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1. Introduction

A group of collineations of an incidence system will be called acutely transi-
tive if it is transitive on the configurations consisting of an incident point and
line. By an (acutely transitive) representation of a group G on an incidence
system 2 will be meant a homomorphism of G onto an (acutely transitive)
group of collineations of 2;.

A finite incidence system will be called a 2-design if each point lies on the
same number h >_- 2 of lines, each line contains the same number lc -> 2 of
points, and each pair of points lies on exactly one line (of course, 2-designs are
special balanced incomplete block designs). In this paper we characterize the
finite groups admitting acutely transitive representations on 2-designs as the
groups G containing subgroups A and B such that

(1) G ABA,
(2) AB n BA A + B, and
(3) A B and B A.

Such a group we call a geometric ABA-group. Any doubly transitive group is
a geometric ABA-group with B:A fi B 2. We observe that an acutely
transitive group on a 2-design is necessarily primitive on the points, which
means that in a geometric ABA-group, A is a maximal subgroup.
A finite group admits an acutely transitive representation on a finite pro-

jective plane if and only if it is a geometric ABA-group satisfying

(3’) A:A n B B’A n B >= 3,

in which case we call it a projective A BA-group. By using the Ostrom-
Wagner theorem [7; Theorem 5] it is easy to see that then the additional
condition

(4) G A-k AxA
is necessary and sufficient for to be Desarguesian and O(G) to contain the
little projective group. As an application we show that a simple group satis-
fying Steinberg’s axioms [10] with the symmetric group of degree 3 as Weyl
group is necessarily a little projective group. We show that if a projective
ABA-group has A:A n B n + 1, where n is either an odd nonsquare, or
n n with no =-- -1 (mod 4), then the plane is Desarguesian, and O(G)
contains the little projective group.
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A necessary and sufficient condition that a group G be an acutely regular
group of collineations of a 2-design, in the sense that it be acutely transitive
and no element 1 fix an incident point and line, is that G be a geometric
ABA-group such that

(5) A B .
It is easy to see that this means precisely that G is an independent ABA-group
as defined by Gorenstein [4]. Using Singer’s theorem [8] we show that the
only Desarguesian proiective planes admitting acutely regular groups of col-
lineations are the planes of orders 2 and 8. It follows that these are the only
Desarguesian cyclic planes generated by perfect residue difference sets (cf. [6]).
We prove moreover that an acutely transitive group on a Desarguesian pro-
iective plane, which is not acutely regular, contains the little proiective group,
thus determining all acutely transitive collineation groups of Desarguesian
proiective planes. Our proof depends on the above-mentioned fact that
acutely transitive groups are primitive, and an application of Thompson’s
theorem [13].

2. Acutely transitive representations

An incidence system is a system consisting of two nonempty sets, the ele-
ments of one being called points and those of the other lines, together with
a relation, called incidence, which may or may not hold between a given point
and a given line. All incidence systems considered here will be assumed to
satisfy the following two conditions:

a each point is incident with at least one line, and
b each line is incident with at least one point.

In the usual way we shall use such phrases as "P lies on L" and "L passes
through P" to express the incidence of a point P and line L.
By a collineation of an incidence system 2 is meant a one-to-one mapping

of the points onto the points and the lines onto the lines which preserves inci-
dence. The collineations of 2 form a group, the collineation group of 2. By
a representation of a group G on an incidence system 2 we shall mean a homo-
morphism of G into the collineation group of 2. Two such representations
01 and 0. of G on 21 and 2;2 will be called equivalent if there is an isomorphism
of 2:1 onto 2;2 (this term being used in the obvious sense) which commutes

with the action of G, i.e., which is such that the diagram

o()

22 02(g),22
is commutative for each g e G.
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Given a group G and two subgroups A and B of G, an incidence system
r(G, A, B) can be constructed by taking as points the left cosets Ax of G
modulo A and as lines the left cosets By of G modulo B. The point Ax and
line By are to be taken as incident if the cosets Ax and By have an element
in common. Replacing left cosets by right cosets produces an isomorphic
incidence system.

There is a natural representation * of G on r(G, A, B) which associates with
each g G the collineation g* sending the point Ax onto the point Axg and
the line By onto the line Byg. The kernel of this representation is the maxi-
mum normal subgroup of G contained in the intersection of A and B. If N
is any normal subgroup of G contained in A n B, there is clearly a representa-
tion of G on (G/N, A/N, B/N) which is equivalent to *.

If a point Ax and line By are incident, there is an element g in Ax n By.
Hence Ax Ag Ag* and By Bg Bg*. This means that G* is transi-
rive on the configurations consisting of an incident point and line. Let us
call a group of collineations of an incidence system 2: acutely transitive if it is
transitive on the configurations consisting of an incident point and line. A
representation 0 of a group G on 2 will be called acutely transitive if O(G) is
acutely transitive. Using this terminology we have the first part of

LnMMA 1. Given a group G with subgroups A and B, the natural representa-
tion of G on the incidence system r(G, A, B) is acutely transitive. Conversely,
any acutely transitive representation 0 q a group G on an incidence system is
equivalent to the natural representation of G on r(G, A, B), where A and B are
the subgroups of G such that O(A and O(B) fix respectively a point and a line
incident with it.

The second part is equally easy since acute transitivity implies transitivity
on points and lines in view of the properties (a) and (b) assumed for incidence
systems. Hence, by choosing a point P and a line L which are incident, and
letting A and B be the subgroups of G such that O(A) and O(B) fix P and L
respectively, an isomorphism of 2: onto r(G, A, B) with the required property
is obtained by mapping Px onto Ax and Ly onto By for each x, y in G.

In the rest of this section 0 will denote an acutely transitive representation of a
group G on an incidence system , and A and B will denote the subgroups of G
such that O(A) and O(B) fix respectively a point P and a line L through P. If
X is a point or line of 21 and g is an element of G, we will write Xg for the
image of X under the collineation O(g). We observe now some simple cor-
respondences between the structure of the group G relative to the subgroups
A and B, and properties of the incidence system 2.

Because of the choice of A and B, the lines through P are those of the form La
with a cA, and two such lines La and La’ are equal if and only if
a --- a’ (rood A n B). Similarly, the points on the line L are those of the form
Pb with b e B, and Pb Pb’ if and only if b b’ (rood A n B). Since O(G)
is transitive on the points and lines of 2, we therefore have
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LEMMA 2. Each point of Z lies on h A :A n B lines, and each line of Z
carries k B’A n B points. The number v of points of is given by v G" A,
and the number b of lines by b G" B.
Next we have

LEMMA 3. Any two points of Z lie on a line if and only if G ABA.

Proof. Assume that any two points lie on a line, and let x be an element of
G. The points P and Px lie on a line M. Since P is on M, M La, aeA,
and since Px is on M, M La’x, a’ e A. Hence a =-- a’x (mod B), x a’-lba,
b e B, and hence G ABA.

Conversely, assume that G ABA, and let Q be any point. Then Q Px,
xeG, andx a’ba, a’, a eA, b eB. Hence Q Pa’ba Pba lies on the
line Lba La, and so does P. That any two points lie on a line now follows
from the fact that 0(G) is transitive on the points.

LEMMA 4. Two distinct points of lie on at most one line (i.e., Z is a partial
plane) if and only if AB n BA A -+- B.

Proof. First assume that 2; is a partial plane, and suppose that a’b b’a
with a’, a in A and b, b’ in B. Write x a’b b’a. The line La contains
the point P and also the point Px Pb’a. Moreover, P and Px Pa’b Pb
are points of L. If x A, Px P, and hence, since 2 is a partial plane,
La L. HenceaeBandx b’a eB.

Conversely, assume that AB n BA A d- B. Let Q be a point P of L,
and let M be a line through P. Then Q Pb, b B, b A, and M La, a e A.
If M passes through Q, M La’b, a’ A, and hence there exists b’ e B such
that b’a a’b. Since b e A, it follows that a’b A, and hence by our assump-
tion, thatb’aeB. HenceaeBandM La L. Thus L is the only line
through P and Q P on L. It follows from the acute transitivity of 0(G)
that no two points of 2 can have more than one line in common.

3. Representations on 2-designs
An incidence system in which the number of points and lines is finite will

be called a 2-design of type (h,/c) if
(1) each point lies on the same number h _-> 2 of lines,
(2) each line contains the same number/c _-> 2 of points, and
(3) each pair of points lies on exactly one line.

If v is the number of points and b the number of lines, it is easy to see that

v h(k- 1) + 1 and vh b/c.

Clearly h _-> k. Moreover, h /c if and only if the 2-design is a finite pro-
jective plane of order n h 1. (This is well known; see for example [5].)
A group possessing subgroups A and B such that

(i) G ABA,
(ii) AB n BA A + B,
(iii) A B and B A

and
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will be called a geometric ABA-group. According to Lemmas 1 through 4 we
have at once

PROPOSITION 1. A finite group G admits an acutely transitive representation
on a 2-design if and only if G is a geometric ABA-group.
More precisely, if G is a geometric ABA-group, then the incidence system

(G, A, B) is a 2-design, and the natural representation is acutely transitive.
Conversely, given an acutely transitive representation 0 of G on a 2-design 2;,

let A and B be the subgroups of G such that O(A and O( B) fix an incident point
and line respectively. Then the kernel of is the largest normal subgroup of G
contained in A n B, G is a geometric ABA-group, and 0 is equivalent to the
natural representation of G on (G, A, B). The type of Z is (h, k) where

h A’AnB and k B’AaB,
and the number v of points of 2; is G’A h( ]c 1) - 1. In order that O(G)
be doubly transitive on the points of Z it is necessary and sucient that
G A /AxA, xeG.

Concerning the final statement of Proposition 1, the condition that G be
doubly transitive on its cosets modulo A is well known to be equivalent to the
condition that the number of double cosets of G with respect to A be 2.

Proposition 1 enables us to pass freely from group-theoretic to synthetic
considerations in the study of geometric ABA-groups, and to state our results
in either group-theoretic or geometric form.
To obtain a first indication of the extent of the class .of geometric ABA-

groups let us observe that 2-design of type (h, 2) may be considered simply
as a set of v => 3 points, the lines being all pairs of points. An acutely transi-
tive group on such a 2-design is simply a doubly transitive group on the points.
Thus by Proposition 1 we have

PROPOSITION 2. A group G has a homomorphic image which is a doubly
transitive group of degree >= 3 if and only if G is a geometric ABA-group with
B’AnB=2.

Next we prove two propositions which are very useful in analyzing the
structure of geometric ABA-groups. First, an acutely transitive group need
not be doubly transitive, as we shall see, but it is easy to prove

PROPOSITION 3. An acutely transitive group G of collineations of a 2-design
E is primitive on the points of 2;.

Proof. Assume that G is imprimitive, and consider a partition of the points
of 2; into imprimitive classes. From the acute transitivity of G it follows that
each line of 2 meets each imprimitive class of points in 0 or points, where
is a fixed number 1. If P is a point of an imprimitive class C of points, each
of the h lines through P meets C in points, and every point P of C lies on
exactly one of these lines. Hence the number vc of points in C is given by

vc h(t- 1) + 1.
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The number v of points of 2: is equal to gvc, where g is the number of im-
primitive classes of points. Hence, since v h(/c 1) q- 1, we have

which implies that
h(/c- 1) + 1 g[h(t- 1) + 1]

h[(]- 1) -g(t- 1)] g- 1.

Since g > 2, this implies that

h_< g- 1 <g <1,

contrary to the fact that h => k.

COROLLARY. In a geometric ABA-group, A is a maximal subgroup.

Note that an acutely transitive group need not be primitive on the lines.
For example, the full collineation group of a Desarguesian aifine plane is cer-
tainly acutely transitive, and the pencils of parallel lines constitute imprimitive
classes of lines.

Secondly, we have

PROPOSITION 4. Let G be an acutely transitive group of collineations of a
2-design 2, and let H be a normal subgroup of G such that

a H contains an element # 1 fixing a point, and
b no element # 1 of H fixes an incident point and line.

Then H is a Frobenius group whose Frobenius kernel M is an elementary abelian
normal subgroup of G, transitive on the points of 2.

Proof. Choose a point P and a line L which are incident, and denote by
Gp and GL respectively the subgroups of G fixing P and L. If H

___
Gp, then,

since H is normal in G, it is contained in every conjugate of Gv, and therefore
fixes every point. But H # 1; hence H Gv.
By Proposition 3, Ge is a maximal subgroup of G, and hence G HG,,

it follows that H is transitive on the points of 2. An element # 1 of H fixing
two points would fix an incident point and line, contrary to hypothesis.
Hence H is a Frobenius group whose Frobenius kernel M is regular and transi-
rive on the points of 2. Moreover H M(H n G,,) and 1 M n Gv.

Since M is a characteristic subgroup of H, it is normal in G. Moreover,
since G is maximal in G,G MG,,. If N is a characteristic subgroup # 1
ofM, NisnormalinGandG NGv. SineeMnGp 1, wemusthave
N M. By Thompson’s theorem [13] M is nilpotent, and therefore M is
elementary abelian.

COROLLARY. Under the hypotheses of Proposition 4, the number v of points
of is a prime power.

We shall see later (6) that in ease 2: is a Desarguesian projective plane of
order n, we must have n 2 or 8 in the situation of Proposition 4. However,
there exist proper normal subgroups of the full eollineation groups of many
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afline planes, which satisfy conditions (a) and (b) of Proposition 4, and which
are not acutely transitive.
We include the following proposition which may be proved by only a slight

modification of the method used by Gorenstein in proving Theorem 4 of [4].

PROPOSITION 5. Under the hypotheses of Proposition 4, if Gp n H has even
order, then the order of GL n H is 1 or 2.

Proof. First note that since Ge n GL n H 1, we have

(1) If ab b’a’, a, a’ in Ge n H, b, b’ in G n H, then a a 1or
b=b’=l.

Now assume that the order of G n H is even, and let a0 be an element of
--1order 2 in this subgroup. Then x(r ao xao for x e M defines an automorphism

of order 2 of M, having no fixed elements 1. By Proposition 4 (or directly
in this case by result of Burnside) M is abelian, and hence x(xz) is fixed by

--1
a. Hence x(xa) 1, i.e., xao xao 1 or

(2) xao aox- for any x eM.

A consequence of (1) and (2) is that

(3) GnM= 1.

For, if x G n M, (2) gives xao ao x-, and hence, since a0 1, (1) gives

SinceH (GnH)M, each b linGnHcanbewrittenasb ax
with aeG nHand xeM, where a 1by (3). The automorphism rof
Mdefinedbyxr a-xaforxeMhasno fixed points 1. Let dbethe
order of a, then

be- (ax)-= a-(x[r- + r- + + 1]) a-ix’,

where x’ e M is such that (xr-)x is fixed by r Hence (xr-t)x 1,
x (xr-) -1, and hence bd-i a--I(xT--) -1, whence by (2),

b-ao a-ao(xr-).
But xr- axa- ba-, so b-ao a-ao ba-, and hence be-ao a a-ao b.
Sinceb 1, (2) implies thata a0. Hence eachb linGnHcanbe
written in the form b a0x, xeM. IfbeGnH, b 1, b a0y, yeM,
then b-bt x-yeGc n M. Hence by (3), b b, and therefore Gn H
has order at most 2.

It may be pointed out that, as the subgroup fixing a letter in the Frobenius
group H, the subgroup G n H has a completely known structure [12].

d. Acutelg regular representations

A group of collineations of an incidence system Z will be called acutely
regular if it is acutely transitive and no clement 1 fixes an incident point and
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line. A representation 0 of a group G on 21 will be called acutely regular if
0(G) is acutely regular. Let A and B be the subgroups of G such that O(A
and O(B) fix respectively a point and a line through it. Then clearly 0 is
acutely regular if and only if O(A) n O(B) 1. Hence by Proposition 1, we
have

PnOPOSITO 6. A finite group G admits an acutely regular representation on
a 2-design if and only if it is a geometric ABA-group such that A n B is a normal
subgroup of G.

It is easily seen that a geometric ABA-group satisfies the condition
A n B 1 if and only if it is an independent ABA-group in the sense of Goren-
stein [4]. Hence, according to Proposition 6, the independent ABA-groups
are precisely the groups isomorphic to acutely regular groups of collineations
of 2-designs. Applying Propositions 2 through 5 we obtain the following
results for an independent ABA-group G"

(1) G is a Frobenius group with A as maximal subgroup and with Frobenius
lernel M an elementary abelian group such that G AM, 1 A n M. The
order of G is h k 1) + 1, where h A" l and k B" I.

(2) If the order of A is even, then the order of B is 2, and G is a doubly transi-
rive group in which no element i fixes two letters.

The groups in (2) have been completely classified (cf. [5, Theorem 20.7.1]).
These results coincide with results of Gorenstein [4].

5. Representations on projective planes

The rest of this paper is mainly concerned with acutely transitive groups on
finite projective planes. The correspondence between planes admitting such
groups and a certain class of geometric ABA-groups is given by

PROPOSITION 7. The following conditions concerning a finite group G are
equivalent"

(1) G admits a sharply transitive representation on a finite projective plane.
(2) G is a geometric ABA-group such that A’A n B B’A n B >= 3.
(3) G possesses subgroups A and B such that

(a) G ABA BAB,
(b) AB n.BA A - B, and
(c) G’A >- 2 and A’A n B >= 3.

Proof. The equivalence of (1) and (2) is an immediate consequence of
Proposition 1 together with the fact that the 2-designs of type (h, h) with
h >= 3 are precisely the projective planes of order n h 1.
Assume (1). Then (a) and (b) of (3) follow from Lemmas 3 and 4 and

their duals, while (c) is a consequence of the existence of a quadrangle in a
projective plane. Reversing the argument we obtain that (3) implies that



390 D. G. HIGMAN AND J. E. MCLAUGHLIN

r(G, A, B) is a projective plane and hence that (3) implies (1), completing
the proof of the proposition.

It is worth noting that finiteness did not enter into the proof of the equiva-
lence of (1) and (3).
A finite group satisfying the equivalent conditions (1) through (3) of

Proposition 7 will be called a projective ABA-group. By Propositions 3 and 7
we have

PROrOSITION 8. An acutely transitive group of collineations of a finite pro-
jective plane is primitive on the points and on the lines. Equivalently, in a pro-
jective ABA-group the subgroups A and B are maximal.

According to the Ostrom-Wagner theorem [7; Theorem 5], if a group of
collineations of a finite projective plane is doubly transitive on the points,
then the plane is Desarguesian and the group contains the little projective
group. Hence by Propositions 1 and 7 we have

PuoeomwION 9. A finite group G admits a representation 0 on a finite
Desarguesian projective plane such that O( G) contains the little projective group if
and only if G is a geometric ABA-group such that G A q- AxA.

An application of this result is given in 8.
It is natural to ask whether the condition G A q- AxA is needed in

Proposition 8. Equivalently we have the following two questions"

(a) Is a finite projective plane admitting an acutely transitive group of
collineations necessarily Desarguesian?

(b) Does an acutely transitive group of collineations of a Desarguesian
projective plane necessarily contain the little projective group?

In the rest of this section we answer (a) aifirmatively for certain special
odd orders, and show that (b) holds for any Desarguesian plane of odd order.
Sections 6 and 7 are devoted to showing that there are precisely two exceptions
to (b) in the case of even order Desarguesian planes. We begin by proving

LEMMa 5. An acutely transitive group G of collineations of a projective plane
rr of odd order n has nonabelian 2-Sylow subgroups.

Proof. Since n is odd and n q- 1 divides the order of G, a 2-Sylow subgroup
T of G is 1. Suppose 7’ is belian, and let S be a subgroup of T maximal
with respect to the property that the fixed elements of S form a subplane
r0ofr. ThenS " T2/, otherwise

___
G n G for any incident point P and

line L of r0, contrary to the fact that 2 In + 1 and n na 1 Gv’Gv n G.
Hence there exists in T, S, such that S, and then induces a col-
lineation * of order 2 on r0. If * fixes a subplane of r0 pointwise, so does
(S, }, contrary to the maximality of S. Hence, by a theorem of Baer (cf.
[5; Theorem 20.9.7]), * is a perspectivity on r0. Let T be a 2-Sylow sub-
group of G containing (S, } and contained in Go, where Q is a point on the
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axis of *. Since 7’2 is abelian, each in Tx permutes the fixed points of
and hence fixes the axis M of *. Hence [/’ GM n GQ, which is impossible.

Using this lemma we prove first

1)ROPOSITION 10. Let - be a finite projective plane of odd order n such that
either

(i) n is not a square, or
(it) n no with n0------ --1 (rood4).

If - admits an acutely transitive group G, then r is Desarguesian, and G contains
the little projective group.

Proof. If n is not a square, the result follows from a theorem of Wagner
[14; Theorem 3]. Assume that n n with no -1 (rood 4), and assume
that r admits no perspectivities. Then, if is an element of order 4 in G,
the above-mentioned theorem of Ber implies that the fixed elements of
constitute a subplane r0 of order no. permutes the fixed points of , and
hence permutes the No (nff n q- 1) (n q-no q- 1) points ofrnot
in r0. Since fixes no point not in r0, each transitive class under () con-
tains 4 points, and we must have No 0 (rood 4). Bu no -1 (mod 4)
implies No 2 (mod 4), giving a contradiction. Hence G contains no element
of order 4, contrary to Lemma 5.
As a second application of Lemma 5 we have

POPOSITON 11. An acutely transitive group G of collineations of a finite
De8arguesian projective plane r of odd order necessarily contains the little pro-
jective group.

Proof. Le T be a 2-Sylow subgroup of G, and let h be the full group of
projecivities of r. Since r has odd order, T 1. If T contains no ho-
mologies, then 7’ n h 1; otherwise an element of order 2 in T n h would be
a homology. Hence T is cyclic, contrary to Lemma 5. Therefore T contains
homologies, and G contains the little projective group by a theorem of Wagner
[.4].

6. Acutely regular projective planes
In this section we wish to establish the following

POeOS,TON 12. Let G be an acutely transitive group of collineations q( a
Desarguesian projective plane - of finite order n. If G contains a normal sub-
group H such that H contains an element 1 fixing a point, but no element 1
in H fixes an incident point and line, then G is acutely regular and either

(i) n 2 and G has order 3.7, or

(it) n 8andGhasorderg.73.

For the proof we need some information bout projectivities cyclic on the
points of a Desarguesian projective plane r. According to a theorem of
Singer [8], rr always admits such a projectivity; one may be obtained as follows
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[9]. The order n of r is a prime power, n p. Let K be a field of n elements,
and let L be an extension of K of degree 3. We may identify the points of r

with the one-dimensional subspaces of L considered as a vector space over K,
and the lines with the two-dimensional subspaces. Multiplication by a
primitive root. w in L effects a linear transformation W of L over K, and hence
induces a projectivity o of r; it can be shown that co permutes the points of r

cyclically. We shall refer to a projectivity 0 of r obtained in this way as a
Singer cycle on r.

We need to determine the normalizer of a Singer cycle o on r. Let ?1
denote the automorphism group of the field L. Each A 0.1 may be con-
sidered as a nonsingular semilinear transformation of L considered as a vector
space over K, and hence induces a collineation a of r. If wA wt, then for
xeL,

x(A-WA) [(xA-)w]A x(wA) xw xW.
Hence A-WA W, A normMizes (W), nd normMizes (@. Thus if
denotes the image of ?l in the group of collinetions of r, the normMizer of
(co) contMns .
On the other hand, let v be a collinetion of r normalizing (@, and let T

be nonsingular semiliner transformation of L over K inducing . Since
--1 K-Wr or o, T-WT with X 0 in K. Write X w; then
T-1WT Wa+. NowlT w for somec;letT* TW-. ThenlT* 1
and T*-tWT* Wa+. Hence T* W--T*Wa+b, and

wT* 1T*W+ wa+.
It follows by induction that for any s,

wST:__ (wa-b)s__. (wT*) ’,
and hence that T* is a field automorphism of L. Denoting by r* the col-
lineation of r induced by 7’* we have r* r so r r o. We have
proved that the normMizer of (w} is equal to 9.I(@. Certainly ?I a (w} 1,
for if A e?l induces w for some t, then there is a h 0 in K such that
xA h.xw for all x eL. Hence 1 1A hwt, and therefore xA x and
A 1. Moreover and ?l are isomorphic, for, if A 9.I induces the identity
collineation of , there is a t 0 in K such that xA x for all x L. Then

1A ,xA x, andA 1.
The essential conclusion from the above discussion for our purposes is

],EMMA 6. Given a Singer cycle o on a Desarguesian projective plane - of
order n p, p prime, the index of (w} in its normalizer in the full collineation
group of r is 3r.

Now we can give a

Proof of Proposition 12. If n is odd, Proposition 10 implies that G contains
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the little projective group II. We cannot have II H, since no element -of H is to fix an incident point and line. Hence, since II is simple, H n II 1,
which implies that every element of H commutes with every element of II.
By assumption there is an h 1 in H fixing a point P, and P must be the
only fixed point of h. Hence every element of II fixes P, which is impossible.
Therefore n is even, n 2r.
By Proposition 4, G contains an elementary abelian normal subgroup M

transitive on the points of r. The order of M is, on the one hand, equal to
the number n -k n -- of points of r, and on the other hand, a prime power,
q. Thus n -k n -k 1 q, which implies that c 1. and n -k n q- 1 q
since n is a 2-power. It follows that q exactly divides the order of the full
eollineation group r of r, and hence that M is a q-Sylow subgroup of I’.
Hence M is conjugate to the subgroup (o) generated by a Singer cycle o, and
we may assume that M (} and that G normalizes (o}. But
G:M s(n -k 1), where s is the order of the subgroup of G fixing an incident
point and line. Hence by Lemma 6, s(n q- 1) divides 3r, and we must have
s 1, n 2 or 8, proving the proposition.

COROLLARY. The only finite Desarguesian projective planes admitting acutely
regular groups are those of orders 2 and 8.

That the planes of orders 2 and 8 actually admit acutely regular groups is
readily seen; their abstract structure is the following"

--1G=(x,), x= 1, x=x,

where N 7 if n 2, and N 73 if n 8. These groups are independent
proiective ABA-groups, and are the only ones giving rise to Desarguesian
projective planes.

According to 4, the order of A in an independent ABA-group must be odd,
and hence a finite projective plane admitting an acutely regular group must
have even order n. Moreover, the Frobenius kernel is elementary abelian,
and transitive on the points, so the number n -t- n -t- 1 of points must be a
prim power, and a prime if n is a power of 2. The three smallest possible
values of n not ruled out by the Bruck-Ryser theorem [5] are n 2, 8, and 18.
The planes of orders 2 and 8 admit acutely regular groups. Bruck showed in
[2] that no platm of order 18 can exist which admits a regular transitive abclian
group. Hence there is no plane of order 18 admitting an acutely regular
group.

If a finite projective plane admits an acutely regular group with cyclic
Frobenius kernel M, M must have prime order. It is easily seen that the
planes of this type are precisely the cyclic planes generated by the perfect
residue difference sets studied by E. Lehmer [6]. Hence the above corollary
can be restated: The only Desarguesian projective planes generated by
perfect residue difference sets are those oJ orders 2 and 8. The next 2-power
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value of n after 8 such that n + n + 1 is a prime is n 512, giving
n -- n -+- 1 262657. A computation [6] showed that no perfect residue
difference set exists for this value.

7. Acutely transitive groups on Oesarguesian projective planes
The little projective group of a Desarguesian projective plane is doubly

transitive and hence certainly acutely transitive. Therefore the following
theorem completes the determination of the acutely transitive groups of col-
lineations of finite Desarguesian projective planes.

T-tr3orM 1. An acutely transitive group G of collineations of a finite
Desarguesian projective plane - of order n contains the little projective group with
precisely two exceptions, namely the acutely regular groups on the planes of orders
2 and 8.

For the proof we need

LEMMA 7. The order of a nontrivial finite permutation group in which no
element 1 fixes two letters has a factor 1 in common with the degree of G.

Proof. Let G be a permutation group of the m letters 1, 2, m, and
let Gi be the subgroup of G fixing the letter i. Since no element 1 of G
fixes two letters, Gi a G. 1 for i j. Assume that the order of G is prime
to its degree m. If g G does not belong to any G, then the cycles of g all
have length 1. If is the length of the shortest cycle in g, then gt fixes at
least letters; hence gt 1, and every cycle has length t. Hence divides
the order of G and the degree m of G, whence 1, a contradiction. Hence
each g G belongs to some G, and the subgroups G1, Gm constitute a
partition of G. Since every conjugate of a G is a G., and G. G. 1 for
i j, it follows that each G is its own normalizer, and hence that the partition
is trivial by a result of Baer [1]. This means that m 1, contrary to the
assumption that G be nontrivial.

Proof of Theorem 1. According to Proposition 11, if the order n of is odd,
G contains the little projective group. We therefore assume that n is a
2-power, n 2r. Let K A a Gp G, where A is the group of projectivities
of , and Gp and Gx are the subgroups of G fixing respectively a point P and a
line L through P. If K l, consider H G A; H is a normal subgroup
of G and

HaGpaG AaGaG 1.

If H

___
G, then H fixes every point, so H 1 and G’I divides r, which is

clearly impossible. Hence H G, and G G H since Gp is maximal. If
Gp a H 1, then G’H G" 1, a multiple of n - 1, while on the other hand,
G’H G" (G A) GA" A, a divisor of r, implying that n + 1 divides r,
which is impossible. Therefore H a G 1, and we infer from Proposition 12
that n 2 or 8 and G is acutely regular.
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Finally, assume that K 1, and regard K as a permutation group on the
n points P of L. If there is an element 1 of K fixing every point of L,
this element must be a perspectivity, and G contains the little projective
group by [14; Theorem 3]. We assume therefore that K is faithful on the
points P of L. If an element 1 of K fixes two of these points, it must be
the identity since K

_
h. Hence Lemma 7 implies the existence of an ele-

ment of order 2 in K. By Baer’s theorem this must be an elation, and hence
G contains the little projective group.

8. Bruhat decompositions
In [10, 11], Steinberg showed that each of the simple groups obtained by

Chevalley [3] and Steinberg [11] admits what we shall call a Bruhat decompo-
sition. Precisely, we shall say that a group G admits a Bruhat decomposition
with Weyl group ![9 if it possesses subgroups U, H, and W satisfying the follow-
ing conditions (a) through (j).

a H normalizes U.
(b) H is a normal subgroup of W.
(c) W/H !33 is a finite group.
(d) For each we gg, U has subgroups U’ and U:’ such that U V’
For each w e ![9, choose a representative o(w) in W.

(e) (w) u’ (w)- _c v.
(f) G w, HUoo(w)U"w, and in the representation g huoo(w)u",

h H, u e U, w e g9 and u" e U each factor is unique.
There is a distinguished set of elements of 33 of period 2 which gener-(g)

ares gB.

(h)
()

For vo , HU q- HUo(w) Ug is a subgroup of G.
’or ,o a, , U: g= U’. ,, U: c_ U:

(j) There is an x U such that x U’ implies w 1.

The group PSLa(q), i.e., the little projective group of the Desarguesian
projective plane of order q, admits a Bruhat decomposition with the sym-
metric group Sa of degree 3 as Weyl group. This is the only finite simple
group with this property, for we can prove

THEOREM 2. A finite group G admitting a Bruhat decomposition with the
symmetric group of degree 3 as Weyl group has a representation 0 on a finite
Desarguesian projective plane such that O(G) contains the little projective group.
Hence if G is simple, it is isomorphic with PSLa(q) for some q.

Proof. First, writing o0 oa(w), we have that

(1_) If w and x is an element 1 of U then oxo-1 eHUUw"
Otherwise, by (h) we have oxco-1

-1eHU. Thenaxo0 hu, h eH, u e U, so
that ox hugo, and using (f) we see that x 1.
By (1), (d), and (e) we have
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(2) u e H, couco-1 e U implies u e U
Next

(3) If w and s are distinct members of , then U
If not, then by (i), U:

___
U’w. Choose co co(w) and a co(s). Then

co(sw) hrco for some he H. Then U: Uw implies hocoV"w co-la-lh-1 U,
H). Using (j) we can findx 1and hence coU: co-1

_
zUa-1 (since

in U:. Applying (1) and (2) we get
f!

hlulwvw u2 or h2ua
l!" " and y Us In either case we contradict (f)with hi H, ui U, vw U

Now let w and s be distinct members of .. (Since W Sa, there must be
at least two members.) Choose co co(w) and co(s), and set

A HU + HUCOU’, and B HU q- HUrU’.
These are subgroups of G by (h). We prove that G is a geometric ABA-group
by establishing the conditions (3) of Proposition 7. First we must show that

(4) G ABA BAB.

Certainly ABA contains the sets HU, HUCOU and HU(rU Hence
HUcorUg (HUco)(r)(U.) ABA,
HUrcoU"w (HU)(a)(coU"w) ABA, and

ttUco(rcoU,o (I-IUco) ((r) (co Uo.)"
__
ABA.

Consequently G ABA, and by symmetry, G BAB.
Next we must show that

(5) AB n BA A q- B.

Suppose that g AB n BA. Since g e AB, g is an element of HU, HU(rU
(HUcoU)(HU), or (HUcoU)(HUrU). The first three subsets are all
inA -t- B. The last is equal toHUcoU2aU. We know from (3) that

f! o.--1 --1 If
z Uw U, and hence z Uz

_
U. Hence

HUcoU zU c_ HUco(rU HUcorU.
Similarly g BA implies g A + B unless g HUacoU,’w. Then using (f) we
have AB n BA A -t- B.
To complete the proof that G is a geometric ABA-group we observe that,

sinceG A, andsince U 1 andA nB UH, wehave

(6) G’A 2 and A’A n B -> 3.

We now infer from Proposition 7 that G admits an acutely transitive rep-
resentation 0 on a finite projective plane. To show that the plane is De-
sarguesian and that 0(G) contains the little projective group, we must show
that the condition of Proposition 9 is satisfied, namely, that
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(7) G A - AxA.

Since AaA UH(U UH(rU:’, and since G ABA, we have that
G A AA. This completes the proof of Theorem 2.

It is worth noting that the finiteness comes in only in the application of
the Ostrom-Wagner theorem. That is, we have proved that an arbitrary
group admitting a Bruhat decomposition with S, as Wcyl group has a homo-
morphic image which is a doubly transitive group of collineations of a pro-
jective plane. We have been unable to determine whether the plane is
Desarguesian in the infinite case.
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