GROUPS ACTING ON THE 4-SPHERE'

BY
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Introduction

Montgomery and Zippin have shown [16, p. 260] that if G is a compact
connected topological group acting effectively as a transformation group on 3-
dimensional Euclidean space E°, then G is either 7", the circle group, or SO(3),
the group of all proper rotations of E°. In each case the action of G is (topo-
logically) equivalent to the standard action of G as a group of linear transfor-
mations. In [7] Jacoby has classified all actions of T" on the 3-sphere S
with no stationary points. Again all such actions are equivalent to linear
actions. In Section 2 we show by an elementary analysis that all actions of
the torus group 7 (= T" X T") on S* are equivalent to linear actions. This
completes the study of compact connected transformation groups on S°. All
such groups are Lie groups, and their actions are equivalent to linear actions.

In this paper we study compact connected transformation groups on the
4-sphere S'. Our main theorem is

TueoreEM B.  Let G be a compact connected topological group acting effectively
on S* such that there is an orbit of dimension = 2. Then G is a Lie group,
and the action of G 1is equivalent to a linear action.

Our method is quite straightforward. In all cases under consideration the
orbit space S*/G is either a closed 2-cell or a closed arc. The group G must
be a compact connected Lie group of dimension < 6. We use our detailed
knowledge of such groups plus our knowledge of the orbit space to obtain an
explicit description of all possible actions. It is easily checked that each such
action is equivalent to a linear action.

Montgomery and Zippin have given an action of 7" on S* which cannot be
equivalent to a differentiable action [15]. Thus the assumption on the dimen-
sion of the orbit in Theorem B is not superfluous. The problem of actions of
T" on S' seems to be quite difficult even when one assumes differentiabilty.

In [9] Montgomery and Samelson give a complete discussion of groups
acting transitively on spheres. In this paper we consider only the non-
transitive case.
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1. Preliminaries

We shall follow the notation of Montgomery and Zippin’s book [16] with
the following exceptions: If G acts on M, we denote the image of the point
2 ¢ M under the group element g by g.x, and we denote the space of orbits by
M/G.

If the compact connected topological group @ acts effectively on an n-mani-
fold with an orbit of dimension = (n — 2), then @ is a Lie group [2]. Hence-
forth G will denote a compact connected Lie group.

An orbit G(z) is principal if there is a neighborhood N of x such that for
every y e N, G, is conjugate to G, . It is known that if G acts on the n-sphere
S”, then all principal orbits are equivalent, and the set of points which lie
on principal orbits is an open set whose complement has dimension = (n — 2)
[10; 12; 14]. Thus if G acts effectively on S”, it must act effectively on each
principal orbit. If G acts effectively on the k-dimensional coset space G/H,
then dimension G < k(k + 1)/2 [16, p. 243]. Thus if G acts on S* such
that the highest dimension of any orbit is 3 (resp. 2), then dimension G < 6
(resp. 3). From the classification of compact connected Lie groups (see
e.g. [18, p. 282]) it follows that every compact connected Lie group of dimen-
sion £ 6 can be represented as a factor group G/H, where

G=GX " XGn

is a direct product, each factor G, is either T" or @, , the group of unit quater-
nions, and H is a finite subgroup of the center of G.

We say that the action of G on M is almost effective if the subgroup Gy =
{geG|ga = x for every x ¢ M} is finite.

The following results describe the orbit space in the cases under considera-
tion.

1.1. Let G act on 8" with an (n — 1)-dimensional orbit. Let X be the set
of points on (n — 1)-dimensional orbits, and let ¥ = 8" — X. Then S"/@G
1s a closed arc, and Y /G consists of precisely two points, the end points of S"/G.
Furthermore all orbits of X are equivalent.

Proof. S"/@G is compact and simply connected {13, Corollary 2 of Theorem
2]. Thus by [17], S*/G is an arc. The other conclusions of 1.1 also follow
from [17].

1.2. Let G act on S™ with the highest dimension of any orbit (n — 2). Let
there also be an orbit of dimension < (n — 2). Let X denole the set of points
on (n — 2)-dimensional orbits, and let Y = 8" — X. Then S*/@ s a closed
2-cell with Y /G as simple closed curve boundary. All orbits of X are equivalent.

Proof. This result was proved by Montgomery, Samelson, and Yang [11]
for the case in which there is a stationary point. The same proof goes through
if there exists any orbit of dimension < (n — 2). Well known actions of
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T' on S show that the assumption of an orbit of lower dimension is not
superfluous.

Throughout this paper if G acts on S”, we shall denote by X the set of
points which lie on principal orbits, and by Y the complement of X.

1.3.  Let G be a semisimple group acting on S™ (n > 2) with the higest di-
menston of any orbit (n — 2). Then there exists an orbit of dimension
less than (n — 2).

Proof. 1If all orbits are of dimension (n — 2), then S8"/@ is a simply con-
nected 2-manifold, thus a 2-sphere [2; 13]. If G/H is a coset space of G,
then m(G/H) is finite; thus each orbit G(x) has finite fundamental group.
Thus for every z the cohomology group H'(G(z); Q) is trivial (Q = ra-
tionals). Let p denote the projection S™ — S"/G. By the Beagle-Vietoris
mapping theorem (see [1, Kxposé VII])

p*:H(8"/G; Q) — H'(S"; Q)
is an injection. This gives a contradiction.
Let G act on a space M with projection p:M — M/G. A cross section
for the action of G is a map s: M /G — M such that p o s is the identity map

of M/G. The following result will be used to prove the equivalence of differ-
ent actions.

1.4. Let G actin two ways on a compact space M. Let (M/G); and (M/G).
denote the corresponding orbit spaces. If x ¢ M, we denote the stability groups of
x with respect to the two actions by (G,)1 and (G,)s . Assume that the two actions
admat cross sections sy and s, and that there is a homeomorphism h of (M/G).
onto (M/GQ)2 such that (Gs,ay)1 = (Geyonwy)2 for every ye (M/G)1. Then
the two actions are equivalent.

Proof. Let f; (¢ = 1,2) denote the map from (M/G); X G onto M given
by fi(y, g) = g.si(y). There is a natural action of G on (M/G@); X G given
by ¢1.(y,9) = (y,919), and f; is equivariant with respect to this action. Let
M ; denote the decomposition space of (M/G); X G whose points are the
inverses f7'(z), and let f; be the induced map of M; onto M. The action of
G on (M/G); X G induces an action of G on M; and f; is an equivariant
homeomorphism with respect to this action. Consider the map

a:(M/G)y X G— (M/G) X G

given by (y, g) — (h(y), g). The conditions given on s, s», and & imply
that « induces an equivariant homeomorphism &’ of M; onto M,. The map
fea/f1" is an equivariant homeomorphism of M with respect to the two ac-
tions.

The following result is well known to specialists but has not, to the author’s
knowledge, appeared explicitly in the literature.
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1.5. Let G act on a locally compact space M, and assume that all orbits of G
are equivalent. Let x e M, and let N = {y e M |G, = G,}. Then N is a
locally trivial principal fiber bundle (see [3, Exposé VI] for definitions) with
group N(G,)/G. (N(G,) = the normalizer of G.). M 1is an associated fiber
bundle with N as principal bundle and G/G, as fiber.

The local triviality follows from Gleason’s theorem [6]. The other proper-
ties are readily checked.
As a corollary we obtain

1.6. Let G and M be as in 1.5, and assume that M /G is paracompact and
contractible. Then M 1is homeomorphic to (M/G@) X (G/G,). There is a
cross section for M /G on which the isotropy group is constant.

This follows from [3, Exposé VIII].

If G acts on 8" (C E™*') as a group of orthogonal transformations, we
define the suspension of this action to be the linear action of G on S™** ob-
tained as follows: Write E"* as E™' X E', let G act by ¢.(z, y) = (9.2, ¥),
and restrict the action to the unit sphere 8" in E"*2,

2. Actions of 7% on §*

We use (6, ¢) (0 < 6, ¢ < 2r) as coordinates on T°. Every closed 1-
parameter subgroup of T” is of the form

where m and n are relatively prime integers. Let R(«) denote the 2 X 2
rotation matrix with angle o. Then any representation of 7 with repre-
sentation space E* is equivalent to one of the form

(2.1) (8, 9) — R(mb + nd) @ R(pb + q¢).

A necessary and sufficient condition that the representation be faithful (i.e.,
that the induced action be effective) is that mq — np = 1.
Consider the action of 7% on S° induced by (2.1), and assume that

mq — np = =1.

Let I denote the closed unit interval which we identify with S°/7T* and de-
fine h:l — S* by h(t) = (¢, 0, /(1 — ), 0). Then h is a cross section,
and Gh(o) = Gp,q, Gh(l) = Gm,n, and Gh(t) = {6} if 0<t<1.

Assume now that T* acts effectively on S°. Since 7T” is abelian and the
action is effective, it follows that if = lies on a principal orbit, then G, = {e}.
By 1.1 the orbit space is an arc; we identify it with I. Let s:J — S® be a
cross section. The existence of s follows from [13, Theorem 2]. By 1.1 and
1.6, X is homeomorphic to (0, 1) X T?. The space Y is the union of the two
singular orbits. Each orbit of ¥ must be either a stationary point or a
1-sphere. From Alexander duality it follows that each orbit of Y is a 1-sphere.
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It follows from [17] that the groups Gso and G.uy are connected; thus each
is a circle group, and we have Gyo) = G,,4, Gsa) = G, for integers m, n, p,
and ¢. Using the construction given in 1.4 we see that S is homeomorphic
to T® X I with T® X 0 collapsed to T°/G,, and T X 1 collapsed to
T?/Gm.n. TFrom consideration of the Mayer-Vietoris sequence for the triple
(s7'([0, 1/2]), s *([1/2, 11), s "(1/2)) we see that the space described above
has the homology groups of S° only if mg — np = 1. It is an easy conse-
quence of 1.4 that the action of 7% is equivalent to a linear action of the form
(2.1).

The group T cannot act effectively on S*; there would have to be a 3-
dimensional orbit for such an action.

Combining this result with the much more difficult theorems of Mont-
gomery-Zippin and Jacoby (see the Introduction) we obtain

TarorEM A. Let G be a compact connected topological group acting effectively
on S°. Then G is either T', 1%, or SO(3). In each case the action of G is
equivalent to a linear action.

3. Actions of 7% on §*

Let T” act effectively on S*. Then, using the Lefschetz fixed-point theo-
rem, it follows from [4] that there is a stationary point. By 1.2 the orbit
space is a 2-cell. According to [8] there are precisely two stationary points
and four classes of inequivalent orbits. I'urthermore all isotropy groups are
connected. Let D denote the closed unit disk in A% and let

Ay (resp. A_) = {(x1, 1) e E*|al + 25 = 1, 21 > 0 (resp. a1 < 0)}.

We denote by p the projection S* — S*/7%.  We may identify the orbit space
S*/T* with D in such a way that (0, 1) and (0, —1) correspond to the sta-
tionary points and G, = G, for p(z) edy, G, = Gy, for p(x) ed_,
where G, . and G, , are circle subgroups of 7°.

We wish to show that there are local cross sections at the points of 44 and
A_. Lety = p(y) eA, ,and let K be a slice at y (see [13] for definitions).
We may assume that p(K) is a 2-cell which meets 4 in an arc. The stability
group G, acts freely on K n X, and the orbit space (K n X)/G, = p(K n X)
is contractible. Thus by 1.6 there is a cross section for p(K n X) in K n X.
TFach point of K n Y is stationary under G, . Thus the cross section can be
extended to a cross section for p(K) in K.

3.1.  There exists a global cross section for S/ T

Proof. We follow the method of [11]. Write D — {(0, 1), (0, —1)}
as the union of a countable number of 2-cells which intersect nicely with each
other and with A, and A_. The method given above shows that we can
construct cross sections for 2-cells which interseet A, or A_. The global
cross section is constructed step by step. One checks that there is
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no trouble in “patching together” cross sections over neighboring 2-cells.
Since (0, 1) and (0, —1) are stationary points, the cross section defined on
D — {(0, 1), (0, —1)} extends to a cross section of D.

Let v © D be the line segment {(¢, 0) | —1 = ¢ = 1}. Using the cross
section for D — {(0, 1), (0, —1)}, we see that S* — (two points) is homeo-
morphic to the product of p"(y) with the open interval. Thus p~'(y) has
the homology groups of S*. But p~'(y) is homeomorphic to 7% X I with
T X 0 collapsed to T%/Gp 4, and T* X 1 collapsed to 7°/Gy.n . It was shown
in Section 2 that a necessary condition for this space to have the homology
groups of S*is that mg — np = =4=1. Tt now follows from 1.4 that the action
of T* on S"is equivalent to the suspension of a linear action of T” on S°.

4. Some properties of SO(3)

The group SO(3) has the following conjugacy classes of subgroups (see
[19] for a discussion of the finite subgroups of SO(3)): the groups S, of all
rotations about the axis determined by a point p e S°; the groups N, of all
g € SO(3) such that g.p = -£p for a point p e S*; the cyclic groups Z, ; the
dihedral groups D, of order 2n; the groups Hr, H¢ , and H;, of all rotational
symmetries of the tetrahedron, cube, and icosahedron respectively.

The following property of the dihedral groups will be used.

4.1. If n > 2, then D, 1is contained in precisely one group of the form N, .
The dihedral group Dy is contained in three distinct groups of the form N .

The coset spaces SO(3)/8S, and SO(3)/N, are homeomorphic to the 2-
sphere S and the projective plane P* respectively. If V is a finite subgroup
of SO(3), then SO(3)/V is an orientable 3-manifold with H.(SO(3)/V) = 0.
Using the covering map w: Q1 — SO(3) we can calculate the fundamental
group (= = (V)) of SO(3)/V and thus the first homology group. We
list the results (see [5] for a typical computation):

H(SO(3)/Z.) = Zs , Hy(SO(3)/Dy) = Z2 & Z>,
(4.2) H,(SO(3)/Daonyr) = Za, H,(SO(3)/H ) Zs,
H,(SO3)/H) = Zy, H,(SO(3)/Hy) 0.

The representation of weight two of SO(3), which defines an action of
SO(3) on S, can be described as follows: The representation space I is
the space of all 3 X 3 symmetric matrices of trace zero, and SO(3) acts on
M by g(m) = gmg™" (conjugation of the matrix m by the matrix g). Using
trace (myms) as inner product in M we identify S* with the set of all m of
norm 1. This inner product is invariant under SO(3).

We now construct a cross section for this action. Let S' be the set of all
diagonal matrices of S*. Since every symmetric matrix can be orthogonally
diagonalized, it follows that every orbit of SO(3) on S* intersects S'. If
@ € S' has distinct eigenvalues, then G, = D, , the group of all diagonal ma-

It
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trices of SO(3). If x has two equal eigenvalues, then G, is one of the three
groups N, , N., , and N, (e, e;, and e; are the standard basis vectors of E°).
There are precisely six points on S" with two equal eigenvalues. One checks
that there are precisely six arcs on S' which cross-section the orbit space
S'/80(3). We obtain

4.3. Let SO(3) act on S' by the representation of weight two. Let
i, jel{l, 2, 3}, © = j. There is a cross-sectioning arc cd for the orbit space
8*/80(3) such that Go = N, , Ga = N.;, and G, = Dy on (cd — (cud)).

5. Actions of SO(3) on §* with 3-dimensional orbits

Let SO(3) act on S* with at least one 3-dimensional orbit. By 1.1, $*/G
is a closed arc with Y/G as end points, and all orbits of X are equivalent.
It follows from 1.6 that X is homeomorphic to the product of G(x), a typical
orbit of X, with an open interval. Each orbit of ¥ must be homeomorphic
to either S°, P?, or a point.

5.1. Y is homeomorphic to P* u P’

Proof. 1If there is a stationary point p, then letting p = p. we get an in-
duced action of SO(3) on E*. But then, by [16, p. 252], the other exceptional
orbit must be a stationary point. Suppose there are stationary points.
Then X is homeomorphic to E* — p., which is simply connected; thus G/(x)
must be simply connected. But SO(3) has no simply connected 3-dimen-
sional coset spaces. It follows that there are no stationary points. I'rom
the Alexander duality theorem we see that H*(Y) ~ H;(G(x)) which is
finite. Thus Y cannot have any S° orbits. It follows that both orbits of ¥
are homeomorphic to projective planes.

5.2. There is a cross-sectioning arc cd for S*/SO(3) such that G, is constant
on (ed — (cud)).

Proof. By 1.6 there is a cross section s for X/S0(3) on which G, is con-
stant. By Alexander duality we have

H(X) ~ Hi(S0(3)/G) ~ H(Y) X Z: ® Zy .

From 4.2 we see that G, is a dihedral group D, .

Let f be a mapping of the open unit interval I° into a complete metric space
M. We say that a point x of M belongs to the cluster set of f at 0 (resp. 1)
if there is a sequence t; e I’ such that ¢; — 0 (resp. 1) and f(¢;) — 2. The
cluster set of f at each end point is connected. The map f can be extended
to a continuous map of I into M if the cluster set at each end point reduces
to a point.

If SO(3) acts transitively on P’ there is a one-one correspondence be-
tween stability groups G, and points z e P’. By 4.1if n > 1, there is only one
subgroup of the form N, which contains D,, . There are exactly three sub-
groups of this form which contain D, .
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For any point y in the cluster set of s at either end point we must have
G, C Dy, , and G, must be of the form N,. Thus the cluster set of s at
each end point is finite and connected, hence a point. Thus s can be ex-
tended to a cross section for S*/SO(3). This cross section will be an arc
which we denote by cd.

53. G. # Gq.

Proof. Let M be the space I X (SO(3)/D,,) with 0 X (SO(3)/Ds.)
collapsed to SO(3)/G, and 1 X (SO(3)/Ds,) collapsed to SO(3)/Ga.
Asin 1.4 we see that M is homeomorphic to S*. We show that if G, = Gq,
then H,(M) 5¢ 0, which gives a contradiction. Let p denote the natural
projection of M onto I. Let A = p ([0, 1/2]) and B = p'([1/2, 1]).
Consider the Mayer-Vietoris sequence for (M, A, B):

Hy(M) — Hi(A 0 B) "% 1(4) @ Hi(B).

Here 4, is the injection (A n B) C A, and 4, is the injection (A n B) C B.
Now
Hi(A n B) &~ Hi(S0(3)/Dsn) =~ Zy @ Zs,
and
Hi(A) ~ H\(B) ~ Hi(P") ~ Z, .

Thus 7% and 7,4 have nontrivial kernels. If G, = (g, then clearly kernel

f1x = kernel 74 ; this implies that 715« @ 424 has a nontrivial kernel and hence
that Ho(M) 5 0.

54. Let SO(3) act as a transformation group on S* such that there exists a
3-dimensional orbit. Then the action is equivalent to the action of SO(3) on
S* induced by the representation of weight two.

Proof. Since D,, C G., D2, © Gy, and G. # Gq, it follows from 4.1
that n = 1, hence that G, = D; on (¢d — (cu d)). By translating our
cross section we may assume that on (¢d — (¢ u d)), G, is the group of diag-
onal matrices of SO(3). (Remember that D, is defined only to within con-
jugacy.) Hence G. and G; must each be one of the groups N, , N,,, or N, .
Recalling 4.2 we apply 1.4 to prove 5.4.

6. Actions of SO(3) on S* with 2-dimensional orbits

Let SO(3) act on the 4-sphere with the highest dimension of any orbit two.
Then by 1.2, $*/80(3) is a closed 2-cell with ¥/S0(3) as simple closed curve
boundary, and all orbits of X are equivalent. It is easily seen that the orbits
of X must be orientable; hence each orbit of X is a 2-sphere. All orbits of YV
must be stationary points since SO(3) has no 1-dimensional coset spaces.
Thus Y is a simple closed curve.

6.1. There exists a cross section s for S*/SO(3) such that G, is constant on
s(X/80(3)).
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Proof. By 1.6 there exists a cross section for X/S0(3) on which G, is
constant. Since every orbit of Y is a stationary point, this cross section can
be extended to a cross section for S*/S0(3).

We now apply 1.4 to obtain

6.2. Let SO(3) act as a transformation group on S* with the highest dimen-
ston of any orbit two. Then the action is equivalent to the double suspension of
the standard action of SO(3) on S

7. Actions of Q, on §*

Let 7: Q1 — SO(3) be the standard two-to-one covering map, and let
K = kernel =. Our knowledge of the subgroups of SO(3) enables us to
classify all subgroups of @;. The following result is easily obtained.

7.1. The only (closed) subgroups of Qi which do not contain K are finite
cyclic groups of odd order.

As a consequence we have

7.2. Let Q1 act effectively on a space M. Then there must exist x ¢ M such
that G, = e or G, = Z,, for odd n. In particular there must be a 3-dimensional
orbit.

Let Q; act effectively on S*. Let # ¢ X. Then by 7.2, G, = {e} or G, =
Zony1 . Thus, as in Section 5,

Hl(X) ~ Hl(Ql/G:c) N Z2n+1 or 0.

By Alexander duality H*(Y) is isomorphic to Za,1 or 0. But each orbit of ¥
is homeomorphic to S*, P?, or a point. It follows that each orbit of Y is a
stationary point, and hence that G, = e. By 1.6 there is a cross section for
X/Q;. Since each orbit of Y is a stationary point, the cross section can be
extended to a cross section for S*/Q; .

The group Q; acts transitively on S* (= @) by left multiplication such
that each isotropy group is trivial. This is a linear action. Using 1.4 we
obtain

7.3. Let Q. act effectively on S*. Then the action is equivalent to the sus-
pension of the action of Qy on S* given by left multiplication.

8. Actions of SO3) X T, Q. X T, and @, X Q.

Let SO(3) X T" act effectively on S*. We consider SO(3) and T' as
subgroups of SO(3) X T' and denote by m the projection SO(3) X T" —
SO(3).

8.1. Let H be a l-dimensional subgroup of SO(3) X T' whose identity
component H* is not included in either SO(3) or T'. Then H is included in a
mazimal torus S, X T of SO(3) X T".
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Proof. The group H* is abelian and connected and is thus included in a
maximal torus of SO(3) X T'. Every such maximal torus is of the form
S, X T'. The image m (H) must be included in N, , otherwise it would be
3-dimensional. Hence H C N, X T'. Using the multiplication table for
N, X T, one sees that H must be included in S, X T".

8.2. The action of SO(3) on S' induced by the action of SO(3) X T" is
not equivalent to the action of SO(3) on S* induced by the representation of
weight two.

Proof. Assume the actions are equivalent. Let x lic on a principal orbit.
Then SO(3) acts transitively on the (SO(3) X T") orbit of z. The isotropy
group G, (= (8SO(3) X T",) is 1-dimensional and G, n SO(3) = Ds,
G.nT' = {¢}. (Any element in G, n T" would act trivially on every prin-
cipal orbit.) It follows from 8.1 that G, is included in a maximal torus
S, X T'. But this gives a contradiction since G, n SO(3) = D,, which
is not included in S, .

By 5.4, 6.2, and 8.2 we may assume that the induced action of SO(3) on
S* is equivalent to the double suspension of the transitive action of SO(3)
on S”. The orbit space for this action is a closed 2-cell; interior points cor-
respond to 2-sphere orbits, and boundary points to stationary points. The
action of SO(3) X T" on §' induces an action of T" on the orbit space
S*/80(3). Ttisan easy consequence of [17] that every action of T" on a 2-cell
is equivalent to a linear action. Furthermore the action of 7" on the 2-cell
S*/80(3) must be effective. For if g e T" (g 5 e) left each S* orbit fixed,
then g would be orientation-reversing on each S* orbit, and hence orientation-
reversing on ', which is impossible.

It follows that each principal orbit is homeomorphic to S* X S' and that
the action of SO(3) X T" on the orbit is given by letting SO(3) act on the
first factor and T" act on the second factor. The two singular orbits are a
2-sphere and a 1-sphere; T" acts trivially on the first, and SO(3) acts trivially
on the second.

Let Gy and G, act orthogonally on the spheres 8™ and S™ respectively. We
define the join of these two actions as the action of Gy X Gy on S"*™*' ob-
tained as follows: Write E™*™* as E™"" X E™"', let Gy X G, act by

(g1, g2). (21, 22) = (gr.21, Jo-2),

and restrict the action to the unit sphere S™*”*' in E"*"*,

8.3. The action of SO(3) X T" on S* is equivalent to the join of the standard
actions of SO(3) on S* and T" on S'.

Proof. Using cross sections for the action of T" on the 2-cell S*/S0(3)
and the action of SO(3) on S* we obtain a cross section for the action of
SO(3) X T" on 8*. The cross sections may be chosen such that 1.4 applies
to prove 8.3.



484 R. W. RICHARDSON, JR.

Let Q. X T act almost effectively on S'. We may assume that @ acts
effectively, otherwise we would have an induced action of SO(3) X T" on
S*. It follows from 7.3 that the principal orbits are 3-spheres and that the
two singular orbits are stationary points. According to [9] the action of
Q. X T" on each S* orbit must be linear. The unitary group U(2) is iso-
morphic to @ X T" modulo a subgroup of order two. The group U(2)
acts transitively on S® (considered as the unit sphere in a 2-dimensional
complex vector space), and the only linear, transitive, almost effective action
of Q@ X T" on S°is that induced by the action of U(2). It follows that the
action of @ X T" on S*is equivalent to the suspension of the linear action of
U(2) on S°.

We show that SO(3) X SO(3) cannot act effectively on S*. Assume such
an action were given. Since SO(3) X T' < SO(3) X SO(3), it follows
that the action of the first factor is not equivalent to that induced by the
representation of weight two. Thus S*/80(3) is a 2-cell, and we get an in-
duced action of SO(3) on this 2-cell. This action must be trivial, since
SO(3) has no 1-dimensional coset spaces. Thus each principal orbit is a
2-sphere. This gives a contradiction since dimension (SO(3) X S0(3)) > 3.

Let Q, X Q, act almost effectively on S*. Then at least one factor must
act effectively or we would have an induced action of SO(3) X SO(3) on S*.
It follows from 7.3 that the principal orbits are 3-spheres and that the two
singular orbits are stationary points. The rotation group SO(4) is a quotient
of @1 X @ by a subgroup of order two. It follows from [9, p. 461] that the
action of @ X Q; on S*induces an action of SO(4) on S* which is equivalent
to the standard action of SO(4) on S°. It is immediate that the action given
is equivalent to the suspension of the standard action of SO(4) on S,

9. Elimination of the remaining cases
9.1. T° cannot act effectively on S*.

Proof. Assume we are given such an action. Since T° is abelian, each
principal orbit is homeomorphic to T°. By [4] there is a stationary point.
Hence there are precisely two stationary points. From 1.1 and 1.6 it follows
that 8* — {two points} is homeomorphic to the product of an open interval
with 7% which is obviously false.

All of the remaining compact connected Lie groups of dimension =< 6
contain subgroups isomorphic to T° and hence cannot act effectively on S*.
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