GEOMETRIC ABA-GROUPS

BY

D. G. Higman and J. E. McLaughlin ${ }^{1}$
 1. Introduction

A group of collineations of an incidence system will be called acutely transitive if it is transitive on the configurations consisting of an incident point and line. By an (acutely transitive) representation of a group G on an incidence system Σ will be meant a homomorphism of G onto an (acutely transitive) group of collineations of Σ.

A finite incidence system will be called a 2-design if each point lies on the same number $h \geqq 2$ of lines, each line contains the same number $k \geqq 2$ of points, and each pair of points lies on exactly one line (of course, 2-designs are special balanced incomplete block designs). In this paper we characterize the finite groups admitting acutely transitive representations on 2-designs as the groups G containing subgroups A and B such that
(1) $G=A B A$,
(2) $A B \cap B A=A+B$, and
(3) $A \nsubseteq B$ and $B \nsubseteq A$

Such a group we call a geometric $A B A$-group. Any doubly transitive group is a geometric $A B A$-group with $B: A \cap B=2$. We observe that an acutely transitive group on a 2 -design is necessarily primitive on the points, which means that in a geometric $A B A$-group, A is a maximal subgroup.

A finite group admits an acutely transitive representation θ on a finite projective plane π if and only if it is a geometric $A B A$-group satisfying
($\left.3^{\prime}\right) ~ A: A \cap B=B: A \cap B \geqq 3$,
in which case we call it a projective ABA-group. By using the OstromWagner theorem [7; Theorem 5] it is easy to see that then the additional condition
(4) $G=A+A x A$
is necessary and sufficient for π to be Desarguesian and $\theta(G)$ to contain the little projective group. As an application we show that a simple group satisfying Steinberg's axioms [10] with the symmetric group of degree 3 as Weyl group is necessarily a little projective group. We show that if a projective $A B A$-group has $A: A \cap B=n+1$, where n is either an odd nonsquare, or $n=n_{0}^{2}$ with $n_{0} \equiv-1(\bmod 4)$, then the plane is Desarguesian, and $\theta(G)$ contains the little projective group.

[^0]A necessary and sufficient condition that a group G be an acutely regular group of collineations of a 2 -design, in the sense that it be acutely transitive and no element $\neq 1$ fix an incident point and line, is that G be a geometric $A B A$-group such that
(5) $A \cap B=1$.

It is easy to see that this means precisely that G is an independent $A B A$-group as defined by Gorenstein [4]. Using Singer's theorem [8] we show that the only Desarguesian projective planes admitting acutely regular groups of collineations are the planes of orders 2 and 8 . It follows that these are the only Desarguesian cyclic planes generated by perfect residue difference sets (cf. [6]). We prove moreover that an acutely transitive group on a Desarguesian projective plane, which is not acutely regular, contains the little projective group, thus determining all acutely transitive collineation groups of Desarguesian projective planes. Our proof depends on the above-mentioned fact that acutely transitive groups are primitive, and an application of Thompson's theorem [13].

2. Acutely transitive representations

An incidence system is a system consisting of two nonempty sets, the elements of one being called points and those of the other lines, together with a relation, called incidence, which may or may not hold between a given point and a given line. All incidence systems considered here will be assumed to satisfy the following two conditions:
(a) each point is incident with at least one line, and
(b) each line is incident with at least one point.

In the usual way we shall use such phrases as " P lies on L " and " L passes through P " to express the incidence of a point P and line L.

By a collineation of an incidence system Σ is meant a one-to-one mapping of the points onto the points and the lines onto the lines which preserves incidence. The collineations of Σ form a group, the collineation group of Σ. By a representation of a group G on an incidence system Σ we shall mean a homomorphism of G into the collineation group of Σ. Two such representations θ_{1} and θ_{2} of G on Σ_{1} and Σ_{2} will be called equivalent if there is an isomorphism σ of Σ_{1} onto Σ_{2} (this term being used in the obvious sense) which commutes with the action of G, i.e., which is such that the diagram

is commutative for each $g \in G$.

Given a group G and two subgroups A and B of G, an incidence system $\pi(G, A, B)$ can be constructed by taking as points the left cosets $A x$ of G modulo A and as lines the left cosets $B y$ of G modulo B. The point $A x$ and line $B y$ are to be taken as incident if the cosets $A x$ and $B y$ have an element in common. Replacing left cosets by right cosets produces an isomorphic incidence system.

There is a natural representation * of G on $\pi(G, A, B)$ which associates with each $g \in G$ the collineation g^{*} sending the point $A x$ onto the point $A x g$ and the line $B y$ onto the line Byg. The kernel of this representation is the maximum normal subgroup of G contained in the intersection of A and B. If N is any normal subgroup of G contained in $A \cap B$, there is clearly a representation of G on $\pi(G / N, A / N, B / N)$ which is equivalent to ${ }^{*}$.

If a point $A x$ and line $B y$ are incident, there is an element g in $A x \cap B y$. Hence $A x=A g=A g^{*}$ and $B y=B g=B g^{*}$. This means that G^{*} is transitive on the configurations consisting of an incident point and line. Let us call a group of collineations of an incidence system Σ acutely transitive if it is transitive on the configurations consisting of an incident point and line. A representation θ of a group G on Σ will be called acutely transitive if $\theta(G)$ is acutely transitive. Using this terminology we have the first part of

Lemma 1. Given a group G with subgroups A and B, the natural representation of G on the incidence system $\pi(G, A, B)$ is acutely transitive. Conversely, any acutely transitive representation θ of a group G on an incidence system Σ is equivalent to the natural representation of G on $\pi(G, A, B)$, where A and B are the subgroups of G such that $\theta(A)$ and $\theta(B)$ fix respectively a point and a line incident with it.

The second part is equally easy since acute transitivity implies transitivity on points and lines in view of the properties (a) and (b) assumed for incidence systems. Hence, by choosing a point P and a line L which are incident, and letting A and B be the subgroups of G such that $\theta(A)$ and $\theta(B)$ fix P and L respectively, an isomorphism of Σ onto $\pi(G, A, B)$ with the required property is obtained by mapping $P x$ onto $A x$ and $L y$ onto $B y$ for each x, y in G.

In the rest of this section θ will denote an acutely transitive representation of a group G on an incidence system Σ, and A and B will denote the subgroups of G such that $\theta(A)$ and $\theta(B)$ fix respectively a point P and a line L through P. If X is a point or line of Σ and g is an element of G, we will write $X g$ for the image of X under the collineation $\theta(g)$. We observe now some simple correspondences between the structure of the group G relative to the subgroups A and B, and properties of the incidence system Σ.

Because of the choice of A and B, the lines through P are those of the form $L a$ with $a \in A$, and two such lines $L a$ and $L a^{\prime}$ are equal if and only if $a \equiv a^{\prime}(\bmod A \cap B) . \quad$ Similarly, the points on the line L are those of the form $P b$ with $b \in B$, and $P b=P b^{\prime}$ if and only if $b \equiv b^{\prime}(\bmod A \cap B)$. Since $\theta(G)$ is transitive on the points and lines of Σ, we therefore have

Lemma 2. Each point of Σ lies on $h=A: A \cap B$ lines, and each line of Σ carries $k=B: A \cap B$ points. The number v of points of Σ is given by $v=G: A$, and the number b of lines by $b=G: B$.

Next we have
Lemma 3. Any two points of Σ lie on a line if and only if $G=A B A$.
Proof. Assume that any two points lie on a line, and let x be an element of G. The points P and $P x$ lie on a line M. Since P is on $M, M=L a, a \in A$, and since $P x$ is on $M, M=L a^{\prime} x, a^{\prime} \in A$. Hence $a \equiv a^{\prime} x(\bmod B), x=a^{\prime-1} b a$, $b \in B$, and hence $G=A B A$.

Conversely, assume that $G=A B A$, and let Q be any point. Then $Q=P x$, $x \in G$, and $x=a^{\prime} b a, a^{\prime}, a \in A, b \in B$. Hence $Q=P a^{\prime} b a=P b a$ lies on the line $L b a=L a$, and so does P. That any two points lie on a line now follows from the fact that $\theta(G)$ is transitive on the points.

Lemma 4. Two distinct points of Σ lie on at most one line (i.e., Σ is a partial plane) if and only if $A B \cap B A=A+B$.

Proof. First assume that Σ is a partial plane, and suppose that $a^{\prime} b=b^{\prime} a$ with a^{\prime}, a in A and b, b^{\prime} in B. Write $x=a^{\prime} b=b^{\prime} a$. The line $L a$ contains the point P and also the point $P x=P b^{\prime} a$. Moreover, P and $P x=P a^{\prime} b=P b$ are points of L. If $x \notin A, P x \neq P$, and hence, since Σ is a partial plane, $L a=L$. Hence $a \in B$ and $x=b^{\prime} a \in B$.

Conversely, assume that $A B \cap B A=A+B$. Let Q be a point $\neq P$ of L, and let M be a line through P. Then $Q=P b, b \in B, b \notin A$, and $M=L a, a \in A$. If M passes through $Q, M=L a^{\prime} b, a^{\prime} \in A$, and hence there exists $b^{\prime} \in B$ such that $b^{\prime} a=a^{\prime} b$. Since $b \notin A$, it follows that $a^{\prime} b \notin A$, and hence by our assumption, that $b^{\prime} a \in B$. Hence $a \in B$ and $M=L a=L$. Thus L is the only line through P and $Q \neq P$ on L. It follows from the acute transitivity of $\theta(G)$ that no two points of Σ can have more than one line in common.

3. Representations on 2-designs

An incidence system in which the number of points and lines is finite will be called a 2 -design of type (h, k) if
(1) each point lies on the same number $h \geqq 2$ of lines,
(2) each line contains the same number $k \geqq 2$ of points, and
(3) each pair of points lies on exactly one line.

If v is the number of points and b the number of lines, it is easy to see that

$$
v=h(k-1)+1 \quad \text { and } \quad v h=b k .
$$

Clearly $h \geqq k$. Moreover, $h=k$ if and only if the 2 -design is a finite projective plane of order $n=h-1$. (This is well known; see for example [5].)

A group possessing subgroups A and B such that
(i) $G=A B A$,
(ii) $A B \cap B A=A+B$, and
(iii) $A \nsubseteq B$ and $B \nsubseteq A$
will be called a geometric ABA-group. According to Lemmas 1 through 4 we have at once

Proposition 1. A finite group G admits an acutely transitive representation on a 2-design if and only if G is a geometric ABA-group.

More precisely, if G is a geometric ABA-group, then the incidence system $\pi(G, A, B)$ is a 2-design, and the natural representation is acutely transitive.

Conversely, given an acutely transitive representation θ of G on a 2 -design Σ, let A and B be the subgroups of G such that $\theta(A)$ and $\theta(B)$ fix an incident point and line respectively. Then the kernel of θ is the largest normal subgroup of G contained in $A \cap B, G$ is a geometric ABA-group, and θ is equivalent to the natural representation of G on $\pi(G, A, B)$. The type of Σ is (h, k) where

$$
h=A: A \cap B \quad \text { and } \quad k=B: A \cap B,
$$

and the number v of points of Σ is $G: A=h(k-1)+1$. In order that $\theta(G)$ be doubly transitive on the points of Σ it is necessary and sufficient that $G=A+A x A, x \in G$.

Concerning the final statement of Proposition 1, the condition that G be doubly transitive on its cosets modulo A is well known to be equivalent to the condition that the number of double cosets of G with respect to A be 2 .

Proposition 1 enables us to pass freely from group-theoretic to synthetic considerations in the study of geometric $A B A$-groups, and to state our results in either group-theoretic or geometric form.

To obtain a first indication of the extent of the class of geometric $A B A$ groups let us observe that a 2 -design of type ($h, 2$) may be considered simply as a set of $v \geqq 3$ points, the lines being all pairs of points. An acutely transitive group on such a 2 -design is simply a doubly transitive group on the points. Thus by Proposition 1 we have

Proposition 2. A group G has a homomorphic image which is a doubly transitive group of degree $\geqq 3$ if and only if G is a geometric $A B A$-group with $B: A \cap B=2$.

Next we prove two propositions which are very useful in analyzing the structure of geometric $A B A$-groups. First, an acutely transitive group need not be doubly transitive, as we shall see, but it is easy to prove

Proposition 3. An acutely transitive group G of collineations of a 2-design Σ is primitive on the points of Σ.

Proof. Assume that G is imprimitive, and consider a partition of the points of Σ into imprimitive classes. From the acute transitivity of G it follows that each line of Σ meets each imprimitive class of points in 0 or t points, where t is a fixed number $\neq 1$. If P is a point of an imprimitive class C of points, each of the h lines through P meets C in t points, and every point $\neq P$ of C lies on exactly one of these lines. Hence the number v_{C} of points in C is given by

$$
v_{C}=h(t-1)+1
$$

The number v of points of Σ is equal to $g v_{C}$, where g is the number of imprimitive classes of points. Hence, since $v=h(k-1)+1$, we have

$$
h(k-1)+1=g[h(t-1)+1]
$$

which implies that

$$
h[(k-1)-g(t-1)]=g-1
$$

Since $g \geqq 2$, this implies that

$$
h \leqq g-1<g<k
$$

contrary to the fact that $h \geqq k$.
Corollary. In a geometric ABA-group, A is a maximal subgroup.
Note that an acutely transitive group need not be primitive on the lines. For example, the full collineation group of a Desarguesian affine plane is certainly acutely transitive, and the pencils of parallel lines constitute imprimitive classes of lines.

Secondly, we have
Proposition 4. Let G be an acutely transitive group of collineations of a 2-design Σ, and let H be a normal subgroup of G such that
(a) H contains an element $\neq 1$ fixing a point, and
(b) no element $\neq 1$ of H fixes an incident point and line.

Then H is a Frobenius group whose Frobenius kernel M is an elementary abelian normal subgroup of G, transitive on the points of Σ.

Proof. Choose a point P and a line L which are incident, and denote by G_{P} and G_{L} respectively the subgroups of G fixing P and L. If $H \subseteq G_{P}$, then, since H is normal in G, it is contained in every conjugate of G_{P}, and therefore fixes every point. But $H \neq 1$; hence $H \nsubseteq G_{P}$.

By Proposition 3, G_{P} is a maximal subgroup of G, and hence $G=H G_{P}$; it follows that H is transitive on the points of Σ. An element $\neq 1$ of H fixing two points would fix an incident point and line, contrary to hypothesis. Hence H is a Frobenius group whose Frobenius kernel M is regular and transitive on the points of Σ. Moreover $H=M\left(H \cap G_{P}\right)$ and $1=M \cap G_{P}$.

Since M is a characteristic subgroup of H, it is normal in G. Moreover, since G_{P} is maximal in $G, G=M G_{P}$. If N is a characteristic subgroup $\neq 1$ of M, N is normal in G and $G=N G_{P}$. Since $M \cap G_{P}=1$, we must have $N=M$. By Thompson's theorem [13] M is nilpotent, and therefore M is elementary abelian.

Corollary. Under the hypotheses of Proposition 4, the number v of points of $\mathrm{\Sigma}$ is a prime power.

We shall see later ($\S 6$) that in case Σ is a Desarguesian projective plane of order n, we must have $n=2$ or 8 in the situation of Proposition 4. However, there exist proper normal subgroups of the full collineation groups of many
affine planes, which satisfy conditions (a) and (b) of Proposition 4, and which are not acutely transitive.

We include the following proposition which may be proved by only a slight modification of the method used by Gorenstein in proving Theorem 4 of [4].

Proposition 5. Under the hypotheses of Proposition 4, if $G_{P} \cap H$ has even order, then the order of $G_{L} \cap H$ is 1 or 2.

Proof. First note that since $G_{P} \cap G_{L} \cap H=1$, we have
(1) If $a b=b^{\prime} a^{\prime}, a, a^{\prime}$ in $G_{P} \cap H, b, b^{\prime}$ in $G_{L} \cap H$, then $a=a^{\prime}=1$ or $b=b^{\prime}=1$.

Now assume that the order of $G_{P} \cap H$ is even, and let a_{0} be an element of order 2 in this subgroup. Then $x \sigma=a_{0}^{-1} x a_{0}$ for $x \in M$ defines an automorphism σ of order 2 of M, having no fixed elements $\neq 1$. By Proposition 4 (or directly in this case by a result of Burnside) M is abelian, and hence $x(x \sigma)$ is fixed by σ. Hence $x(x \sigma)=1$, i.e., $x a_{0}^{-1} x a_{0}=1$ or
(2) $\quad x a_{0}=a_{0} x^{-1} \quad$ for any $x \in M$.

A consequence of (1) and (2) is that
(3) $G_{L} \cap M=1$.

For, if $x \in G_{L} \cap M$, (2) gives $x a_{0}=a_{0} x^{-1}$, and hence, since $a_{0} \neq 1$, (1) gives $x=1$.

Since $H=\left(G_{P} \cap H\right) M$, each $b \neq 1$ in $G_{L} \cap H$ can be written as $b=a x$ with $a \in G_{P} \cap H$ and $x \in M$, where $a \neq 1$ by (3). The automorphism τ of M defined by $x \tau=a^{-1} x a$ for $x \in M$ has no fixed points $\neq 1$. Let d be the order of a, then

$$
b^{d-1}=(a x)^{d-1}=a^{-1}\left(x\left[\tau^{d-2}+\tau^{d-3}+\cdots+1\right]\right)=a^{-1} x^{\prime}
$$

where $x^{\prime} \in M$ is such that $\left(x \tau^{-1}\right) x^{\prime}$ is fixed by τ^{-1}. Hence $\left(x \tau^{-1}\right) x^{\prime}=1$, $x^{\prime}=\left(x \tau^{-1}\right)^{-1}$, and hence $b^{d-1}=a^{-1}\left(x \tau^{-1}\right)^{-1}$, whence by (2),

$$
b^{d-1} a_{0}=a^{-1} a_{0}\left(x \tau^{-1}\right)
$$

But $x \tau^{-1}=a x a^{-1}=b a^{-1}$, so $b^{d-1} a_{0}=a^{-1} a_{0} b a^{-1}$, and hence $b^{d-1} a_{0} a=a^{-1} a_{0} b$. Since $b \neq 1$, (2) implies that $a=a_{0}$. Hence each $b \neq 1$ in $G_{L} \cap H$ can be written in the form $b=a_{0} x, x \in M$. If $b_{1} \in G_{L} \cap H, b_{1} \neq 1, b_{1}=a_{0} y, y \in M$, then $b^{-1} b_{1}=x^{-1} y \in G_{L} \cap M$. Hence by (3), $b_{1}=b$, and therefore $G_{L} \cap H$ has order at most 2 .

It may be pointed out that, as the subgroup fixing a letter in the Frobenius group H, the subgroup $G_{L} \cap H$ has a completely known structure [12].

4. Acutely regular representations

A group of collineations of an incidence system Σ will be called acutely regular if it is acutely transitive and no element $\neq 1$ fixes an incident point and
line. A representation θ of a group G on $\boldsymbol{\Sigma}$ will be called acutely regular if $\theta(G)$ is acutely regular. Let A and B be the subgroups of G such that $\theta(A)$ and $\theta(B)$ fix respectively a point and a line through it. Then clearly θ is acutely regular if and only if $\theta(A) \cap \theta(B)=1$. Hence by Proposition 1, we have

Proposition 6. A finite group G admits an acutely regular representation on a 2-design if and only if it is a geometric ABA-group such that $A \cap B$ is a normal subgroup of G.

It is easily seen that a geometric $A B A$-group satisfies the condition $A \cap B=1$ if and only if it is an independent $A B A$-group in the sense of Gorenstein [4]. Hence, according to Proposition 6, the independent $A B A$-groups are precisely the groups isomorphic to acutely regular groups of collineations of 2-designs. Applying Propositions 2 through 5 we obtain the following results for an independent $A B A$-group G :
(1) G is a Frobenius group with A as maximal subgroup and with Frobenius kernel M an elementary abelian group such that $G=A M, 1=A \cap M$. The order of G is $h(k-1)+1$, where $h=A: 1$ and $k=B: 1$.
(2) If the order of A is even, then the order of B is 2 , and G is a doubly transitive group in which no element $\neq 1$ fixes two letters.

The groups in (2) have been completely classified (cf. [5, Theorem 20.7.1]). These results coincide with results of Gorenstein [4].

5. Representations on projective planes

The rest of this paper is mainly concerned with acutely transitive groups on finite projective planes. The correspondence between planes admitting such groups and a certain class of geometric $A B A$-groups is given by

Proposition 7. The following conditions concerning a finite group G are equivalent:
(1) G admits a sharply transitive representation on a finite projective plane.
(2) G is a geometric $A B A$-group such that $A: A \cap B=B: A \cap B \geqq 3$.
(3) G possesses subgroups A and B such that
(a) $G=A B A=B A B$,
(b) $A B \cap B A=A+B$, and
(c) $G: A \geqq 2$ and $A: A \cap B \geqq 3$.

Proof. The equivalence of (1) and (2) is an immediate consequence of Proposition 1 together with the fact that the 2-designs of type (h, h) with $h \geqq 3$ are precisely the projective planes of order $n=h-1$.

Assume (1). Then (a) and (b) of (3) follow from Lemmas 3 and 4 and their duals, while (c) is a consequence of the existence of a quadrangle in a projective plane. Reversing the argument we obtain that (3) implies that
$\pi(G, A, B)$ is a projective plane and hence that (3) implies (1), completing the proof of the proposition.

It is worth noting that finiteness did not enter into the proof of the equivalence of (1) and (3).

A finite group satisfying the equivalent conditions (1) through (3) of Proposition 7 will be called a projective $A B A$-group. By Propositions 3 and 7 we have

Proposition 8. An acutely transitive group of collineations of a finite projective plane is primitive on the points and on the lines. Equivalently, in a projective $A B A$-group the subgroups A and B are maximal.

According to the Ostrom-Wagner theorem [7; Theorem 5], if a group of collineations of a finite projective plane is doubly transitive on the points, then the plane is Desarguesian and the group contains the little projective group. Hence by Propositions 1 and 7 we have

Proposition 9. A finite group G admits a representation θ on a finite Desarguesian projective plane such that $\theta(G)$ contains the little projective group if and only if G is a geometric $A B A$-group such that $G=A+A x A$.

An application of this result is given in $\S 8$.
It is natural to ask whether the condition $G=A+A x A$ is needed in Proposition 8. Equivalently we have the following two questions:
(a) Is a finite projective plane admitting an acutely transitive group of collineations necessarily Desarguesian?
(b) Does an acutely transitive group of collineations of a Desarguesian projective plane necessarily contain the little projective group?

In the rest of this section we answer (a) affirmatively for certain special odd orders, and show that (b) holds for any Desarguesian plane of odd order. Sections 6 and 7 are devoted to showing that there are precisely two exceptions to (b) in the case of even order Desarguesian planes. We begin by proving

Lemma 5. An acutely transitive group G of collineations of a projective plane π of odd order n has nonabelian 2-Sylow subgroups.

Proof. Since n is odd and $n+1$ divides the order of G, a 2-Sylow subgroup T of G is $\neq 1$. Suppose T is abelian, and let S be a subgroup of T maximal with respect to the property that the fixed elements of S form a subplane π_{0} of π. Then $S \neq T$; otherwise $T \subseteq G_{P} \cap G_{L}$ for any incident point P and line L of π_{0}, contrary to the fact that $2 \mid n+1$ and $n+1=G_{P}: G_{P} \cap G_{L}$. Hence there exists φ in $T, \varphi \notin S$, such that $\varphi^{2} \in S$, and then φ induces a collineation φ^{*} of order 2 on π_{0}. If φ^{*} fixes a subplane of π_{0} pointwise, so does $\langle S, \varphi\rangle$, contrary to the maximality of S. Hence, by a theorem of Baer (cf. [5 ; Theorem 20.9.7]), φ^{*} is a perspectivity on π_{0}. Let T_{1} be a 2-Sylow subgroup of G containing $\langle S, \varphi\rangle$ and contained in G_{Q}, where Q is a point on the
axis of φ^{*}. Since T_{1} is abelian, each ψ in T_{1} permutes the fixed points of φ and hence fixes the axis M of φ^{*}. Hence $T_{1} \subseteq G_{M} \cap G_{Q}$, which is impossible.

Using this lemma we prove first
Proposition 10. Let π be a finite projective plane of odd order n such that either
(i) n is not a square, or
(ii) $n=n_{0}^{2} \quad$ with $\quad n_{0} \equiv-1 \quad(\bmod 4)$.

If π admits an acutely transitive group G, then π is Desarguesian, and G contains the little projective group.

Proof. If n is not a square, the result follows from a theorem of Wagner [14; Theorem 3]. Assume that $n=n_{0}^{2}$ with $n_{0} \equiv-1(\bmod 4)$, and assume that π admits no perspectivities. Then, if φ is an element of order 4 in G, the above-mentioned theorem of Baer implies that the fixed elements of φ^{2} constitute a subplane π_{0} of order $n_{0} . \varphi$ permutes the fixed points of φ^{2}, and hence permutes the $N_{0}=\left(n^{2}+n+1\right)-\left(n_{0}^{2}+n_{0}+1\right)$ points of π not in π_{0}. Since φ^{2} fixes no point not in π_{0}, each transitive class under $\langle\varphi\rangle$ contains 4 points, and we must have $N_{0} \equiv 0(\bmod 4)$. But $n_{0} \equiv-1(\bmod 4)$ implies $N_{0} \equiv 2(\bmod 4)$, giving a contradiction. Hence G contains no element of order 4 , contrary to Lemma 5.

As a second application of Lemma 5 we have
Proposition 11. An acutely transitive group G of collineations of a finite Desarguesian projective plane π of odd order necessarily contains the little projective group.

Proof. Let T be a 2-Sylow subgroup of G, and let Λ be the full group of projectivities of π. Since π has odd order, $T \neq 1$. If T contains no homologies, then $T \cap \Lambda=1$; otherwise an element of order 2 in $T \cap \Lambda$ would be a homology. Hence T is cyclic, contrary to Lemma 5 . Therefore T contains homologies, and G contains the little projective group by a theorem of Wagner [14].

6. Acutely regular projective planes

In this section we wish to establish the following
Proposition 12. Let G be an acutely transitive group of collineations of a Desarguesian projective plane π of finite order n. If G contains a normal subgroup H such that H contains an element $\neq 1$ fixing a point, but no element $\neq 1$ in H fixes an incident point and line, then G is acutely regular and either
(i) $n=2$ and G has order $3 \cdot 7$, or
(ii) $n=8$ and G has order $9 \cdot 73$.

For the proof we need some information about projectivities cyclic on the points of a Desarguesian projective plane π. According to a theorem of Singer [8], π always admits such a projectivity; one may be obtained as follows
[9]. The order n of π is a prime power, $n=p^{r}$. Let K be a field of n elements, and let L be an extension of K of degree 3 . We may identify the points of π with the one-dimensional subspaces of L considered as a vector space over K, and the lines with the two-dimensional subspaces. Multiplication by a primitive root w in L effects a linear transformation W of L over K, and hence induces a projectivity ω of π; it can be shown that ω permutes the points of π cyclically. We shall refer to a projectivity ω of π obtained in this way as a Singer cycle on π.

We need to determine the normalizer of a Singer cycle ω on π. Let \mathfrak{A} denote the automorphism group of the field L. Each $A \in \mathfrak{A}$ may be considered as a nonsingular semilinear transformation of L considered as a vector space over K, and hence induces a collineation α of π. If $w A=w^{t}$, then for $x \in L$,

$$
x\left(A^{-1} W A\right)=\left[\left(x A^{-1}\right) w\right] A=x(w A)=x w^{t}=x W^{t}
$$

Hence $A^{-1} W A=W^{t}$, A normalizes $\langle W\rangle$, and α normalizes $\langle\omega\rangle$. Thus if $\overline{\mathfrak{U}}$ denotes the image of \mathfrak{H} in the group of collineations of π, the normalizer of $\langle\omega\rangle$ contains $\overline{\mathfrak{M}}$.

On the other hand, let τ be a collineation of π normalizing $\langle\omega\rangle$, and let T be a nonsingular semilinear transformation of L over K inducing τ. Since $\tau^{-1} \omega \tau=\omega^{a}, T^{-1} W T=\lambda W^{a}$ with $\lambda \neq 0$ in K. Write $\lambda=w^{b}$; then $T^{-1} W T=W^{a+b}$. Now $1 T=w^{c}$ for some c; let $T^{*}=T W^{-c}$. Then $1 T^{*}=1$ and $T^{*-1} W T^{*}=W^{a+b}$. Hence $T^{*}=W^{-1} T^{*} W^{a+b}$, and

$$
w T^{*}=1 T^{*} W^{a+b}=w^{a+b}
$$

It follows by induction that for any s,

$$
w^{s} T^{*}=\left(w^{a+b}\right)^{s}=\left(w T^{*}\right)^{s}
$$

and hence that T^{*} is a field automorphism of L. Denoting by τ^{*} the collineation of π induced by T^{*} we have $\tau^{*}=\tau \omega^{-c}$, so $\tau=\tau^{*} \omega^{c}$. We have proved that the normalizer of $\langle\omega\rangle$ is equal to $\overline{\mathscr{M}}\langle\omega\rangle$. Certainly $\overline{\mathfrak{A}} \cap\langle\omega\rangle=1$, for if $A \in \mathfrak{A}$ induces ω^{t} for some t, then there is a $\lambda \neq 0$ in K such that $x A=\lambda \cdot x w^{t}$ for all $x \epsilon L$. Hence $1=1 A=\lambda w^{t}$, and therefore $x A=x$ and $A=1$. Moreover \mathfrak{H} and $\overline{\mathfrak{H}}$ are isomorphic, for, if $A \in \mathfrak{H}$ induces the identity collineation of π, there is a $\mu \neq 0$ in K such that $x A=\mu x$ for all $x \in L$. Then $1=1 A=\mu, x A=x$, and $A=1$.

The essential conclusion from the above discussion for our purposes is
Lemma 6. Given a Singer cycle ω on a Desarguesian projective plane π of order $n=p^{r}$, p prime, the index of $\langle\omega\rangle$ in its normalizer in the full collineation group of π is $3 r$.

Now we can give a
Proof of Proposition 12. If n is odd, Proposition 10 implies that G contains
the little projective group Π. We cannot have $I \subseteq \subseteq H$, since no element $\neq 1$ of H is to fix an incident point and line. Hence, since Π is simple, $H \cap \Pi=1$, which implies that every element of H commutes with every element of Π. By assumption there is an $h \neq 1$ in H fixing a point P, and P must be the only fixed point of h. Hence every element of Π fixes P, which is impossible. Therefore n is even, $n=2^{r}$.

By Proposition 4, G contains an elementary abelian normal subgroup M transitive on the points of π. The order of M is, on the one hand, equal to the number $n^{2}+n+1$ of points of π, and on the other hand, a prime power, q^{α}. Thus $n^{2}+n+1=q^{\alpha}$, which implies that $\alpha=1$ and $n^{2}+n+1=q$ since n is a 2-power. It follows that q exactly divides the order of the full collineation group Γ of π, and hence that M is a q-Sylow subgroup of Γ. Hence M is conjugate to the subgroup $\langle\omega\rangle$ generated by a Singer cycle ω, and we may assume that $M=\langle\omega\rangle$ and that G normalizes $\langle\omega\rangle$. But $G: M=s(n+1)$, where s is the order of the subgroup of G fixing an incident point and line. Hence by Lemma $6, s(n+1)$ divides $3 r$, and we must have $s=1, n=2$ or 8 , proving the proposition.

Corollary. The only finite Desarguesian projective planes admitting acutely regular groups are those of orders 2 and 8.

That the planes of orders 2 and 8 actually admit acutely regular groups is readily seen; their abstract structure is the following:

$$
G=\langle x, \alpha\rangle, \quad x^{N}=1, \quad \alpha^{-1} x \alpha=x^{2}
$$

where $N=7$ if $n=2$, and $N=73$ if $n=8$. These groups are independent projective $A B A$-groups, and are the only ones giving rise to Desarguesian projective planes.

According to $\S 4$, the order of A in an independent $A B A$-group must be odd, and hence a finite projective plane admitting an acutely regular group must have even order n. Moreover, the Frobenius kernel is elementary abelian, and transitive on the points, so the number $n^{2}+n+1$ of points must be a primé power, and a prime if n is a power of 2 . The three smallest possible values of n not ruled out by the Bruck-Ryser theorem [5] are $n=2,8$, and 18 . The planes of orders 2 and 8 admit acutely regular groups. Bruck showed in [2] that no plane of order 18 can exist which admits a regular transitive abelian group. Hence there is no plane of order 18 admitting an acutely regular group.

If a finite projective plane admits an acutely regular group with cyclic Frobenius kernel M, M must have prime order. It is easily seen that the planes of this type are precisely the cyclic planes generated by the perfect residue difference sets studied by E. Lehmer [6]. Hence the above corollary can be restated: The only Desarguesian projective planes generated by perfect residue difference sets are those of orders 2 and 8. The next 2-power
value of n after 8 such that $n^{2}+n+1$ is a prime is $n=512$, giving $n^{2}+n+1=262657$. A computation [6] showed that no perfect residue difference set exists for this value.

7. Acutely transitive groups on Desarguesian projective planes

The little projective group of a Desarguesian projective plane is doubly transitive and hence certainly acutely transitive. Therefore the following theorem completes the determination of the acutely transitive groups of collineations of finite Desarguesian projective planes.

Theorem 1. An acutely transitive group G of collineations of a finite Desarguesian projective plane π of order n contains the little projective group with precisely two exceptions, namely the acutely regular groups on the planes of orders 2 and 8.

For the proof we need
Lemma 7. The order of a nontrivial finite permutation group in which no element $\neq 1$ fixes two letters has a factor $\neq 1$ in common with the degree of G.

Proof. Let G be a permutation group of the m letters $1,2, \cdots, m$, and let G_{i} be the subgroup of G fixing the letter i. Since no element $\neq 1$ of G fixes two letters, $G_{i} \cap G_{j}=1$ for $i \neq j$. Assume that the order of G is prime to its degree m. If $g \epsilon G$ does not belong to any G_{i}, then the cycles of g all have length >1. If t is the length of the shortest cycle in g, then g^{t} fixes at least t letters; hence $g^{t}=1$, and every cycle has length t. Hence t divides the order of G and the degree m of G, whence $t=1$, a contradiction. Hence each $g \in G$ belongs to some G_{i}, and the subgroups G_{1}, \cdots, G_{m} constitute a partition of G. Since every conjugate of a G_{i} is a G_{j}, and $G_{i} \cap G_{j}=1$ for $i \neq j$, it follows that each G_{i} is its own normalizer, and hence that the partition is trivial by a result of Baer [1]. This means that $m=1$, contrary to the assumption that G be nontrivial.

Proof of Theorem 1. According to Proposition 11, if the order n of π is odd, G contains the little projective group. We therefore assume that n is a 2 -power, $n=2^{r}$. Let $K=\Lambda \cap G_{P} \cap G_{L}$, where Λ is the group of projectivities of π, and G_{P} and G_{L} are the subgroups of G fixing respectively a point P and a line L through P. If $K=1$, consider $H=G \cap \Lambda ; H$ is a normal subgroup of G and

$$
H \cap G_{P} \cap G_{L}=\Lambda \cap G_{P} \cap G_{L}=1
$$

If $H \subseteq G_{P}$, then H fixes every point, so $H=1$ and $G: 1$ divides r, which is clearly impossible. Hence $H \nsubseteq G_{P}$, and $G=G_{P} H$ since G_{P} is maximal. If $G_{P} \cap H=1$, then $G: H=G_{P}: 1$, a multiple of $n+1$, while on the other hand, $G: H=G:(G \cap \Lambda)=G \Lambda: \Lambda$, a divisor of r, implying that $n+1$ divides r, which is impossible. Therefore $H \cap G_{P} \neq 1$, and we infer from Proposition 12 that $n=2$ or 8 and G is acutely regular.

Finally, assume that $K \neq 1$, and regard K as a permutation group on the n points $\neq P$ of L. If there is an element $\neq 1$ of K fixing every point of L, this element must be a perspectivity, and G contains the little projective group by [14; Theorem 3]. We assume therefore that K is faithful on the points $\neq P$ of L. If an element $\neq 1$ of K fixes two of these points, it must be the identity since $K \subseteq \Lambda$. Hence Lemma 7 implies the existence of an element of order 2 in K. By Baer's theorem this must be an elation, and hence G contains the little projective group.

8. Bruhat decompositions

In [10, 11], Steinberg showed that each of the simple groups obtained by Chevalley [3] and Steinberg [11] admits what we shall call a Bruhat decomposition. Precisely, we shall say that a group G admits a Bruhat decomposition with Weyl group \mathfrak{W} if it possesses subgroups U, H, and W satisfying the following conditions (a) through (j).
(a) H normalizes U.
(b) H is a normal subgroup of W.
(c) $W / H \cong \mathfrak{W}$ is a finite group.
(d) For each $w \in \mathfrak{F}, U$ has subgroups U_{w}^{\prime} and $U_{w}^{\prime \prime}$ such that $U=U_{w}^{\prime} U_{w}^{\prime \prime}$.

For each $w \in \mathfrak{B}$, choose a representative $\omega(w)$ in W.
(e) $\quad \omega(w) U_{w}^{\prime} \omega(w)^{-1} \subseteq U$.
(f) $G=\sum_{w \in \mathfrak{w}} H U \omega(w) U_{w}^{\prime \prime}$, and in the representation $g=h u \omega(w) u^{\prime \prime}$, $h \in H, u \in U, w \in \mathfrak{W}$ and $u^{\prime \prime} \in U_{w}^{\prime \prime}$, each factor is unique.
(g) There is a distinguished set \mathfrak{F} of elements of \mathfrak{W} of period 2 which generates \mathfrak{W}.
(h) For $w \in \mathfrak{F}, H U+H U \omega(w) U_{w}^{\prime \prime}$ is a subgroup of G.
(i) For $w \in \mathfrak{F}$ and $s \in \mathfrak{B}, U_{w}^{\prime \prime} \nsubseteq U_{s}^{\prime}$ implies $U_{w}^{\prime \prime} \subseteq U_{s w}^{\prime}$.
(j) There is an $x \in U$ such that $x \in U_{w}^{\prime}$ implies $w=1$.

The group $\mathrm{PSL}_{3}(q)$, i.e., the little projective group of the Desarguesian projective plane of order q, admits a Bruhat decomposition with the symmetric group S_{3} of degree 3 as Weyl group. This is the only finite simple group with this property, for we can prove

Theorem 2. A finite group G admitting a Bruhat decomposition with the symmetric group of degree 3 as Weyl group has a representation θ on a finite Desarguesian projective plane such that $\theta(G)$ contains the little projective group. Hence if G is simple, it is isomorphic with $P S L_{3}(q)$ for some q.

Proof. First, writing $\omega=\omega(w)$, we have that
(1) If $w \in \mathfrak{F}$ and x is an element $\neq 1$ of $U_{w}^{\prime \prime}$, then $\omega x \omega^{-1} \epsilon H U \omega U_{w}^{\prime \prime}$.

Otherwise, by (h) we have $\omega x \omega^{-1} \epsilon H U$. Then $\omega x \omega^{-1}=h u, h \in H, u \in U$, so that $\omega x=h u \omega$, and using (f) we see that $x=1$.

By (1), (d), and (e) we have

$$
\begin{equation*}
u \in H, \omega u \omega^{-1} \epsilon U \text { implies } u \in U_{w}^{\prime} \tag{2}
\end{equation*}
$$

Next
(3) If w and s are distinct members of \mathfrak{F}, then $U_{w}^{\prime \prime} \subseteq U_{s}^{\prime}$.

If not, then by (i), $U_{w}^{\prime \prime} \subseteq U_{s w}^{\prime}$. Choose $\omega=\omega(w)$ and $\sigma=\omega(s)$. Then $\omega(s w)=h \sigma \omega$ for some $h \epsilon H$. Then $U_{w}^{\prime \prime} \subseteq U_{s w}^{\prime}$ implies $h \sigma \omega U_{w}^{\prime \prime} \omega^{-1} \sigma^{-1} h^{-1} \subseteq U$, and hence $\omega U_{w}^{\prime \prime} \omega^{-1} \subseteq \sigma U \sigma^{-1}$ (since $\sigma^{2} \epsilon H$). Using (j) we can find $x \neq 1$ in $U_{w}^{\prime \prime}$. Applying (1) and (2) we get

$$
h_{1} u_{1} \omega v_{w}^{\prime \prime}=u_{2} \quad \text { or } \quad h_{2} u_{3} \sigma y_{s}^{\prime \prime}
$$

with $h_{i} \in H, u_{i} \in U, v_{w}^{\prime \prime} \in U_{w}^{\prime \prime}$, and $y_{s}^{\prime \prime} \in U_{s}^{\prime \prime}$. In either case we contradict (f).
Now let w and s be distinct members of \mathfrak{F}. (Since $W=S_{3}$, there must be at least two members.) Choose $\omega=\omega(w)$ and $\sigma=\omega(s)$, and set

$$
A=H U+H U \omega U_{w}^{\prime \prime}, \quad \text { and } \quad B=H U+H U \sigma U_{s}^{\prime \prime}
$$

These are subgroups of G by (h). We prove that G is a geometric $A B A$-group by establishing the conditions (3) of Proposition 7. First we must show that
(4) $G=A B A=B A B$.

Certainly $A B A$ contains the sets $H U, H U \omega U_{w}^{\prime \prime}$, and $H U \sigma U_{s}^{\prime \prime}$. Hence

$$
\begin{aligned}
H U \omega \sigma U_{w s}^{\prime \prime} & =(H U \omega)(\sigma)\left(U_{w s}^{\prime \prime}\right) \subseteq A B A \\
H U \sigma \omega U_{s w}^{\prime \prime} & =(H U)(\sigma)\left(\omega U_{s w}^{\prime \prime}\right) \subseteq A B A, \quad \text { and } \\
H U \omega \sigma \omega U_{w s w}^{\prime \prime} & =(H U \omega)(\sigma)\left(\omega U_{w s w}^{\prime \prime}\right) \subseteq A B A
\end{aligned}
$$

Consequently $G=A B A$, and by symmetry, $G=B A B$.
Next we must show that
(5) $A B \cap B A=A+B$.

Suppose that $g \in A B \cap B A$. Since $g \in A B, g$ is an element of $H U, H U \sigma U_{s}^{\prime \prime}$, $\left(H U \omega U_{w}^{\prime \prime}\right)(H U)$, or $\left(H U \omega U_{w}^{\prime \prime}\right)\left(H U \sigma U_{s}^{\prime \prime}\right)$. The first three subsets are all in $A+B$. The last is equal to $H U \omega U_{w}^{\prime \prime} \sigma U_{s}^{\prime \prime}$. We know from (3) that $\sigma U_{w}^{\prime \prime} \sigma^{-1} \subseteq U$, and hence $\sigma^{-1} U_{w}^{\prime \prime} \sigma \subseteq U$. Hence

$$
H U \omega U_{w}^{\prime \prime} \sigma U_{s}^{\prime \prime} \subseteq H U \omega \sigma U=H U \omega \sigma U_{w s}^{\prime \prime}
$$

Similarly $g \in B A$ implies $g \in A+B$ unless $g \in H U \sigma \omega U_{s w}^{\prime \prime}$. Then using (f) we have $A B \cap B A=A+B$.

To complete the proof that G is a geometric $A B A$-group we observe that, since $G \neq A$, and since $U_{w}^{\prime \prime} \neq 1$ and $A \cap B=U H$, we have
(6) $G: A \geqq 2$ and $A: A \cap B \geqq 3$.

We now infer from Proposition 7 that G admits an acutely transitive representation θ on a finite projective plane. To show that the plane is Desarguesian and that $\theta(G)$ contains the little projective group, we must show that the condition of Proposition 9 is satisfied, namely, that
(7) $G=A+A x A$.

Since $A \sigma A \supseteq U H \sigma U \supseteq U H \sigma U_{s}^{\prime \prime}$, and since $G=A B A$, we have that $G=A+A \sigma A$. This completes the proof of Theorem 2.

It is worth noting that the finiteness comes in only in the application of the Ostrom-Wagner theorem. That is, we have proved that an arbitrary group admitting a Bruhat decomposition with S_{3} as Weyl group has a homomorphic image which is a doubly transitive group of collineations of a projective plane. We have been unable to determine whether the plane is Desarguesian in the infinite case.

Bibliography

1. R. Baer, Partitionen endlicher Gruppen, Math. Zeitschrift, vol. 75 (1961), pp. 333-372.
2. R. H. Bruck, Difference sets in a finite group, Trans. Amer. Math. Soc., vol. 78 (1955), pp. 464-481.
3. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2), vol. 7 (1955), pp. 14-66.
4. D. Gorenstein, A class of Frobenius groups, Canadian J. Math., vol. 11 (1959), pp. 39-47.
5. M. Hall, The theory of groups, New York, Macmillan, 1959.
6. Emma Lehmer, On residue difference sets, Canadian J. Math., vol. 5 (1953), pp. 425-432.
7. T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Zeitschrift, vol. 71 (1959), pp. 186-199.
8. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., vol. 43 (1938), pp. 377-385.
9. E. Snapper, Periodic linear transformations of affine and projective geometries, Canadian J. Math., vol. 2 (1950), pp. 149-151.
10. R. Steinberg, Prime power representations of finite linear groups II, Canadian J. Math., vol. 9 (1957), pp. 347-351.
11. ——, Variations on a theme of Chevalley, Pacific J. Math., vol. 9 (1959), pp. 875-891.
12. M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes, Amer. J. Math., vol. 77 (1955), pp. 657-691.
13. John Thompson, Finite groups with fixed-point-free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 578-581.
14. A. Wagner, On perspectivities of finite projective planes, Math. Zeitschrift, vol. 71 (1959), pp. 113-123.

University of Michigan
Ann Arbor, Michigan

[^0]: Received August 29, 1960.
 ${ }^{1}$ Part of the work on this paper was done while the first author was supported by an Air Force contract.

