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BY
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In this paper we consider the problem of determining whether or not there
exist linear operations on matrices that change their permanents into their
determinants. Recent interest in the permanent function stems from its
application to certain combinatorial problems [4; p. 166] and from an un-
resolved coniecture of van der Waerden [2].

If X is an n-square matrix, then the permanent of X is defined by

per (X) I= xi(),

where a runs over all permutations of 1, n. We introduce a notation
to simplify writing sets of indices" if 1 __< r -< n, then Q, will denote the
totality of increasing sequences o’1 -< i i _-< n. If X is an m X n
matrix and Q,, v Q,, then X+, will denote the permanent of the
submatrix of X with row indices and column indices v. The symbol X,
will denote the determinant of this submatrix. If s is an index in , then
0/8 will denote the sequence with s omitted. In case Qm.r, r e Q,r, we
will reserve the special notation E, for the () X () unit matrix with 1
in the (o, r) position in the doubly lexicographic ordering, zero elsewhere.
That is, we imagine the rows of E, indexed with the elements in Qm. where
the ordering is the lexicographic one, and similarly for the columns. If
ul,..., up are vectors in some space V, we denote by (ul,..., up} the
subspace of V spanned by these vectors. Finally, p(X) will denote the rank
of the matrix X; [u, v] [x, y] will mean that the two vectors are linearly
dependent, and [u, v] _k [x, y] that they are orthogonal, i.e., that ux + vy O.
Let 2 __< r __< min (m, n), and denote by Mm, the vector space of m X n
matrices over a field F of characteristic zero. To fix the notation assume
henceforth that m _-< n. Then C(X) and P(X) will denote the rth deter-
minantal and permanental compound matrices of X, respectively. That is,
C(X), (Pr(X)), is the matrix in M().() whose entries are the r-square
subdeterminants (subpermanents) of X arranged in doubly lexicographic
order. Let A be the map on M,. into itself where (A(X)): -x and
(A(X)). x otherwise. Note that per (X) det (A(X)).

THEOREM. There is no linear transformation T of M,, into itself such that

(1) P( T(X) S C(X)
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for all X M,. where Sr is a nonsingular mapof M().() into itself, unless
m n r 2.
In this case

AT(X) AXB, or else AT(X) AX’B,
where A and B are in M2, and det (AB) O. Here X’ denotes the transpose
of X.

In casein n r > 2 and S 1, we conclude that there is no linear
operation on n-square matrices that converts the determinant into the permanent
uniformly. This result constitutes a generalization of the result of PSlya
[3], [5], which states that there is no uniform way of affixing and signs
to the elements of a matrix so as to change the determinant into the permanent
except in the 2-square case.
We prove the theorem by contradiction. Assume then that m n _>_ 5

and T is a linear transformation satisfying (1). We show in a series of lemmas
that T preserves rank 1 and conclude on the basis of a recent theorem [1] that
T(X) AXB or T(X) AXtB for all X, a situation that leads us to a
contradiction.

LEMMA 1. T is nonsingular.

Proof. Assume T(A O. Then

Sr Cr(A -1--X) P( T(A -t-X))

P,.(T(A) + T(X))
Pr(T(X))
r Cr(X),

for any X Mm.. Hence since Sr is nonsingular, we obtain

Cr(A - X) Cr(X)

for all X. Let X be the matrix with -t in positions (i, i), i 1,-.. r,
-aij in positions (i, j), r >= j > i >= 1, zero elsewhere. Then clearly the
(1, 1) element of Cr(A X) is II=l (a, t), whereas the (1, 1) of C(X) is
(-1)t. Since the ground field has at least r elements, it follows that
a, 0, i 1,.-., r. By pre- and post-multiplication by permutation
matrices we can conclude in the same way that all ai. 0, i.e., A 0. Note
here that this proof is valid for m n r 2 as well.

LEMMA 2. If (1) holds, then there exists a nonsingular linear transformation
Sr_ of M().(a) into itself such that

(2) P-I(T(X)) Sr_ C_I(X).

Proof. Let Y T(X). By Lemma 1 there exist constants g$’,, u, p
1, m; v, q 1, n such that
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Moreover (1) asserts the existence of scalars s,: oe, oa e Q,,., , "r Q,,,,. for
which

(4) Y+, ,, s:: X,,.
By (3) we can regard (4) as a polynomial identity in the variables yy.
Suppose in (4) that s is an integer in the sequence w, and is an integer in
the sequence r. Then using (3) and (4),

y OY , OX,

Hence the (r 1)-order permanental minors of Y T(X) are fixed (de-
pending only on T and S) linear homogeneous functions of the (r 1)-
order determinantal minors of X. That is, there exists S-1 mapping

M(), (m)

into itself such that (2) holds. It remains to prove that S_, is nonsingular.
By Lemma 1, X T-(Y), C(X) STP(Y), and we may calculate the
partial with respect to x to obtain

(5) Cr_(X) Rr_ P_( T(X) ),

where Rr- is a mapping of M(r) () into itself. Hence combining (2)
and (5) we obtain

(6) Rr- 
Now we assert that there exists a basis in M(,), () of matrices of the form
C_(X) for X e M,. For let X Et and then Cr-I(X) E,r
where

(i, ir--) Qm.r-, T (j, jr-) Qn,r-.

Hence by (6), Rr_ S_ is the identity on a basis of M(,), (,1), and thus
S_ is nonsingular.
Reducing r to r 1 etc. we finally obtain

(7)

We observe that (7) implies

LEMM 3. If p(X) 1, then P(T(X) O.

For all second order subdeterminants of A are 0, and hence C(A) O.

LEMM 4. If P( Y) O and Y O, then
(a) Y has exactly one nonzero row (i.e., Y is a row matrix), or
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(b) Y has exactly one nonzero column (i.e., Y is a column matrix), or
c by permutation of rows and columns Y may be brought to the form

oEii -- Ei2 - ’El + tiErs, , 0, ati + , 0.

Proof. Unless (a) or (b) holds, we can assume without loss of generality
that there exist yr, and yu,, r u, s v, such that Yr. Yu,v O. Hence
Yr.v Y. O. By permuting rows and columns these four entries may be
taken to be in the top left 2-squnrc submatrix of Y. We show that no other
entry of Y is nonzero. Now if j => 3, then

and sinceati 0, yl. y. 0. Similarlyyil y 0, i => 3. If
i => 3, j => 3, then yi + y: y O, y O.

LnMM 5. If p(X) 1, thenp(T(X)) 1.

Proof. By Lemmas 3 and 4 either p(T(X)) 1, or T(X) has the form
given in (c) of Lemma 4. Note that P(QYR) Pr(Q)Pr(Y)P(R), where
Q and R arc permutation matrices in M,,m and M, respectively. Thus we
may assume that

a 0 0

i
0

(8) T(X) 0 0

[..0 0

Let G1 aE + "yE21 G2 E12 -- (E22 and G OEll -- E. Clearly
if G4 7E + tiErs, then G G + G Ga. Let Zbe such a matrix
thatp(X + Z) 1. Then, byLemma4, T(Z) is (a) arowmatrix; (b) a
column matrix; (c) a 2-square matrix. Since P(T(X) + T(Z)) 0, we
can conclude from arguments given in the proof of Lemma 4 that if W T(Z)
and (a) or (b) hold, thenw- 0fori >= 3, orj >= 3. Suppose then that
W wlE + wlEx:. Then

(a + w) + ( + w) 0, w + w 0.

Since ati + , 0, we conclude that W is a multiple of Ga. By similar
arguments we see that if W is either a row or column matrix, it is in the
space ( G, G, G, }. Next assume that T(Z) W has the form given in
(c) to within permutation. Since P2(T(X) + W) 0, we know from argu-
ments identical to those in he proof of Lemma 4 that w- 0, i >_- 3, j 3.
Since at # 0, Wll W12 W21 W22 z 0, O + ’ 0, Wll W22 + W12 W21 0, and
P(T(X) + W) 0, we conclude that
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Now let ,),/a c and w.l/wn d; then

ca, --c, w dwn, w -dw,

and substituting in (9) we have

(10) (c d)(aw- wn) O.

Hence if c d,

/ -/ / /,

and we hve [wn, w] [a, ], [w, w::] [, ]. Thus

W(G, G (a, a, a).

Next, if in (10), aw: flwn 0,

[w, w] [, ] and Ivan, w] [, fi] [, ].

Hence [w, w] [, ], and we conclude in this case that

Hence we see that the range of T has at most dimension 3. Now
let X, X_ and Z, Z_I be mtrices such that

V (X,X,...,X,_) nd V (X,Z,...,Z_)

are of dimension n and m respectively, consist of rank 1 mtrices, and more-
over stisfy

dim (V + V) dim (X, X, X_, Z, Z_) n + m 1.

Then T(V + V) ( G, G, G ), so by Lemm 1 we conclude that

But we are dealing th the case n + m 5, and the proof of the lemma is
complete.
Lemm 5 tells us that T preserves rank 1, and we my apply theorem

n [1; p. 1218] that asserts that

T(X) AXB
or

T(X) AX’B incasem n,

for all X in M, where AeM,, BeM., anddetAdetB 0. Thus

() (AXB)
or

(12) P(AX’B) Sr C(X).
Now choose X0 so that AXo B . Eii. Then

(x0) 1, Or(X0) 0,
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but
Pr(AXo B) r! oQ.......Q.r Eoo, O.

This contradiction completes the proof for m d- n _>_ 5.
Ifm n r 2, thenSr aeF, a 0, and

det (AT(X)) per (T(X)) a det X.

Hence ifp(X) 1, thendetX 0, anddet(AT(X)) 0. Since AT is
nonsingular, p(AT(X)) 1. Another application of [1; p. 1218] yields the
result.

COROLLARY. There is no linear map T on M..... (n 2) into itself such
that for all X Mn, per T(X) det X.
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