translation. Hence there can be
no rational representation a of G which has U for its kernel and is such that
z(G) is algebraic.
The rationM representative map : G/U-- G of Theorem 3.1 yields ra-

tional representative 2-dimensional cocyclcs (factor sets) for G/U in U/U’
and thus determines an element of H:(G/U, U/U’), which is trivial if and
only if, with the algebraic structures of the factor groups as in Theorem 3.1,
G/U’ is rationally a semidirect product (U/U’).(G/U). We shall give a
full discussion of the connection between rational group extensions and 2-di-
mensional rational cohomology classes in Section 6.
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4. Differential forms
Let G be an irreducible algebraic linear group over a field F of character-

istie 0, and let R be the algebra of all rational representative functions on G.
Let T denote the R-module of all F-derivations of R. We define the struc-
ture of a G-module on T by putting, for x G, r T, f R,

(X’T)(f) T(f’x)’x

The Lie lgebm (R) of G may be identified with the Lie sublgebm (over F)
T of T that consists of 11 G-fixed elements of T.

LEMMA 4.1. The canonical map of R (R) @ into T is an isomorphism.

Proof. Let Q denote the field of quotients of R. Then Q is the field of
the rational functions on G. By [1, p. 132, Prop. 4], the cnonicM mp of
Q (R) (R) into the spce of all F-derivations of Q is n isomorphism. This im-
plies lready that the cnonicl mp R (R) (R) -. T is monomorphism. Fur-
thermore, if r T, then its canonical extension (still denoted r) to deriw-
tion of Q belongs to Q(R). Hence there re elements f 0 nd f in R such
that fr Lf r, where (,-.., 7n) is n F-basis for @. Operating
with x G, we obtain

(f.x-)(x.T) (fi’x--1)Ti.
There are elements g. in R such that r(g)(1 ti... Applying the deriva-
tion just written to g. and evaluating the resulting element of R at 1, we ob-
tain y(x-)r(g.x)(x-) y.(x-1). Clearly, if hi(x) r(g’x-1)(x), then
h. R, and f. fh. ttence we have r h r, R@, and the proof of
Lemma 4.1 is complete.
The isomorphism between T and R (R) @ shows immediately that T is

rational G-module. We put T*= Itom(T, R), and we make T* into a
(;-module such that, for x G, a T* and r T,

(X’O)(T) O(X-I’T)’X-’1.

Clearly, this G-module T* my be identified with Hom.(@, R), with G cting
such that (x.h)(r) h()’x-, where h chomp(@, R) nd e(R). Hence
T* is rational G-module. Let E(T*) denote the exterior R-lgebr built
over T*. The rational G-module structure on T* extends canonicMly to
rational G-module structure on E(T*). Put @*= Hom((R), F), nd let
E((R)*) be the exterior F-algebra built over (R)*. Then it is clear that the
G-module E(T*) my be identified with E((R)*) (R) R, where the ction of G
is given by x. (u (R) f) u (R) (f.x-).

For r T, we denote by c the homogeneous R-linear ntiderivtion of de-
gree -1 on E(T*) that is characterized by" c(R) (0), nd c(a)
for every a T*. Also, we define the homogeneous F-linear derivation t of
degree 0 on E(T*) such that b coincides with r on R while, for a T*,
b()() (()) - ([, T]), for ll a T. One verifies inductively on
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the degree that c2r 0, It,, tr] tt,.r and Its, cr] c,.,1 Finally, one
shows, again inductively on the degree, that there is one and only one homo-
geneous F-linear derivation d of degree 1 on E(T*) such that dc, + c, d t,.
Then one shows inductively that dt, t, d and d 0. All these results are
familiar, and we do not carry out the details of their proofs. For the general
technique of derivations that is involved here, see [1, Ch. 1]. The complex
(E(T*), d) is called the complex of the differential forms on G.
For x G, we denote by sx the corresponding F-linear automorphism of

E(T*), for the rational G-module structure defined above. One verifies
easily that sx c, s;-1 c.r, and that s t, s;-1 lz.r. It follows at once from
this and from the above characterization of d that d commutes with s. We
wish to show that the action of G on the cohomology group H(E(T*), d)
that is induced by the (sx)x,o is trivial.

In order to prove this, we consider a certain involution 9 of E(T*), and
conjugate the G-module structure x . s with . For f R, we define
9(f) R by 9(f)(x) f(x-). This induces an involution r--> r’ 9r of
T, so that, on R, we have 9t, t,, 9. Now we extend to an involution of
R + T* so as to satisfy c, c,, . Thus, for c e T*, we define (a) T*
by 9(a) (r) (c(r’) ). Using that [, r]’ [’, r’], one verifies directly
that t, b, also on T*. Now we extend 9 canonically to a homogeneous
F-algebra automorphism of degree 0 on E(T*). Then we have 92 identity
map, 9c, cr,, and t, b,, on all of E(T*). Now we define a new
G-module structure x--> on E(T*) by setting t Cs . Clearly, this is
again the structure of a rational G-module on E(T*).
One sees immediately that t(f) x.f, for every f R. Now let a T*.

Then we have

t()() s()() (s()(’)) (()(x-.’).-)
X.(qg(q(O)(x--l.T)))

Now

(x-.r,),(f) ((X--.T’)((f))) (T’((f).x--1).X)
(r’((x’f) "Z) X--I"(T’((z’f) Z-I’T(x’f).

-1Define r.x T by (r.x)(f) x .r(x.f). Then our result is that

t()() x..(.x).

We see from this that the differential of the rational representation x --’,. t, is
the map r-- tr on @.

Since dt, t, d, and since G is irreducible, it follows that d commutes with
each t. Now let u eE(T*), and suppose that d(u) 0. Then t,(u)
d(c,(u)) e d(E(T*)). Since G is irreducible, and since E(T*) is a rational
G-module under the representation x . t, it follows from this (applied with
re@) that tx(u) ued(E(T*)), for every xeG. Now we claim that d
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commutes with ; indeed, we have dcr A- cr d dc, q- c, d
b, t, whence d d, or d d. Hence our above result gives
(tx(u) u) d(E( T*) ), i.e., sx((u) (u) d(E( T*) ). Since
d((u)) (d(u)) 0, all this applies also to (u) in the place of u, and
we conclude that s(u) --u d(E(T*)). Thus we have shown that the
action of G on H(E(T*), d) that is induced by the representation x -- s is
trivial.

THEOIEM 4.1. Let G be an irreducible algebraic linear group over a field F
of characteristic O. Let @ be the Lie algebra of G, and let 9 be the maximum
ideal of @ consisting of nilpotent endomorphisms. Let p be the linear mono-
morphism E((@/9) *) --> E(T*) that is obtained as the canonical extension of
the dual of the natural epimorphism @ -- @/9. Then p induces an isomorphism
of the ordinary Lie algebra cohomology group H(@/, F) onto H(E(T*), d).

Proof. We use the semidirect product decomposition G N.K, where N
is the maximum unipotent normal subgroup of G, and K is fully reducible
algebraic subgroup of G. The Lie algebra of N is 9t. We recall that
H(@/9, F) may be identified with the cohomology group H(E((@/9)*), t),
where t} is defined in a manner strictly analogous to that in which we defined
d above; i.e., we have a homogeneous antiderivation c of degree -1 on

E((@/9)*), for each @/9, and a homogeneous derivation t of degree 0,
and is characterized by c t -k c t. The definitions of the c and t
are obtained from the corresponding definitions above simply by putting
R F. Let r--. r’ indicate the natural epimorphism @-- @/9. Then
we have evidently c p pcr,, and it is easily verified that t p pt,. Hence
we have

c(dp pS) (t dc)p c p pt, dpcr, pc, (p dp)c,,

and this enables us to see by induction on the degree that p dp.
Since E(T*) is a rational G-module, under the representation x -- s, and

since K is fully reducible, it follows that E(T*) is semisimple as a K-module.
We have seen that the action of G (hence of K) on H(E(T*), d) is trivial.
Hence we conclude that H(E(T*) H(E(T*)). We have E(T*)
E(@*) (R) R, where R denotes the subalgebra of R consisting of the ele-
ments left fixed by the right translations with the elements of K. Since
p dp, and since p(E((@/)*)) E(@*) E(T*), we may identify
E((@/9)*) with a subcomplex of E(T*). Hence Theorem 4.1 will be
proved as soon as we have shown that the cohomology groups of the factor
complex are all trivial. Let P denote this factor complex.

Let J denote the ideal of E(T*) that is generated by (@/)*, where
(@/)* is now identified with its natural image in @*. We define a decreas-
ing sequence of subcomplexes of P by setting

Pq (E((@/9)*) -t- Jq)/E((@/9)*),
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agreeing that P P for q =< 0. We have P (0) when q exceeds the
dimension of @/. Hence, in order to show that H(P) (0), it suffices to
prove that H(P/Pa+I) (0), for all q. We may write

P/P+I E((@/)*)E((R)*)RI/(E(((R)/)*) + J+l).
In the notation of Section 3, RK is the isomorphic image R(N) + of R(N) in
R(G). The natural map @*--* and the restriction isomorphism
RI--- R(N) combine to give an epimorphism E(@*)RK.E(*)R(N),
whose kernel is evidently our ideal J. The image E(9*)R(N) is the com-
plex of the differential forms on N, and it is easy to verify that our epimor-
phism is compatible with the differential operators, i.e., that it is an epi-
morphism of complexes. Hence we see from the above form of P/P+I that
H(P/P+) is isomorphic with Eq((@/) *) (R) H(E(*)R(N)/F). Since
N is unipotent, R(N) is a polynomial algebra over F [2, p. 123, Prop. 14].
Now it follows from the algebraic version of the "Poincar6 Lemma" (see [3,
Th. 2.2], with the remark at the end of its proof) that the cohomology groups
of the complex E(N*)R(N)/F are 0 in all degrees. This completes the
proof of Theorem 4.1.

5. The rational Ext functor and cohomology
Let G be an algebraic linear group over an infinite field F. Let A and B

be rational G-modules, and assume that A is of finite dimension over F. Let
(0) -- B-- X0- X1-..- be a rationally iniective resolution of B. We
make Hom(A, Xi) into a G-module such that (x.h)(a)= x.h(x-.a).
Then Exto(A, B) is the cohomology group of the complex formed with the
(Hom(A, Xi)) . Now let A*= Hom(A, F). Since A is finite-dimen-
sional, the G-modules Hom(A, X) and A* (R) X are naturally isomorphic,
and each is a rational G-module. By Proposition 2.2, A* (R) X is rationally
injective. Hence the sequence

(0) -A* (R) B--TA* (R) X0--+A* (R) X1--7

is a rationally injective resolution of the rational G-module A* (R) B. Thus
we have identified Exte(A, B) with the cohomology group of a complex
formed with the G-fixed parts of a rationally injective resolution of A* (R) B,
i.e., we have identified Exta(A, B) with H(G, A* (R) B).
On the other hand, let @ denote the Lie algebra of G, and regard A and B

as @-modules, or as unitary U(@)-modules, where U(g0) is the universal
enveloping algebra of (R). It is known that Ext()(A, B) may be identified
with the ordinary Lie algebra cohomology group H(@, Hom(A, B)), and this
holds quite generally for an arbitrary Lie algebra @ and arbitrary @-modules
A and B. We shall give a short direct proof which is analogous to the proof
above.

Observe first that, if X is any injective @-module, then the (R)-module

Hom(A, X), where (u.h)(a) u.h(a) h(u.a), is also injective. In-
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deed, let C be a N-module, and let ti be a @-module homomorphism of a
submodule D of C into ItomF(A,X). Then t defines an element
t* HomF(D (R) A, X) such that *(d (R) a) (d)(a). One verifies ira-
mediately that t* is actually a @-module homomorphism. Since X is injec-
tive, ti* is the restriction to D (R) A of a @-module homomorphism ,* of
C (R) A intoX. Define-/eHom(C, Hom(A,X)) by(c)(a) /*(c (R) a).
Then /is a @-module homomorphism of C into Hom(A, X), and , coincides
with on D. This proves that Hom(A, X) is injective.
Now let (0) -- B -- X0 --* X1 --* be a U(@) -injective resolution of

the N-module B. Then Extv(e)(A, B) is the cohomology group of the com-
plex formed with the Homv(e)(A, X), which is the @-annihilated part of
Hom(A, X). By the above, the sequence

(0) -- Hom(A, B) -- Hom(A, X0) Hom(A, X1) --is an injective resolution of the N-module HomF(A, B). Hence we have
identified Extv(e)(A, B) with H(@, Hom(A, B)). Finally, if A is finite-
dimensional, we may identify Hom(A, B) with A* (R) B.
As a consequence of these identifications, the relations we shall establish

for the cohomology groups of G and @ will extend immediately to the more
general Ext functors when the first variable A is restricted to be finite-dimen-
sional.

Let E(@) denote the exterior algebra built over the F-space @. The
cohomology of @ is usually computed from the U(@)-projective resolution
U((R)) (R) E(@) of F. In this resolution, U((R)) (R) E(@) is regarded as

U(@)-module such that v.(u(R) e) (vu) (R) e. The boundary map
3’ U(() (R) E/ (() -- U(() (R) Ek-1 (() can be characterized as follows.
For r e @, define the endomorphism er of U((R)) (R) E(@) by er(u (R) e)
u (R) (re). Define a right @-module structure on U(@) (R) E(@), r --such that pr(u (R) e) (u (R) e).r (ur) (R) e + u (R) (e.r), where the
tion e -- e.r on E(@) is the homogeneous derivation of degree 0 for which
z.r [z, r]. Then , is characterized, as a homogeneous U(@)-linear endo-
morphism of degree -1, by ’er - er ’ 0r- The U(@)-projective resolu-
tion of F is obtained by augmenting the complex (U(@) (R) E(@), -/) with
the canonical projection U((R)) (R) E (@) U(@) -- F (see [4, Section 5]).

In order to compare the rational cohomology of the irreducible algebraic
linear group G with the cohomology of its Lie algebra @, we shall define
map of the complex (E(T*) (R) A, d (R) 1) into the complex

(Home(U(@) (R) E(@), A), /*),

where A is a rational G-module, and ,* denotes the dual Hom(,, A) of /.

We have E(T*) R(G) (R) E(@*). With each element a Ek(@*) we
associate the element a* (E(@) )* that is defined by a*(r r)
cr ""cry(a). With each element f eR(G) we associate the element

f* U(@)* that is defined by f* (u) (u.f) (1), where the action f -- u.f
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of U(@) on R(G) is obtained from the N-module structure of R(G) that is
derived from the action of G by left translations f-- x.f on R(G), i.e., for
re@, r.f r(f). Now we define

h" R(G) (R) Ek(@*) (R) A ---+ HomF(U(@) (R) Ek(@), A)

such that
(f (R) o (R) a)(u (R) e) f*(u)a*(e)a.

Evidently, (c(a))* a*, whence it is clear that (c (R) 1) ()*.
We have T .f) * (u) f* (uT), and one verifies directly from the definitions
that (t(a))*(e) a*(e.). It follows at once from these relations that
(t (R) 1) (p)*. Hence we obtain

(d (R) 1)(c (R) 1) + (c (R) 1)(d (R) 1) (t (R) 1) (p)*,

b(d (R) 1)(c (R) 1) -- (s)*(d (R) 1) ()*,* - *(s)*b

whence ()*((d (R) 1) -*b) -- ((d (R) 1) -/*)(c (R) 1)= 0. Hence
it follows by induction on the degree that (d (R) 1) /*.
Now we consider the rational G-module structure on E(T*) (R) A that is

obtained by forming the tensor product of the G-module structure x -- s on
E(T*) with the G-module structure of A, i.e., in which x. (f (R) a (R) a)
(f.x-1) (R) a (R) (x.a). For f R(G), define f’R(G) by f’(x) f(x-1).
Then we have f.x-= (x.f’)’. Hence the @-module structure of
R(G) (R) E(@*) (R) A that is induced by our rational G-module structure is
such that r.(f(R) a (R) a) (r.f’)’ (R) a (R) a-f(R) a (R) (r.a). Now we
have ((T.f’)’)*(u) (u.(r.f’)’)(1). Write r.f t(f) and (r.f’)’ s(f).
Then each t commutes with each s, because these operations are derived
from the left and the right G-translations, respectively. Hence we have
((v.f’)’)*(u) (s(u.f))(1). We claim that, for every g eR(G) and every- @, (s(g)) (1) (b(g)) (1). After extension of the base field F to
the field of the power series in one variable z with coefficients in F, we have
exp(zs)(g) g.exp(--zr) and exp(-zt)(g) exp(-zr).g. Hence
exp (zs) (g) (1) exp zt) (g) (1). This gives our above assertion on
comparing the coeificients of z on each side. Hence (sT(u.f))(1)
-(ru.f)(1). Thus we have (s(f))*(u)= -f*(ru). It follows that
transports our @-module structure on R(G) (R) E((R)*) (R) A into the @-
module structure of HomF(U(@) (R) E((R)), A) in which (T.h)(u (R) e)
r.h(u (R) e) h(-u (R) e).
We claim that, with this @-module structure, HomF(U(@) @ E(@), A)

is injective. Now this @-module is evidently isomorphic with the direct
sum of a finite number of copies of the @-module Home(U(@), A), where
(r. h)(u) r. h(u) h(ru), and it suffices to show that this last @-module
is injective. In order to do this, we consider the endomorphism h-- h*,
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where h*(u) (u.h)(1). We claim that (u.h*)(v) (v.h)(u). Indeed,
this holds for u 1, by the definition of h*. Suppose it holds for some
ueU(@) and allveU(@). Letxe@. Then

(xu.h*)(v) x.[(u.h*)(v)]- (u.h*)(x)

x.[(.h)(u)]- (x.h)(u) (.h)(xu).

Thus our claim follows by induction. In particular, we hve (u.h*)(1)
h(u), so that h** h. Thus our map h--’.-h* is an F-linear involution of
Home(U(@), A). If x @ we have evidently (x.h)*(u) h*(ux). Thus
our @-module structure is transported by the linear automorphism h--. h*
into the @-module structure in which (x. h) (u) h(ux), i.e., into the U(@)
module structure in which (v.h)(u)= h(u). With this U((R))-module
structure, Hom(U((R)), A) is well known to be injective, from general fcts
of homological lgebr (see [4, Lemm 1]).

If we augment the complex (Home(U(@) (R) E(@), A), y*) with the @-
monomorphism A --> Hom(U(@), A) defined by a -- ha, where ha(u) uoa,
with u0 the component of u in F, we obtain an acyclic complex, because this is
the dual Hom(X, A) of the usual projective resolution X of F that we de-
scribed above. Moreover, by what we hve just proved, this is an iniective
resolution of the @-module A.

Finally, we shall show that the restriction of to the G-fixed prt
(E(T*) (R) A) orE(T*) (R) A is nisomorphism of (E(T*) (R) A) onto
(HomF(U(@) (R) E(@), A))e Hom(e)(U((R)) (R) E((R)), A). We hve
(E(T*) (R) A a (E(T*) (R) A , and since is @-module homomorphism,
it follows that maps (E(T*) (R) A) into Hom() U(@) (R) E ((R)), A ). We
may identify Hom()(U((R)) (R) E(@), A) with Home(E(@), A)
(E((R)))* (R) A by the map h -. h’, where h’(e) h(1 (R) e). Hence there
remains only to prove that the map v --> (v)’ is an isomorphism of
(R(G) (R) E(@*) (R) A) ontoE(@)* (R) A. We have ((f(R) (R) a))’
f(1)a* (R) a. Put V E(@)* (R) A, and regard V as a rational G-module
such that x. (a* (R) a) a* (R) (x-a). Since the map a --> a* is an isomor-
phism of E((R)*) onto E(@)*, what we have to prove mounts simply to the
proposition that the map f (R) , --> f(1)v is an isomorphism of
(R(G) (R) V)onto V.
Supposetht f(1)v 0. Then also f(1)x.v O, foreveryxeG.

Since _f (R) v e(R(G) (R) V) , this implies that f(x)v 0, whence
f (R) v 0. Thus our map is a monomorphism. Now let v V, let W be

the finite-dimensional G-submodule of V that is generated by , nd
let (wl,--" ,w) be a basis for W. Let (1,’",) be the dual basis for
Hom(W, F). Define ,/’w R(G) by (,/w) (x) ,(x.w). Then one
verifies directly that = (/w) (R) w belongs to (R(G) (R) V) and that
its image in V is w.. Hence our map is also an epimorphism. Thus we have
proved the following result.
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LEMMA 5.1. Let G be an irreducible algebraic linear group over a field F
of characteristic O, and let A be a rational G-module. Let E( T*) be the complex
of the differential forms on G. Then there is a U(@)-injective resolution Y of A
and a homomorphism of the complex E( T*) (R) A into Y such that b is com-
patible with the @-module structures of E(T*) (R) A and Y, and maps
(E(T*) (R) A) isomorphically onto Y. In particular, b induces an iso-
morphism of the cohomology group H((E(T*) (R) A)() onto the Lie algebra
cohomology group H(@, A ).

Let /be a rational automorphism, with a rational inverse, of the algebraic
linear group G. Let A be a rational G-module, and suppose that we are given
a linear automorphism ’A of A such that, for every a A and every x G,
(x.a) (x).(a). Let

(0) A a Xo XI--->".
be a rationally injective resolution of A. Let Xi(/) denote the rational
G-module whose underlying vector space coincides with that of X and where
the G-operations are "twisted" by 7, i.e., the action of x on X(7) is the action
of (x) on Xi, for every x e G. Then, if we replace the first map a of our
above resolution by a ,A, leave the other maps the same, and replace each
X by X(-), we obtain a new rationally injective resolution of A. The
identity map A - A extends to a map of the first resolution into the second,
and the extension is unique up to a homotopy. This means that there is an
F-linear endomorphism of the complex X, say ,x, with the same property we
described above for ,. Moreover, ,x is unique up to a homotopy of the
complex X, which twists the G-action by , in the same way as x. Clearly,
each (X) is stable under "/x, and it follows that the pair (,, w) defines,
via x, an endomorphism of the eohomology group H(G, A). By the unique-
ness up to a homotopy of vx, this endomorphism does not depend on the
particular choice of vx Moreover, this endomorphism of H(G, A) is actually
an automorphism, its inverse being induced by a map (v-)x. Finally,
our argument can be continued in the usual fashion to show that we thus
obtain the same automorphism of H(G, A) from any rationally injeetive res-
olution of A.

In particular, suppose that G is a normal algebraic subgroup of an algebraic
linear group M, and that there is a rational representative map p M -- Gsuch that p(xy) :co(y), for every x e G and every y e M. Then, by Proposi-
tion 2.2, if A is a rational M-module, a rationally injeetive resolution X of A
is also a rationally injeetive resolution of the G-module A. Let y e M, and
let / be the automorphism of G defined by /(x) yxy-1. Let ,x be the
automorphism of A that is effeeted by y. Then we may take for ’x the auto-
morphism of X that is effeeted by y. This shows immediately that H(G, A)
is thus endowed with the structure of a rational M-module, and also that G
acts trivially on H(G, A).
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The rational automorphism , of G induces an automorphism of the Lie
algebra @ of G in the natural fashion. We use the same letter , to denote
this automorphism of @. If A is regarded as a @-module, we have
"A(r.a) "y(r).’yA(a), for every r e@. Proceeding in exactly the same
way as above with U(@)-injective resolutions of A, we see that (, /A) induces
an automorphism of the Lie algebra cohomology group H(@, A). For
G M, as above, we thus obtain the structure of an M-module on H(@, A).
If the action of M on H(@, A) is made explicit in the standard alternating
cochain complex, one sees that H(@, A) is a rational M-module. If G is
irreducible the action of G on H(@, A) is trivial.

THEOREM 5.1. Let G be a unipotent algebraic linear group over the field F
of characteristic O, and let A be a rational G-module. There is an isomorphism

of the rational cohomology group H(G, A) onto the Lie algebra cohomology
group H(@, A) with the following property. Given any rationally injective
resolution X of the rational G-module A, and any U(@)-injective resolution Y
of the U((R)) -module A, there is a map of X, regarded as an acyclic U((R)) -complex,
into Y, and the cohomology map induced by any such rnap of complexes coincides
with the isomorphism .

Proof. By Proposition 2.2, the rational G-module E(T*) (R) A is rationally
injective. By Theorem 4.1, the complex E(T*) (R) A, augmented by the
G-module monomorphism a-- 1 (R) a of A into E(T*) (R) A, is therefore
a rationally iniective resolution of A. Hence the isomorphism of Lemma 5.1
is actually an isomorphism of H(G, A) onto H(@, A) in this case, i.e.,
when G is unipotent. There remains only to show the following: Let X and
X1 be any two rationally injective resolutions of A as a rational G-module,
and let Y and Y1 be any two U(@)-iniective resolutions of A as a U(@)-
module. Let and 1 be U(@)-complex maps X -- Y and X1 Y1, re-

spectively. Then and 1 induce the same cohomology map. In order to
see this, let f be a G-complex map X --> X1, and let be a U((R))-complex
map Y1 --> Y. Then 1 and are both U((R))-complex maps X -- Y.
Since any two such maps are homotopic, they induce the same cohomology
maps. The cohomology maps induced.by " and are the identity maps on

H(G, A) and H((R), A), respectively. Hence the cohomology maps induced
by and 1 are indeed the same. This completes the proof of Theorem 5.1.
Now consider a rational automorphism , of G and a compatible auto-

morphism ,A of A, as discussed above. We claim that the isomor-
phism H(G, A) . H((R), A) transports the automorphism of H(G, A)
that is induced by (/, -/) into the automorphism of H((R), A) that is induced
by (’r, ’). To see this, let be a map of a rationally injective resolution
X of A into a U(@)-injective resolution Y of A. Let ’x be a "twisting endo-
morphism" of X inducing the automorphism of H(G, A), and let (,-)r be
a "twisting endomorphism" of Y inducing the automorphism of H(@, A)
that corresponds to (,-, (’yA)--I). Then (/--1)yO//O/x is still a U(@)-
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complex map X -- Y, so that the induced eohomology map H(G, A)
H(@, A) is . Hence, denoting the cohomology automorphisms induced by

--1(7, ’A) by / (and similarly for -1), we have , , which proves
our claim.
The isomorphism H(G, A H((R), A of Theorem 5.1 will be referred to as

the canonical isomorphism. Let G be an arbitrary algebraic linear group,
and let N be the maximum unipotent normal subgroup of G. Let be the
Lie algebra of N. Then it is clear from our discussion above that the canonical
isomorphism H N, A) -- H(, A) is a G/N-module isomorphism.

THEOREM 5.2. Let G be an algebraic linear group over the field F of char-
acteristic O, let N be the maximum unipotent normal subgroup of G, and let 9l
be the Lie algebra of N. Let A be a rational G-module. Then H(G, A) may
be identified with (H(N, A))ally, and hence is isomorphic, via the canonical
isomorphism, with H 9, A

Proof. Let X be a rationally injective resolution of A_. By Proposition
2.2, X is also a rationally injective resolution of A as an N-module. Hence
H(N, A) may be identified with the cohomology group of the complex X,
and the action of GIN on H(N, A is induced by the action of GIN (i.e., of G)
on XN. Since GIN is a fully reducible algebraic linear group (for the algebraic
structure R(G/N) R(G) N) and since X is a rational G/N-module, Xv

is semisimple as a G/N-module, i.e., as a G-module. Since the coboundary
map of the complex X is a G-module endomorphism, it follows that
H(XV) a/N H(Xa). Thus we have identified H(N, A) a/r with H(G, A ).
Together with what we have already seen above, this completes the proof of
Theorem 5.2.
Now suppose that G is irreducible. The rational G/N-module H(?, A)

may be regarded as a @/-module, and since GIN is irreducible, we have
H(, A) a/N H(, A)e/. If one examines the proof of [6, Th. 13], ob-
serving that all the representations of @/9 that occur in it are semisimple
in our present case (being derived from rational representations of G/N),
one sees that it carries over exactly to show that Hn((, A) is naturally iso-
morphic with i+= Hi((R)/9, F) (R) (H(, A)) ally. Substituting, for the
terms on the right, isomorphic terms obtained from Theorems 4.1 and 5.2,
we obtain the following result.

TItEOREM 5.3. Let G be an irreducible algebraic linear group over a field F of
characteristic O, let A be a rational G-module, and let E(T*) be the complex of
the differential forms on G. Then there is a natural isomorphism

Hn(@, A)
_
+=H(E(T*)) (R) H(G, A),

for each n.
6. Group extensions

Let N be a unipotent lgebraic linear group over the field F of characteristic
0. A rational automorphism a of N induces a Lie lgebra utomorphism
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a* of the Lie algebra of N such that a(exp()) exp(a*()), for every
e . Conversely, a Lie algebra automorphism of induces a rational

automorphism B’ of N, which is given by B’(x) exp(B(log(x))), for every
x e N, so that (B)* B. Thus the map --+/* is a group isomorphism of
the group A (N) of all rational automorphisms of N onto the group A() of
all Lie algebra automorphisms of . Evidently, A () is an algebraic linear
group. Hence A (N) may be regarded as an algebraic linear group by identi-
fying it with A (9).
We observe that the algebra of the rational representative functions on

A(N) can be defined without reference to the Lie algebra . In fact, for
every pair (f, x), where f R(N) and x e N, let us define the function
on A(N) by setting p(s,x)(a) f(a(x)). The composite f exp is a poly-
nomial function on , and we havef(a(x)) (f exp)(a*(log(x) ). Hence
it is clear that p(s.x) is a polynomial function on A (N), for the algebraic struc-
ture transported from A (). Conversely, the polynomial functions on A ()
are the polynomials in the functions a* ---+ g(a*()), where g ranges over the
space of the linear functions on , and " ranges over . We have

g(a*(’)) (g log) (a(exp() ))
Since g log is a polynomial function on N, we may therefore conclude that
the algebra of the polynomial functions on A (N) is precisely the algebra
generated by the functions p(s.). The algebra R(A(N)) of the rational
representative functions on A (N) is therefore the algebra generated by the
functions p(f.) and their "duals" (p(,))’, where (p(z,x))’(a) p(,)(a-).
Now let K be another algebraic linear group over F, and let p be a rational

homomorphism of K into A(N). As an abstract group, the semidirect
product N X K (or simply N.K) is the group of all pairs (x, y) with x e N
and y eK, where (x, yi)(x, y.) (xp(y)(x), yy). We wish to define
the structure of an algebraic linear group on N. K, such that N and K become
identifiable with algebraic subgroups of N.K, and such that the projection
N.K K induces a rational isomorphism, with rational inverse, of (N. K)IN
onto K, where (N.K)/N is regarded as an algebraic linear group as
in Theorem 3.1.
We identify the elements of R(K) (R) R(N) with functions on N.K such

that (f (R) g)(x, y) f(y)g(p(y)-i(x) ). The algebraic structure on N.K
will be such that R(N.K) R(K) (R) R(N). It is verified directly that, as
an algebra of functions on N.K, R(K) (R) R(N) is stable under the left trans-
lations. In fact, we have

(x, y) (f (R) g) (y.f) (R) (x. (g p(y)-l) ).

Next we show that our algebra of functions on N.K is stable also under
the involution h --+ h’, where h’(u) h(u-1). We have (x, y)-I
(p(y)-(x-), y-l). Hence

(f (R) g)’(x, y) (f (R) g)(p(y)-l(x-), y-) f(y-1)g(x-1) f’(y)g’(x).
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Hence it suffices to show that, if h R(N), the function h*, defined by
h*(x, y) h(x), belongs to R(K) (R) R(N). We may write h*(x, y)
(h p(y))(p(y)-l(x)). As y ranges over K, the functions h p(y) remain
in a certain finite-dimensional subspace of R(N), because hop(y)
hoexpologop(y) hoexpop(y)*olog. We can findabasishl, "",h
for this space, and elements xl, x in N, such that hi(xi) ti. Now we
write h p(y) iL ui(y)h, and we get ui(y) h(p(y)(x)). Thus, in
the notation introduced at the beginning of this section, u p(h.x) o e R(K).
Now we have h* ’= u (R) hi R(K) (R) R(N). Thus R(K) (R) R(N) is
stable under the involution h -- h’. Since it is stable under the left trans-
lations, it follows that it is stable also under the right translations.
Now we show that every proper automorphism of R(K) (R) R(N) is a left

translation. Let a be any proper automorphism of R(K) (R) R(N). Then
the restriction of a to R(K) is a proper automorphism of R(K), regarded as
the algebra of representative functions on K. By Lemma 3.1, there is an
element y K such that a coincides on R(K) with the left translation by y.
Hence we may now assume that a leaves the elements of R(K) fixed. Now
a induces a unitary homomorphism a’ R(N) --. F, where a’(g) a(g)(1).
By Lemma 3.1 and [5, Prop. 2.5], there is an element x N such that a’ (g)
g(x), for every g R(N). Let tx denote the left translation by (1, x) on
R(K) (R) R (N), and put t-1 a. Then leaves the elements of R(K)
fixed, and ’(g) g(1), for every g R(N). Hence ’(h) h(1), for every
h R(K) (R) R(N). Since commutes with the right translations, this
implies that is the identity map, i.e., that a tx. Thus we have proved
that every proper automorphism of R(K) (R) R (N) is a left translation.
Now R(K) (R) R(N) is finitely generated, and the translates of every ele-

ment of R(K) (R) R (N) lie in a finite-dimensional subspace of R(K) (R) R (N).
Hence there is a finite-dimensional subspace T of R(K) (R) R(N) such that T
is stable under the left and the right translations by the elements of N.K and
F[T] R(K) (R) R(N). The representation of N.K by left translations on
T is evidently faithful. The image of N.K in the group of linear automor-
phisms of T coincides with the restriction image of the group of all proper
automorphisms of R(K) (R) R(N), by what we have proved above. The
proof of [5, Prop. 2.6] applies to the present case and shows that this last
image is an algebraic subgroup of the group of all linear automorphisms of T.
Thus we have a faithful representation of N.K as an algebraic linear group.
It is clear from the construction that the algebra of representative functions
for this algebraic structure of N.K is precisely R(K) (R) R(N). The restric-
tions to N and to K of the elements of R(K) (R) R(N) make up precisely
R(N) and R(K), respectively. Moreover, the subgroup N (N, 1) of
N.K is the subgroup consisting of all elements x N.K such that
(f f(1))(x) 0, for every f eR(K), and the subgroup K (1, K) of
N.K is the subgroup of all elements x e N.K such that (g g(1))(x) 0,
for all g R(N). Hence N and K are identified with algebraic subgroups of
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N’K. Finally, (R(K) (R) R(N))(1,N) R(K), whence K is rationally iso-
morphic with (N.K)/N, when (N.K)/N has the algebraic structure of
Theorem 3.1.

Let P be an algebraic linear group, and let be a rational group epimorphism
of P onto an algebraic linear group G. Let Q be the kernel of . We say
that the pair (P, o) is a rational group extension of Q by G if the map f-f
is an isomorphism of R(G) onto R(P) Q. Suppose that we are given a vector
group Q (regarded as a unipotent linear algebraic group), an arbitrary al-
gebraic linear group G, and a rational homomorphism p of G into the group
A (Q) of the rational automorphisms of Q (actually, A (Q) is simply the
group of all linear automorphisms of the vector group Q). We wish to ex-
amine the rational group extensions (P, ) of Q by G that are compatible with
p, in the sense that o((P))(q) pqp-1, for all peP and all qeQ. We
assume that the base field F is of characteristic 0. Then it is clear from
Theorem 3.1 that, by means of the Baer composition of group extensions, one
obtains the structure of an abelian group on the set of the rational equivalence
classes of these extensions. Moreover, a well known construction that is
quite similar to the Baer composition yields scalar multiplications by elements
of F, so that the set of the rational equivalence classes of the extensions of Q by
G that are compatible with p is equipped with the structure of a vector space over F.
We wish to prove that this vector space is naturally isomorphic with the
rational cohomology space H2(G, ). Here is the Lie algebra of Q. Since
Q is a commutative unipotent algebraic group, we could identify with Q.
We have already seen above that A (Q) may be compatibly identified with
A (). The G-module structure on is obtained by transporting p through
the identification of A (Q) with A ().
We shall use the following rationally injective resolution X of the G-module

?z. For each n >= O, Xn is the tensor product R (R) (R) R (R) , with n q- 1
factors R R(G). The G-module structure on X is such that

x. (f0 (R) f (R) (R) f (R) q) (f0 "x-l) (R) fl (R) (R) fn (R) (x’q).

The coboundary operator d’Xn ---+ Xn+ is given, in the functional nota-
tion, by

(dh) (Xo, Xn+l) in0 (-- 1)h(x0, x x+1, x+l)-- (-- 1)n+h(xo, Xn).

The augmentation -- X0 is given by q -- 1 (R) q. It is easily checked that
this complex is acyclic; a homotopy is given by (h)(x, ..., Xn)
h(1, x, Xn). By Proposition 2.2, each X is rationally injective.
Now let (P, ) be a rational group extension of Q by G that is compatible

with our G-module structure on :. By Theorem 3.1, there exists a rational
representative map G -- P such that is the identity map on G. We
define h e R (R) R (R) : by h(x, y) log(/(x)(y)(xy)-). There is one and
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only one element k (X2) a such that lc(1, x, y) h(x, y). One checks im-
mediately that dk 0, so that ]c defines an element u H2(G, ). Now one
shows in the usual manner, and without encountering any special difficulties,
that the correspondence (P, ) -- u induces a linear monomorphism of the
space of the equivalence classes of the rational group extensions of Q by G
into H2(G, ). Our above results on the rational cohomology of G will
enable us to show that this monomorphism is actually an isomorphism, i.e.,
that every element of H(G, ) arises, in the way described above, from a
rational group extension of Q by G.

Let N be the maximum unipotent normal subgroup of G, and write G as a
semidirect product N.K, where K is a fully reducible algebraic subgroup of

HG. Let u (G, ), and let u be the image of u in H (N,) by the canoni-
cal "restriction" homomorphism H(G,) - H2(N,). The precise mean-
ing of the first part of Theorem 5.2 is that the restriction homomorphism
H(G, ) 4. H(N, ) sends H(G, ) isomorphically onto H(N, )
H(N, )K. In particular, we have u (H2(N, ) K. The complex X
may be identified with the complex of the nonhomogeneous rational repre-
sentative cochains for G in_ , as described at the end of Section 2. The
identification is given by the map h -- h’, where

h’(x x) h(1, xl x,).

The restriction map H(G, ) -- H (N, ) is then induced by the restriction
of these cochains from G to N. The action of K on H(N,) is induced by
the cochain action h y.h, where

(y.h) (xl "", xn) y’h(y-lxl y, y-lxn y).

The cochain complex for N in ;i thereby becomes evidently a rational, and
hence semisimple K-module. It follows that uN has a cochain representative
h that is K-fixed, i.e., is such that, for all y eK and all Xl, x in N,
Y h(y- --1xy, y x2y) h(xl, x).
Now suppose that we hvc already constructed a rational group extension

(Pv, v) of Q by N whose corresponding cohomology class is u. Since the
above cochain h is a representative of u, it follows that there is a rational
representative map of N into P such that N is the identity map on N
and log ((xi)(x2)b(x x)-) h(xi, x2), for all xi, x inN. This enables
us to define a rational homomorphism p of K into the group of the rational
automorphisms of P (note that P is a unipotent lgebraic linear group)
that is compatible with the ction of K on Q and with the action of K on N
by conjugation. In fact, for z P and y K, we put

p(y) (z) (y" (zbv(z)-) )b(yv(z)y-i).

The fact that p(y) is an automorphism of P is a formal consequence of the
fact that h is K-fixed, and it is then clear that p(y) is a rational automorphism
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of P, and that p is a rational homomorphism of K into the group of the
rational automorphisms of Px.
Now we can form the semidirect product P Xp K, with the structure of an

algebraic linear group as defined at the beginning of this section. The
rational epimorphism ’P-+ N induces a rational epimorphism, Pv X,, K -+ N.K G, andit is clear that the pair (P X K, ) isa rational
group extension of Q by G. Let v be the element of H2(G,) that corresponds
to this group extension. Then vn is evidently the element of H (N, ) that
corresponds to (P, oe). Thus v u. Since, by Theorem 5.2, the re-
striction map H (G, .) -- H (N, ) is a monomorphism, it follows that
v u. Hence there remains only to construct the rational group extension
(Pv, v).
We shall construct this from a suitable Lie algebra extension of by 9, by

exponentiation. The anonical isomorphism of H (N,Q) onto H (9,Q) sends
u onto an element (u)* of H(iR, Q). Let (A, a) be a Lie algebra extension
of by !R whose corresponding element in II (9, Q) is (u)*. Since A is a
nilpotent Lie algebra, there is a faithful representation of A by nilpotent linear
endomorphisms of a finite-dimensional F-space V. We let P be the algebraic
subgroup of the full linear group on V that consists of the exponentials of the
elements of A. We identify Q with the subgroup of P whose Lie algebra is, i.e., with the subgroup consisting of the exponentials of the elements of.
Then, since P is unipotent, c induces a rational epimorphism o ofP onto N,
and Q is the kernel of o. In fact, is given by exp log.

In order to see that the eohomology class in H2(N, Q) that is associated with
(P, o) is actually u, we must make the canonical isomorphism
H(N, ) .-+ H(9, Q) explicit in a suitable way. This will be accomplished
by defining an explicit map of the rationally injeetive resolution X (con-
strueted for N in the way explained above for G) of the rational N-module Q
into the U(9)-injeetive resolution Homu(U({R) (R) E(),O.) of Q, which we
used in the proof of Lemma 5.1.
For " e 9 and n > 0, we define a linear map X -- X_, denoted h -+ ’. h,

such that ’- (f0 (R) f, (R) (R) fn (R) q) fo (R) k (R) (R) fn--1 (R) i’(fn)(1)q.
Let f -- f* denote the map R(N) -- HomF(U(R), F) that we defined in
Section 5, i.e.,if(u) u(f)(1), for every u U(). We generalize this map
to a map h -+ h* of X0 into HomF(U(), ;!:5) such that (f (R) q)* f* (R) q.
Now we define a linear map r X -+ Hom(U(R) (R) En()), ).) by setting

r(h)(u (R) 1"’" Cn) pe(p)(p(1) Cp(n),h)*(U),

where the summation is over all permutations p of the set (1, n), and
e(p) is the signature of p. It is clear from what we have seen in Section 5
that r is an 9-module homomorphism of X into Hom(U() (R) E(),).

Let d and d* denote the coboundary operators on X and on

Homu(U(iR) (R) E(iR), ), respectively. We claim that d*o r rod.
We recall the well known explicit formula for d*:
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(d*h)(u (R) 1"’" n+l) E:I (-1)-h(u (R) 1 i’’" n+l)

q- E<s (--1)r+sh( zt (R) [r, rs]l r’’" s
It is clearly sufficient to prove that d* r r d in the cse where F.

Furthermore, it suffices to verify that d*(r(h)) (d(h)) in the cse where
h =fo@f@ @fn. Thenwehve

(dh)(xo, ..., Xn+) P=0 (--1)f0(x0) f(X,X;+)

+ (- )+f0(x0) (x).

Applying successively the mps lc . k, observing that the -opertions on
R(N) commute with the right translations, we obtain

( n+" (dh))(Xo) =0 (--1)u;,
where, for i > 0,

u =/0(0)()(1) _(f_)(1) +(f)();+(d,+l)() ;+(/)(),

d u0 (f0) (x0);() () ;+(f) ().
This gives, on collecting the terms rising from u0,

;(gh) (u @ 1 ;n+) n+ -;= (--.) (h)(u +) + ,
where

S f (u) (--1) e(p)v,
with

v ;,)() ;();(+)(f) ;(+1() ).

Now let P denote the set of ll permutations p for which p(i) < p(i + 1).
By suitably combining the terms e(p)v, we may write

y() (-) (p),
where

w, ,(()() [;,(), ;(+,](f))() ;(+l(fn)().

For ech fixed pair of indices (r, s) with r K s, let S(.) be the sum of all
those terms in the bove expression for S in which p(i) r nd p(i + 1) s.
For given triple (i, r, s), nd for p such that p(i )= r and p(i + 1) s,
let p’ be the map of the set (1, i 1, i + 2, n + 1) onto the set
(1, ,r- 1, r + 1, ---,s- 1, s+ 1, -.-,n + 1) tht is given by the
restriction of p. If we define the signature e(p’) of p’ from the total number
of inversions, we hve e(p’) (- 1)r++++e(p) 1)r+s+e(p). Hence
the term

f:(u),,(,()(1) [, ;](])() ;’(+l)(fn)()

of S(r,) occurs with the sign (- 1)++-e(p’). Hence we see that

Z(r.) (-- )+(h) (u @ [;, ;]; , ;+).



518 G. HOCHSCHILD

Now it is clear that r(dh) d*(r(h)), so that r is a map of 0%complexes
and therefore induces the canonical isomorphism of H(N,) onto H(, ),
by Theorem 5.1.
Now let us return to our Lie algebra extension (A, a) of by 9. We

choose a linear map , of 9 into A such that a , is the identity map on
Define g e HomF(E(), .) by g(l ) [/(1), "/()] ([1,
Then, by construction of (A, a), g is a representative cochain for the co-

ilhomology class (u)* e (9l, ). Define N --P by expA , log.
Then is a rational representative map, and is the identity map on N.
Hence, iffisdefinedbyf(x, y) log ((x)(y)(xy)-l), thenfisa representa-
tive cochain for the cohomology class, v say, in H(N, ) that is associated
with the rational group extension (P, ). We determine the canonical
image of v in H2(, ) by using the map r constructed above. This shows
that a representative cochain for the image of in H2(9, ) is h, where
h(’l ’) i’1 ’f l"f. Here, the right-hand side is to be interpreted
follows" Define fx(y) f(x, y). Then ’.f is the map of N into defined by
(.f) (x) (f) (1), and ’1 ’f ’l(’’f) (1). Here, if lc 1c (R) q,
with/c e R(N) and q e, (k) stands for ’ (lc) (R) q. We shll show
that h g.

In order to do this, we enlarge the base field F to the field of the power
series in one variable with coefficients in F. If p is any power series in t, we
shall denote by p the coefficient of in p. Then we have (computing in
the enveloping Mgebraf o linear endomorphisms)

’(fx) (1) (f(exp (t’)) ) (log ((x)(exp (t))(x exp (t))-l)
((x)(exp (t’))(x exp (t))-1)1
b(x)((exp (t))) (x)-1 -t- (/(x)(x exp (t/’))-1)1
(x) ((exp (t’))) (x)-1 ((x exp (t’))) b(x) -1.

If is any rational representative map, let us write *() ((exp (t)) )1
The above result may be written

’(f)(1) (x)b*(F)(x)- (.x)*(i’)(x)-
(x)*()(x)-1 (.x)(1)(x)-
(x)*(r)(z)- ()(z)(z)-.

Hence we find

Thus we have

Since expA 7 log, we have * ,, whence h g.
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We conclude that the canonical image of v in H:(,) coincides with (u)*,
whence v u. This means that the rational group extension (P, ) has
u for its associated element in H(N, ;i).

Actually, our above discussion of r and the proof that h g did not make
use of the unipotency of N, so that we have the following general result. Let
(P, p) be a rational group extension of Q by G, and let b be a rational repre-
sentative map of G into P such that (1) 1 and is the identity map
on G. Let f and h be defined from b as above. Then h(’l ’2)
[*(’1), *(f:) *([1, ]). Now b* is simply the differential at 1 of
and thus is a linear map of @ into 3 whose composite with the differential of

is the identity map on @. Hence our result shows that h is a representative
cocyclc for the element of H(@, ) that is associated with the Lie algebra
extension induced by (P, ). This means that the natural passage from
group extensions to Lie algebra extensions induces the canonical map
H:(G, Q) -* H ((R), ) obtained from maps of resolutions. We have estab-
lished the following result.

THEOnEM 6.1. Let Q be a vector group, G an arbitrary algebraic linear group
over a field F of characteristic O. Let p be a rational homomorphism of G into
the group of all linear automorphisms of Q. Then the usual "factor set" cor-
respondence between group extensions and 2-dimensional cohomology classes in-
duces an isomorphism of the space of the equivalence classes of the rational group
extensions of Q by G that are compatible with p onto the rational cohomology space
H2( G, Q). Moreover, this isomorphism transports the natural map from group
extensions to Lie algebra extensions into the canonical monomorphism ofH G, Q)
into H((, Q), induced by any (R)-complex map of a rationally injective resolution

of Q into a U(@)-injective resolution of Q.
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