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Introduction

Montgomery and Zippin have shown [16, p. 260] that if G is a compact
connected topological group acting effectively as a transformation group on 3-
dimensional Euclidean space E, then G is either T, the circle group, or S0(3),
the group of all proper rotations of E. In each case the action of G is (topo-
logically) equivalent to the standard action of G as a group of linear transfor-
mations. In [7] Jacoby has classified all actions of T on the 3-sphere S
with no stationary points. Again all such actions are equivalent to linear
actions. In Section 2 we show by an elementary analysis that all actions of
the torus group T T X T) on S are equivalent to linear actions. This
completes the study of compact connected transformation groups on S. All
such groups are Lie groups, and their actions are equivalent to linear actions.

In this paper we study compact connected transformation groups on the
4-sphere St. Our main theorem is

THEOREM B. Let G be a compact connected topological group acting effectively
on S such that there is an orbit of dimension >= 2. Then G is a Lie group,
and the action of G is equivalent to a linear action.

Our method is quite straightforward. In all cases under consideration the
orbit space S4/G is either a closed 2-cell or a closed arc. The group G must
be a compact connected Lie group of dimension -<- 6. We use our detailed
knowledge of such groups plus our knowledge of the orbit space to obtain an
explicit description of all possible actions. It is easily checked that each such
action is equivalent to a linear action.
Montgomery and Zippin have given an action of T on S which cannot be

equivalent to a differentiable action [15]. Thus the assumption on the dimen-
sion of the orbit in Theorem B is not superfluous. The problem of actions of
T on S seems to be quite difficult even when one assumes differentiabilty.
In [9] Montgomery and Samelson give a complete discussion of groups

acting transitively on spheres. In this paper we consider only the non-
transitive case.
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1. Preliminaries

We shall follow the notation of Montgomery and Zippin’s book [16] with
the following exceptions" If G acts on M, we denote the image of the point
x e M under the group element g by g.x, and we denote the space of orbits by
M/a.

If the compact connected topological group G acts effectively on an n-mani-
fold with an orbit of dimension (n 2), then G is a Lie group [2]. Hence-
forth G will denote a compact connected Lie group.
An orbit G(x) is principal if there is a neighborhood N of x such that for

every y N, Gy is conjugate to Gx. It is known that if G acts on the n-sphere
Sn, then all principal orbits are equivalent, and the set of points which lie
on principal orbits is an open set whose complement has dimension _-< (n 2)
[10; 12; 14]. Thus if G acts effectively on Sn, it must act effectively on each
principal orbit. If G acts effectively on the/c-dimensional coset space G/H,
then dimension G _-< k(/c + 1)/2 [16, p. 243]. Thus if G acts on S such
that the highest dimension of any orbit is 3 (resp. 2), then dimension G -< 6
(resp. 3). From the classification of compact connected Lie groups (see
e.g. [18, p. 282]) it follows that every compact connected Lie group of dimen-
sion -<_ 6 cn be represented as a factor group G/H, where

G=GxX... G,
is a direct product, ech factor G is either T or Qx, the group of unit quater-
nions, and H is finite subgroup of the center of G.
We say that the ction of G on M is almost effecti,e if the subgroup Go

{g G Ig.x x for every x e M} is finite.
The following results describe the orbit spce in the cses under considers-

tion.

1.1. Let G act on S with an (n 1)-dimensional orbit. Let X be the set

of points on (n 1)-dimensional orbits, and let Y S X. Then Sn/G
is a closed arc, and Y/G consists of precisely two points, the end points of Sn/G.
Furthermore all orbits of X are equivalent.

Proof. sn/G is compgct gnd simply connected [13, Corollary 2 of Theorem
2]. Thus by [17], S’/G is an arc. The other conclusions of 1.1 Mso follow
from [17].

1.2. Let G act on S with the highest dimension of any orbit (n 2). Let
there also be an orbit of dimension < (n 2). Let X denote the set of points
on (n 2)-dimensional orbits, and let Y S X. Then sn/G i8 a closed
2-cell with Y/G as simple closed cure boundary. All orbits of X are equivalent.

Proof. This result ws proved by Montgomery, Smelson, and Yng [11]
for the case in which there is sttiongry point. The same proof goes through
if there exists any orbit of dimension < (n 2). Well known ctions of
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T on S show that the assumption of an orbit of lower dimension is not
superfluous.
Throughout this paper if G acts on S, we shall denote by X the set of

points which lie on principal orbits, and by Y the complement of X.

1.3. Let G be a semisimple group acting on S (n > 2) with the higest di-
mension of any orbit (n- 2). Then there exists an orbit of dimension
less than n 2).

Proof. If all orbits are of dimension (n 2), then S/G is a simply con-
nected 2-manifold, thus a 2-sphere [2; 13]. If G/H is a coset space of G,
then 7rl(G/H) is finite; thus each orbit G(x) has finite fundamental group.
Thus for every x the cohomology group Hl(G(x) Q) is trivial (Q ra-
tionals). Let p denote the projection S -- S/G. By the Beagle-Vietoris
mapping theorem (see [1, Expos6 VII])

p*:H2(S’/G; Q) --,, H2(S; Q)

is n injection. This gives a contradiction.
Let G act on a space M with projection p:M---+ M/G. A cross section

for the action of G is a map s:M/G -- M such that p s is the identity map
of M/G. The following result will be used to prove the equivalence of differ-
ent actions.

1.4. Let G act in two ways on a compact space M. Let (M/G)1 and (M/G)2
denote the corresponding orbit spaces. If x M, we denote the stability groups of
x with respect to the two actions by (G)I and (G)2. Assume that the two actions
admit cross sections s and s2 and that there is a homeomorphism h of (M/G)I
onto (M/G)2 such that (G81(u))1-- (G82oh(.)) for every y (M/G). Then
the two actions are equivalent.

Proof. Let f (i 1, 2) denote the map from (M/G) X G onto M given
by f(y, g) g.s(y). There is a natural action of G on (M/G) X G given
by g.(y, g) (y, g g), and f is equivariant with respect to this action. Let
M denote the decomposition space of (M/G)X G whose points are the
inverses f-j(x), and let f be the induced map of M onto M. The action of
G on (M/G) G induces an action of G on M and f is an equivariant
homeomorphism with respect to this action. Consider the map

a: (M/G) X V-- (M/G). )

given by (y, g) -- (h(y), g). The conditions given on s, s., and h imply
that a induces an equivariant homeomorphism a’ of M onto M2. The map
a is an equivariant homeomorphism of M with respect to the two

tions.
The following result is well known to specialists but has not, to the author’s

knowledge, appeared explicitly in the literature.
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1.5. Let G act on a locally compact space M, and assume that all orbits of G
are equivalent. Let xeM, and let N [yeM Gu Gx}. Then N is a
locally trivial principal fiber bundle (see [3, Expos$ VII for definitions) with
group N(Gx)/Gx (N(G) the normalizer of G). M is an associated fiber
bundle with N as principal bundle and G/Gx as fiber.
The local triviality follows from Gleason’s theorem [6].

ties are readily checked.
As a corollary we obtain

The other proper-

1.6. Let G and M be as in 1.5, and assume that M/G is paracompact and
contractible. Then M is homeomorphic to (M/G) X (GIGs). There is a
cross section for M/G on which the isotropy group is constant.

This follows from [3, Expos4 VIII].
If G acts on S ( En+l) as a group of orthogonal transformations, we

define the suspension of this action to be the linear action of G on S+1 ob-
tained as follows: Write E+2 as En+ X E, let G act by g.(x, y) (g.x, y),
and restrict the action to the unit sphere S+ in En+2.

2. Actions of T on 83
We use (0, ) (0-<_ 0, -<_ 2r) as coordinates on T2.

parameter subgroup of T is of the form
Every closed 1-

G,, {(0, 4’) mO -k- n4 0 (2n.)}

where m and n are relatively prime integers. Let R(a) denote the 2 X 2
rotation matrix with angle a. Then any representation of T with repre-
sentation space E is equivalent to one of the form

(0, 4,) --+ R(mO + n4,) @ R(pO -k- q).

A necessary and sufficient condition that the representation be faithful (i.e.,
that the induced action be effective) is that mq- np +/-1.

Consider the action of T on S induced by (2.1), and assume that

mq np :kl.

Let I denote the closed unit interval which we identify with S3/T2, and de-
fine h:I-- S by h(t) (t, O, x/(1 t2), 0). Then h is a cross section,
and Gt(0) Gp,q, Gh(1) Gin,n, and Ga(t) {e} if 0 < < 1.
Assume now that T acts effectively on S3. Since T is abelian and the

action is effective, it follows that if x lies on a principal orbit, then G {e}.
By 1.1 the orbit space is an arc; we identify it with I. Let s:I -+ S be a
cross section. The existence of s follows from [13, Theorem 2]. By 1.1 and
1.6, X is homeomorphic to (0, 1) X T. The space Y is the union of the two
singular orbits. Each orbit of Y must be either a stationary point or a
1-sphere. From Alexander duality it follows that each orbit of Y is a 1-sphere.
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It follows from [17] that the groups G(0) and G(1) are connected; thus each
is a circle group, and we have G(0) Gp,q, (Is(l) G.,n for integers m, n, p,
and q. Using the construction given in 1.4 we see that S is homeomorphie
to T2 X I with T2( 0 collapsed to T/Gp,q and T ( 1 collapsed to
T/G.... From consideration of the Mayer-Vietoris sequence for the triple
(s-l([0, 1/2]), s-1([1/2, 1]), s-1(1/2)) we see that the space described above
has the homology groups of S only if mq np :kl. It is an easy conse-
quence of 1.4 that the action of T is equivalent to a linear action, of the form
(2.1).
The group T cannot act effectively on S; there would have to be a 3-

dimensional orbit for such an action.
Combining this result with the much more dicult theorems of Mont-

gomery-Zippin and Jacoby (see the Introduction) we obtain

THEOREM A. Let G be a compact connected topological group acting effectively
on S. Then G is either T, T, or S0(3). In each case the action of G is

equivalent to a linear action.

3. Actions of T on S

Let T act effectively on S4. Then, using the Lefschetz fixed-point theo-
rem, it follows from [4] that there is a stationary point. By 1.2 the orbit
space is a 2-cell. According to [8] there are precisely two stationary points
and four classes of inequivalent orbits. Furthermore all isotropy groups are

connected. Let D denote the closed unit disk in E, and let

EA+ (resp. A_) {(x,,x) e_ x - x 1, x > 0 (resp. x < 0)}.

We denote by p the projection S S/T. We may identify the orbit space
S4/T with D in such a wy that (0, 1) and (0, -1) correspond to the sta-
tionary points and Gx G,,n for p(x)eA+, G Gp, for p(x)eA_,
where G, and G, are circle subgroups of T.
We wish to show that there are local cross sections at the points of A+ and

A_. Let y’ p(y) A+, and let K be a slice at y (see [13] for definitions).
We may assume that p(K) is a 2-cell which meets A+ in an arc. The stability
group G acts freely on K n X, and the orbit space (K n X)/G p(K n X)
is contractible. Thus by 1.6 there is a cross section for p(K n X) in K n X.
Each point of K n Y is stationary under G. Thus the cross section can be
extended to a cross section for p(K) in K.

3.1. There exists a global cross section for Silt.
Proof. We follow the method of [11]. Write D- {(0, 1), (0, -1)}

s the union of a countable number of 2-cells which intersect nicely with each
other and with A+ and A_. The method given above shows that we

construct cross sections for 2-cells which intersect A+ or A_. The global
cross section is constructed step by step. One checks that there is
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no trouble in "patching together" cross sections over neighboring 2-cells.
Since (0, 1) and (0, -1) are stationary points, the cross section defined on
D l(0, 1), (0, -1)} extends to a cross section of D.

Let cD be the line segment l(t, 0) I-1 _<_ <= 1}. Using the cross
section for D (0, 1), (0, 1)}, we see that S (two points) is homeo-
morphic to the product of p-l(,y) with the open. interval. Thus p-l() has
the homology groups of Sa. But p-l(,) is homeomorphic to T I with

T2/ TT X 0 collapsed to /.q and X 1 collapsed to T/G,.. It was shown
in Section 2 that a necessary condition for this space to have the homology
groups of S is that mq np 1. It now follows from 1.4 that the action
of T on S is equivalent to the suspension of a linear action of T on Sa.

4. Some properties of S0(3)
The group 0(3) has the following conjugacy classes of subgroups (see

[19] for a discussion of the finite subgroups of S0(3))" the groups S of all
rotations about the axis determined by a point p the groups N of all
g S0(3) such that g.p -4-p for a point p the cyclic groups Z ;the
dihedral groups Dn of order 2n; the groups Hr, Hc, and H, of all rotational
symmetries of the tetrahedron, cube, and icosahedron respectively.
The following property of the dihedral groups will be used.

4.1. If n > 2, then Dn i8 contained in precisely one group of the form N,.
The dihedral group D2 is contained in three distinct groups of the form N,.

The coset spaces SO (3)/S, and SO (3)/N, are homeomorphic to the 2-
sphere S and the projective plane P respectively. If V is a finite subgroup
of S0(3), then SO(3)/V is an orientable 3-manifold with H2(SO(3)/V) O.
Using the covering map r" Q . S0(3) we can calculate the fundamental
group r-I(V) of SO (3) IV and thus the first homology group. We
list the results (see [5] for a typical computation)"

H(SO(3)/Z,) Z, HI(SO(3)/Dn) Z. (R) Z.,

(4.2) HI(SO(3)/D,+) Z4, HI(SO(3)/Hr) Za,

H(SO()/) Z,, Hl(,SO(a)/tr,) O.

The representation of weight two of S0(3), which defines an action of
S0(3) on S4, can be described as follows" The representation space is
the space of all 3 X 3 symmetric matrices of trace zero, and S0(3) acts on

Y by g(m) gmg-1 (conjugation of the matrix rn by the matrix g). Using
trace (ml m2) as inner product in_ ) we identify S with the set of all m of
norm 1. This inner product is invariant under S0(3).
We now construct a cross section for this action. Let S be the set of all

diagonal matrices of S4. Since every symmetric matrix can be orthogonally
diagonalized, it follows that every orbit of S0(3) on S intersects 81. If
x has distinct eigenvalues, then G, D, the group of all diagonal ma-
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trices of S0(3). If x has two equal eigenvalues, then Gx is one of the three
groups Nel, Ne., and Ne3 (el, e2, and e3 are the standard basis vectors of E3).
There are precisely six points on S with two equal eigenvalues. One checks
that there are precisely six arcs on S which cross-section the orbit space
$4/S0 (3). We obtain

4.3. Let S0(3) act on S by the representation of weight two. Let
i, j e{1, 2, 3}, i j. There is a cross-sectioning arc cd for the orbit space
S/S0(3) such that G Ne, Gd Ne and Gx D. on (cd- (cud)).

5. Actions of S0(3) on S with 3-dimensional orbits

Let S0(3) act on S with at least one 3-dimensional orbit. By 1.1, S/G
is a closed arc with Y/G as end points, and all orbits of X are equivalent.
It follows from 1.6 that X is homeomorphic to the product of G(x), a typical
orbit of X, with an open interval. Each orbit of Y must be homeomorphic
to either S, P, or a point.

5.1. Y is homeomorphic to P u P.

Proof. If there is a stationary point p, then letting p p we get an in-
duced action of S0(3) on E. But then, by [16, p. 252], the other exceptional
orbit must be a stationary point. Suppose there are stationary points.
Then X is homeomorphic to E p which is simply connected; thus G(x)
must be simply connected. But S0(3) has no simply connected 3-dimen-
sional coset spaces. It follows that there are no stationary points. From
the Alexander duality theorem we see that H(Y) HI(G(x)) which is
finite. Thus Y cannot have any S orbits. It follows that both orbits of Y
are homeomorphic to projective planes.

5.2. There is a cross-sectioning arc cd for S/SO (3) such that G is constant
on (cd (c u d) ).

Proof. By 1.6 there is a cross section s for X/SO(3) on which G is con-
stant. By Alexander duality we have

H(X) HI(SO(3)/Gx) H(Y) Z. (R) Z.
From 4.2 we see that G is a dihedral group D2.
Let f be a mapping of the open unit interval I into a complete metric space

M. We say that a point x of M belongs to the cluster set of f at 0 (resp. 1)
if there is a sequence t e I such that t-- 0 (resp. 1) and f(t) ---+ x. The
cluster set of f at each end point is connected. The map f can be extended
to a continuous map of I into M if the cluster set at each end point reduces
to a point.

If S0(3) acts transitively on P there is a one-one correspondence be-
tween stability groups G and points z e P. By 4.1 if n > 1, there is only one
subgroup of the form N, which contains D.. There are exactly three sub-
groups of this form which contain D.
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For any point y in the cluster set of s at either end point we must have
Gy c D2, and Gy must be of the form N. Thus the cluster set of s at
each end point is finite and connected, hence a point. Thus s can be ex-
tended to a cross section for $4/S0(3). This cross section will be an arc
which we denote by cd.

5.3. Gc Ge.

Proof. Let M be the space I X (S0 (3)/D2n) with 0 X (S0 (3)/Dn)
collapsed to SO (3)/Gc and 1 X (S0(3)/D,) collapsed to SO (3)/Ge.
As in 1.4 we see that M is homeomorphic to S4. We show that if Gc Ge,
then H(M) O, which gives a contradiction. Let p denote the natural
projection of M onto I. Let A p-I([0, 1/2]) and B p-l([1/2, 1]).
Consider the Mayer-Vietoris sequence for (M, A, B):

H2(M) -- HI(A n B) il, @ i2,) H(A) @ H(B).

Here il iS the injection (A n B) c A, and i2 is the injection (A n B) B.
Now

HI(A n B) H(SO(3)/D2) Z: @ Z,
and

Hi(A) HI(B) HI(P2) Z.
Thus i, and i2. have nontrivial kernels. If Gc Ge, then clearly kernel
il. kernel i. this implies that i. (R) i:. has a nontrivial kernel and hence
that H(M) 0.

5.4. Let S0(3) act as a transformation group on S such that there exists a
3-dimensional orbit. Then the action is equivalent to the action of S0(3) on

S induced by the representation of weight two.

Proof. Since D2 G, D Ge, and G Ge, it follows from 4.1
that n 1, hence that G D on (cd-- (cud)). By translating our
cross section we may assume that on (cd (c u d) ), G is the group of diag-
onal matrices of S0(3). (Remember that D2 is defined only to within con-
jugacy.) Hence G and Ge must each be one of the groups N, N, or N.
Recalling 4.2 we apply 1.4 to prove 5.4.

6. Actions of S0(3) on S with 2-dimensional orbits

Let S0(3) act on the 4-sphere with the highest dimension of any orbit two.
Then by 1.2, S/SO(3) is a closed 2-cell with Y/SO (3) as simple closed curve
boundary, and all orbits of X are equivalent. It is easily seen that the orbits
of X must be orientable; hence each orbit of X is a 2-sphere. All orbits of Y
must be stationary points since S0(3) has no 1-dimensional coset spaces.
Thus Y is a simple closed curve.

6.1. There exists a cross section s for S/S0(3) such that G is constant on
s(X/SO(3)).
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Proof. By 1.6 there exists a cross section for X/SO(3) on which G is
constant. Since every orbit of Y is a stationary point, this cross section can
be extended to a cross section for $4/S0(3).
We now apply 1.4 to obtain

6.2. Let S0(3) act as a transformation group on S with the highest dimen-
sion of any orbit two. Then the action is equivalent to the double suspension of
the standard action of S0(3) on S2.

7. Actions of Q on S
Let r: Q1-- S0(3) be the standard two-to-one covering map, and let

K kernel r. Our knowledge of the subgroups of S0(3) enables us to
.classify all subgroups of Q. The following result is easily obtained.

7.1.. The only (closed) subgroups of Qt which do not contain K are finite
cyclic groups of odd order.

As a consequence we have

7.2. Let QI act effectively on a space M. Then there must exist x M such
that Gx e or Gx Zn for odd n. In particular there must be a 3-dimensional
orbit.

Let Q act effectively on S LetxeX. Then by 7.2, G {e} orGx
Z2n+. Thus, as in Section 5,

H(X) H(Q/Gx) . Z:,+ or 0.

By Alexander duality H(Y) is isomorphic to Z+I or 0. But each orbit of Y
is homeomorphic to S, P2, or a point. It follows that each orbit of Y is a
stationary point, and hence that G e. By 1.6 there is a cross section for
X/Q. Since each orbit of Y is a stationary point, the cross section can be
extended to a cross section for S4/Q.
The group Q acts transitively on S (= Q) by left multiplication such

that each isotropy group is trivial. This is a linear action. Using 1.4 we
obtain

7.3. Let Q act effectively on S. Then the action is equivalent to the sus-

pension of the action of QI on S given by left multiplication.

8. Actions of S0(3) X T, Q T, and Q Q

Let S0(3) X T act effectively on S4. We consider S0(3) and T as

subgroups of S0(3) X T and denote by the projection S0(3) X T--
S0(3).

8.1. Let H be a 1-dimensional subgroup of S0(3) X T whose identity
component H* is not included in either S0(3) or T1. Then H is included in a
maximal torus S, X T of SO (3) X T.
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Proof. The group H* is abelian and connected and is thus included in a
maximal torus of S0(3) X T1. Every such maximal torus is of the form
S, X T1. The image rl(H) must be included in N,, otherwise it would be
3-dimensional. Hence H c N, X T1. Using the multiplication table for
N, X T, one sees that H must be included in Sp X T1.

8.2. The action of S0(3) on S induced by the action of S0(3) X T is
not equivalent to the action of S0(3) on S induced b,y the representation of
weight two.

Proof. Assume the actions are equivalent. Let x lie on a principal orbit.
Then SO (3) acts transitively on the (S0 (3) X T1) orbit of x. The isotropy
group Gx (S0(3) X T1)x) is 1-dimensional and Gx n S0(3) D2,
G. n T e}. (Any element in Gx n l’ would act trivially on every prin-
cipal orbit.) It follows from 8.1 that Gx is included in a maximal toms
S, X T1. But this gives a contradiction since Gx n S0(3) D2, which
is not included in S,.
By 5.4, 6.2, and 8.2 we may assume that the induced action of S0(3) on

S is equivalent to the double suspension of the transitive action of S0(3)
on S. The orbit space for this action is a closed 2-cell; interior points cor-

respond to 2-sphere orbits, and boundary points to stationary points. The
action of S0(3) X T on S iilduces an action of T oil the orbit space
$4/S0(3). It is an easy consequence of [17] that every action of T on a 2-cell
is equivalent to a linear action. Furthermore the action of T on the 2-cell
S4/S0(3) must be effective. For if g T (g e) left each S orbit fixed,
then g would be orientation-reversing on each S orbit, and hence orientation-
reversing on S4, which is impossible.

It follows that each principal orbit is homeomorphic to S X S and that
the action of S0(3) ?( T on the orbit is given by letting S0(3) act on the
first factor and T act on the second factor. The two singular orbits are a
2-sphere and a 1-sphere; T acts trivially on the first, and SO (3) acts trivially
on the second.

Let G and G act orthogonally on the spheres S and S respectively. We
define the join of these two actions as the action of G1 G2 on S++1 ob-
rained as follows: Write E+ as E+1 X E+, let G G. act by

(gl, g2).(Xl, X2) (gl.Xl, g2.x2),

and restrict the action to the unit sphere S++ in En+’+.
8.3. The acliolz of SO (3) X T o S i8 equivalen to the join of the standard

actions of S0(3) on S and T on S.
Proof. Using cross sections for the action of T on the 2-cell S/S0(3)

and the action of S0(3) on S we obtain a cross section for the action of
S0(3) X T on S. The cross sections may be chosen such that 1.4 applies
to prove 8.3.
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Let Q1 X T act almost effectively on St. We may assume that Qt acts
effectively, otherwise we would have an induced action of S0(3) X T on
St. It follows from 7.3 that the principal orbits are 3-spheres and that the
two singular orbits are stationary points. According to [9] the action of
Q X T on each S orbit must be linear. The unitary group U(2) is iso-
morphic to Q1 X T modulo a subgroup of order two. The group U(2)
acts transitively on S (considered as the unit sphere in a 2-dimensional
complex vector space), and the only linear, transitive, almost effective action
of Q1 X T on S is that induced by the action of U(2). It follows that the
action of Q X T on S is equivalent to the suspension of the linear action of
U(2) on S.
We show that S0(3) X S0(3) cannot act effectively on St. Assume such

an action were given. Since S0(3) X T S0(3) X S0(3), it follows
that the action of the first factor is not equivalent to that induced by the
representation of weight two. Thus St/SO(3) is a 2-cell, and we get an in-
duced action of S0(3) on this 2-cell. This action must be trivial, since
S0(3) has no 1-dimensional coset spaces. Thus each principal orbit is a
2-sphere. This gives a contradiction since dimension (S0 (3) X SO(3)) > 3.

Let Q X Q act almost effectively on St. Then at least one factor must
act effectively or we would have an induced action of SO (3) SO (3) on St.
It follows from 7.3 that the principal orbits are 3-spheres and that the two
singular orbits are stationary points. The rotation group SO (4) is a quotient
of Q X Q1 by a subgroup of order two. It follows from [9, p. 461] that the
action of Q X Q1 on S induces an action of SO (4) on S which is equivalent
to the standard action of S0(4) on S. It is immediate that the action given
is equivalent to the suspension of the standard action of S0(4) on S.

9. Elimination of the remaining cases

9.1. T cannot act effectively on St.
Proof. Assume we are given such an action. Since T is abelian, each

principal orbit is homeomorphie to Ta. By [4] there is a stationary point.
Hence there are precisely two stationary points. From 1.1 and 1.6 it follows
that S {two points} is homeomorphie to the product of an open interval
with T, which is obviously false.

All of the remaining compact connected Lie groups of dimension N 6
contain subgroups isomorphic to T and hence cannot act effectively on St.
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