SOME NONSTABLE HOMOTOPY GROUPS OF LIE GROUPS

BY
MicHEL A. KERVAIRE

The main result of [6], stating that S** is not parallelizable except for
n = 1 and 2, can be reformulated in terms of homotopy groups of the rota-
tion group SO(4n — 1) as follows: For n = 3, m4,—2(SO(4n — 1)) is not zero;
or equivalently, for n = 3, m.—2(SO(4n — 2)) is not zero. (Compare [6],
Lemma 2.)

In the present paper, the results of R. Bott [2] on the stable homotopy of
the classical groups and the isomorphism m,(U(q)) = Z/q! Z are used to
derive more precise information on mg,—2(SO(4n — 1)), m4—2o(SO(4n — 2)),
and further nonstable homotopy groups of the rotation group SO(m) and the
unitary group U(m). Our results also rely essentially on the computations
of G. F. Paechter [8].

As seen from the tables below, periodicity persists “for some time”’ in the
nonstable range in the sense that m,..(SO(m)) for r < 1 and large m de-
pends only on the remainder class of » + m modulo 8. (Periodicity breaks
down for low values of m, due to the fact that S, 8% §” are parallelizable.)
Similarly, for m large enough and r < 2, mm4,(U(m)) depends only on the
parity of r.

mamsr(U(m)) is given for r

=< 2 by the following table:

A" 2k — 1 2k
1 0 Zs
2 Z ory Y2 Zy + Zoery! for k> 1
Zy for k =1
Tmir(SO(m)) is given by the following table, valid for s = 1:

A 8s 8 +1 8 +2 8 43 8 +4 8 +5 8 4+6 8 +7
-1 Z+Z Zo+Zy Z + Z, Zy Z+Z Z VA Z,
0 Zo+Zy+ 2, Zo+Z: Z, Z Zy+ Z, Z, Z, Z
1 Z2+Z2+Z2 Z8 Z ZZ Z2+Z2 Z8 Z Z2+Z2
2 Zoy+ Zg Z+ Z, Zyw Zs+Zy Zs+Zoa Z+Zy Zio+ 2y, Zo+ Z,
3 Z+Z, 0 Zs Zsa Z+ Z, Z, Z, Zsg
4 0 Z, Zsa Z 4+ Z, Zs Z Zs Z 4+ Z,

In this table d is ambiguously 1 or 2.
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For low values of m, m,u,(SO(m)) is mostly well known. We mention
for completeness the following table:

A" 3 4 5 6 7
-1 0 Z+Z Zs Z 0
0 VA Zo + Z, Zy 0 VA
1 Zy Zy + Zy 0 VA Zs+ Z
2 Z2 Z12 + Z12 Z Z24 Z2 + Z2
3 Z Zs + Zy 0 Zy Zy
4 Zy Zy+ Zy 0 Zw+ Z Z+ Z

The knowledge of 7,4.(SO(m)) provides information on the homomor-
phisms of the homotopy exact sequence of the fibering SO(m)/S0(m — 1) =
S™7'. We obtain

THEOREM 1. Let nm_y be the generator of wn(S™ ) = Zy. Then dnum—s #= 0
for n = 3, where 3:wm(S™") — mma(SO(m — 1)) is the boundary homo-
morphism.

Remark. dms = 0, dns = O because S° and S’ are parallelizable. It is
well known that dn49 = 0, dn4, 3 0, and Inuuy1 = 0. (Compare P. J.
Hilton and J. H. C. Whitehead [4], [5].)

Similarly, we obtain

THEOREM 2. Let ©,_; be the generator of the group wmp(S™™") = Z,.
(Ona = Mme10°Mm.) Then 804 #= 0 for s = 2.

Remark. 905 = 0, 0042 = 0, 004,31 = 0, 004, = 0 are well known.
(Compare [4], [5].)

THEOREM 3.  Let vy be the generator of the stable group mmi2(S™ ) (m = 6),
and 9:mmys (8™ ") = 7wy (SO(m — 1)) the boundary operator of the homotopy
sequence of the fibering SO(m)/SO(m — 1). We have

(1) 6V3s_3 £ 0, 261’38_3 = O, f07' S g 2, 61/5 = O,
(ii) the kernel of 9:mses(S*%) — ms,(SO(8s — 2)) contains 0, and
12v5, 5 = Mgs—2 © Mot © Mss
(ii1) vy = O,
(iv)  0:mse43(S™) — Taey2(SO(8s)) is injective,
(V) 3V83+1 > O, 261’33+1 = 0,
(vi) the kernel of 8:mss1s(S™°") — me,14(SO(8s + 2)) s cyclic of order 2
generated by 121/33_*.2 = N8s++2 © N8s+43 © M8s+44
(Vll) 6V33+3 # 0, 281’3,;.,.3 = O,
(viil) the kernel of 9:msesr(S*1*) — ms4s(SO(8s + 4)) is at most Zs .

Some lemmas

The following preliminary lemma is a generalization of a lemma of B.
Eckmann (compare [3]).



SOME NONSTABLE HOMOTOPY GROUPS OF LIE GROUPS 163
Let £ be a fibre space with projection p, and let

ren(B) —Ps mon(X) 2 m(F) - wl(B)
be the homotopy sequence of £.

LemMa 1. If a e m1(X) has the form o = o o EB, where 8 e 7,(S™) and
o € T (X), then da = (da’) o B.

Proof. Letf':(B™, 8™) — (E, F) be such that p o f represents /. Then
£ 8™ represents da’. Let CB:(B™, 8') — (B™", S™) be the mapping
induced by 8, and define f: (B**", 8°) — (E, F) tobef = f' o C8. Clearly pof
represents a = o’ o E3. Hence d(a’ o EB) = d(pof) =f| 8 = (f/| 8") o8 =
I’ - 6.

LEmMA 2. Let &; be a generator of the stable group w,(SO(m)) (whenever
nonzero). We have the relations

€85—1 9 Mgs—1 = &8s, Eg5—1 © Ogs1 = E8s+1
forall s = 1.

Proof. Let b:80(n) — 2*SO(16n) be the Bott map.'

Since be; = =¢.45, the above relations hold if they do for s = 1. Thus
we have only to verify that e;0 97 5 0, 70 07 £ 0. Infact, J(erom) = 0
and J(& ° @) = 0.

Notice that J(&) = E™y, where v:8® — 8° is the Hopf map. (See
Milnor-Kervaire [7].)

Now v o 5 and v o © are known to be nonzero (see Adams [1]). (Recall
that J(a o 8) = £Ja o "B, where a e m,(S0(m)), B em;j(S*).)

I. The unitary groups

Lemva L1, Let ¢q:U(n) — S be the natural projection. Then
qx:man(U (1)) — w2 (8" 4s given by

Qe an =0 for n odd,
Q% 0t = Non—1 for m evenm,
where ay, 18 a generator of w.(U(n)).

Specifically, we shall take e, to be a, = 872,41, where 9 is the boundary
homomorphism in

o1 (U(n 4 1)) = manga(8) 2. Tn(U(n)) = mu(U(n + 1)) = 0.

Proof. Letn = 2k. Consider the homotopy sequence of Wai1.2/S* ™" =
S4k+] .

1.2.

1 Added in proof. See R. Borrt, The stable homotopy of the classical groups, Ann. of
Math.(2), vol. 70 (1959), pp. 313-337.

A _
7r4k+l(W2k+l.2) - 7l'4k+l(S4k+1) — 7r4k(S4k 1) - 7|'4Ic(W2k+l,2)-
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Since S** does not admit a 3-field, Aigiy = 0. Hence
1.3. Aty = Mapr

Since A = Qqx 6, lt fOHOWS that Qx Qo = Q% 61:4k+1 = A’i4)a+1 = Nak—1 - Let
n =2k — 1. Since Wao/Wau_11 = S* " has a cross section, it follows that
A’I:4)c_1 = (0. Hence Q% Cok—1 = (% 67:4k_1 = Ai4k_1 = 0.

LemMA 14, 7wy (U2k — 1)) = 0, 70 (U(2k)) = Zy (k = 1), generated
by dnar41 -

This is an immediate consequence of Lemma 1.1, by using the exactness of
the sequences

1r4k(U(2k)) _Qi_) 7I'4h(S4k_1) ——(3—-—) 7I'4k_1(U(2k - 1))‘—>0,

7r4k+2(U(2k -+ 1)) - qx 7"4k+2(S4k+l) -—i; 7l'4k+1(U(2](;)) — 0.
LemMmA L5, ¢x 0nuqr = Oua, for £ = 1, where
gx a1 (U(2k)) — 7r4k+1(S4k_1).

Proof. @ dma+1 = Anas1, where A is the boundary operator of the fiber-
ing Waesr,o/Waa = 8. By Lemma 1, Anuss = Algirs © mak = natr © nat =
Ou—1. (Compare 1.3.)

Lemma 1.6. 7r4k(U(2k _ 1)) = Z(gk)!/z, 1l'4k+2(U(2k)) = 7, + Z(2k+1)!
fork > 1. Fork = 1, my2(U(2k)) = m(U(2)) = me(S' X S = Zy,
as 1s well known.

Proof. Consider the homotopy sequence of the fibering
U2k)/U(2k — 1) = 8% mun(U(2R)) o mppn (857

O ra(U@k — 1) 2w (U@K)) ~T5 mg (S50,

The above results show that the sequence

0= ma(U(2k — 1))~ Zay — Zo— 0
is exact. It follows that 74 (U(2k — 1)) =2 Z ke -

Similarly, the homotopy sequence of U(2k + 1)/U(2k) = S*™, i.e.,
Targa(S*H) 2, T2 (U(2K)) ——Z—*—> T2 (U(2k + 1)) x, Tar2(S*)
shows that the sequence

0— Zy— mu2(U(2k)) — Zapyyt — 0

1s exact. (6@4104_1 = aE@.;k = Qg © @4k # 0, since Q*(azk ° ®4k) = M4k—1 ° ®4k =
12v4_3 7% 0.) If7aui2(U(2k)) is cyclic, then 00y, is divisible by (2k + 1)!.
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Hence, 12v4-1 = ¢% 00441 is also divisible by (2k + 1)!. This implies
k = 1. In other words, for k > 1, mu.2(U(2k)) is the trivial extension:
Zy + Zor!

ll. The rotation groups

We shall need the following information about homotopy groups of complex
Stiefel manifolds.
The following isomorphisms hold for n = 3:

LEMMA II‘l' (i) 7r4n—1(W2n-—1,2) = 0, (li) 1T4,,_2(W2n_],2) = 212 ,
(i)  mana(Wans) = Z.

Proof. The first assertion follows from the exact homotopy sequence of
W2n—1,2/ WZn—Z,l = S4n_31

A

T4n—1 ( S4n_5) - 7l'4n—1( Wona ,2) — Tgn_1 ( S4"_3) N 7|'4n._2(S4”_5),

For n = 3, the groups mi—1(S*" ™) are zero (compare Serre [9]); man1(S" )
is eyclic of order 2, generated by O 3 = N3 © 7n2. We have

A®4n—3 = AE®4n—4 = Aty 3 © ®4n—4 = (x Olyp—3 © ®4n—-4 = (@x Q2p—2 ° ®4n—4 .

By Lemma 1.1, g% a2n—2 = Nun—s. Thus ABy_3 = 1244, 5 = 0. Extending
the above sequence

A

n— A n— n—
7l'4n—1(s4 3) — 7"4n—2(S4 5) —">7r4n-2(W2n—1,2) ‘—>7T4n—2(S4 3) —,

and using Anu 3 = Nn_s © Mn—a = O s = 0, we obtain mgn_o(Won_12) = Zya .
Now, the last assertion of the lemma follows from exactness of the sequence

4
n— A
7r4n—1(W2n—1,2) - 7r4n—1(W2n,3) q > 7"47»—1(‘84 1) — 7r4n—-2(W2n—1,2) = Z12 .

Incidentally we see that ¢” maps a generator onto a times a generator, where
a is a divisor of 12.
Consider now the commutative diagram

7"473——1(S0(2m)> —p“"* 7r4n—1(V2m,2m—4n+6) - 7!'47._2(S0(4n - 6)) —0

E |
wn s (UM)) L5 e s (Wonmnss) — 7ans(U(20 — 3)) — 0,

where m is to be large (2n < m). mm1(Wm,m-2s43) is independent of m for
m = 2n, and the projection Ti—1(Wa,m2043) — Tan1(Wm,m2ns1) can be
identified with ¢”:mmsy(Wons) — mawa(S*™ ") considered above. Since
q=q"°q¢ T a(U(m)) = T4n1(W s, m—2a41) maps a generator onto (2n — 1) !
times a generator, it follows that ¢’ multiplies by (2n — 1) !/a (a, divisorof 12).
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The map 8’ is also imbedded in the following diagram

”
7l'4n—1( V2m,2m-—4n+6) __p_) 7r4n—1( V2m,2m—4n+2) - 7l'4n-—2( V4n——2,4) - Zb,, —0

; -

"
7r4n—1(Wm.m—2'n+3) i") 7r4n—1(Wm,m—2n+l> - 7r4n—2(W2n-—1,2) > e,

where b, is equal to 1 for » odd, 2 for n even. Since 74n_1(Vom 2metnio) = Z4 ,
and 71'41,_2( V4n__2,4) =~ Z2 forn > 1, it follows that Im p” = 2- 1r4n.~1( Vzm,zm_4n+2)
for n odd, and p” is surjective for n even. It is easily seen that 8” is surjective.

Let n be odd: n = 2s + 1. We have ms;13(Vom,omssi2) = Zs (see [8]).
B8'q’ is divisible by (2n — 1)!/2. Consequently, 8¢’ is zero for n = 5. By
commutativity, p’8 = 0 for n = 5, i.e.,, s = 2. Since

Bimssa(U(m)) — mss13(SO(2m))

is surjective (ms;13(SO(2m)/U(m)) = ms4+4(SO(2m)) = 0, by [2]), it fol-
lows that p':mss12(S0(2m)) — mssi3(Vomem—sst2), and hence

¢§§I§:183+3(SO(2m)) — mss+3( Vom,2m—8s+1)
iszerofors = 2,7 < 2. Therefore,
I1.2. 7I'ss+2(SO(88 - 7/)) = 7|'83+3(V2m,?m—83+i) for 2 = 2 and s = 2,

Letn = 3,ors = 1. We use the diagram

rll(SO(Zm)) L 7|'11(V2m,2m——8) - Wlo(SO(g)) - 71'10(30(27”)) =0

2 PR
1 (U(m)) ——gl—» T Waimet) = m0(U(4)) — m10(U(m)) = 0.

By Lemma 1.6, mo(U(4)) =2 Z, + Zio. Hence ¢ is divisible by 120. Since
T1(Vamams) = Zos + Zs (see [8]), it follows that 8’¢" = 0. Since 8 is an
isomorphism, p’ is zero, and a fortiori ®1;:7(S0(2m)) — 7u(Vomom—i) is
zero for ¢ = 8. This gives my(Vemom—i) = m0o(S0(z)) for ¢ = 8. From
G. F. Paechter’s table, we obtain

m10(SO(8)) = Zoy + Zs, m0(S0(9)) = Zs,
Wlo(SO(IO)) >~ 7, 7!'10(80(11)) > 7Z,.

IL.3.

Since 71 (Vamomr) — m11(Vamom-s) 18 injective (7ru(S7) = 0), it follows
that also 1I'11(V2m'2m_7) = 7I'10(S0(7)). This gives

II.4. m0(SO(7)) = Zs .
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Let n be even: n = 2s. We have mg—1(Vomomssis6) = Zyg for s = 2. Now

B¢ is divisible by (2n — 1)!. Hence '’ = Oforn = 4, ie., s ; 2. Since
B:imss 1 (U(m)) — ms,1(8S0(2m)) maps a generator onto 2 times a generator,
and p’8 = B¢’ = 0for s = 2, it follows that in the sequence

L5 WSs—l(SO(m)) "2-) WSs—l(Vm,m—ss-J,—ﬁ) i 7"83-2(80(83 - 6))
s 7783—2(So(m)) = O)

p’ is divisible by 8 for s = 2. Now ms1(Vom,om-ss43) = Zs. Therefore
PyeTt ms1(80(2m)) — ss—1( Vomomsesi) is zero for ¢ < 3, s = 2. Hence

I1.6. 183_2(80(88 —_ ’L)) = 7I'33_1(V2m,2m_38+i) for ¢ é 3 and S g 2.

The groups mss_2(SO(8s — 6)), ms,—2(SO(8 — 5)), mss—2(SO(8s — 4)) are
either Zs, Zs, Zs + Z4, respectively, or Zis, Zis, Zis + Z4, respectively.
I do not know whether the decision of this alternative depends on s or not.

The groups mss+a(SO(88 — 1)) for —2 < ¢ < 3 are obtained from the
sequence

7"88+2(S0(m)) i 7"88+2(Vm,m—8s+i) i 7"85+1(S0(88 i Z))
d 1rgs+1(SO(m)) - 7"83+1(Vm,m-88+i),

where g, 42(S0(m)) = 0.
Since mgeq1(Vm,mssya) = 0 for s = 2, it follows that

I1.7. B g 11(80 (M) = assa(Vmomesoss)
is zero for 7 < 4 and s = 2, and the sequence
0 — mss42(Vin,msoti) = mse41(80(8s — 7)) — m5042(S0(m)) — 0
isexact forz < 4, s = 2. Because of commutativity in the diagram
0 — mseso(Vin,messriz1) — mes1(SO(8s — 1 4+ 1)) — ms:41(SO(m)) — 0
I ]z* [id
0= mosa(Vmsis) = maia(S0(8s = 1) = maun(S0(m)) — 0,

it follows that the upper sequence is a split extension if the lower is. The
sequence splits trivially for ¢+ = 3, since mge12(Vm,mss43) = 0, for s = 1.
Thus

11.8. 7I'83+1(SO(88 - Z)) ~ Zs + 7rBs+2(Vm,m——83+i) forz < 3,8 = 2.

For s = 1, we have to study ®2:me(80(m)) — we(Vmmes) = Z». @5 is
an epimorphism, since m(8S0(5)) = 0 (see Serre [10]). Therefore,
m(S0(5)) = m0o(Vm,ms) = 0. Now the sequence

m(80(m)) — wo(Vm,m—s) — ms(8S0(6)) — w5(SO(m)),
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which reads Zs — Zi» — Zsy — Z» (compare Serre [10]), shows that ®¢ is zero.
Therefore, the sequence

0— WlO(Vm,m—S—}-i) - 7!'9(80(8 - ’L)) i m(SO(m)) —0

is exact for z = 2. This sequence splits, because it splits trivially for ¢ = 2
(710(Vm,m—6) = 0, according to Paechter [8]). We obtain
7!'9(80(6)) = Z2, 1I'9(SO(7)) = Z2 + Z2 5
IIQ WQ(SO(S)) = Zz + Z2 + Zz,
7I'9(SO(9)) = Zz + Zz, Wg(SO(lO)) =7 + Zz .

The groups ms:(SO(8s — 7)) for 1 = ¢ £ 4. Consider the sequence
T5041(SO(M) ) — w8641 (Vim,msss) — ms,(SO(8s — 7))

— 1r83<80(m)) i TSs(Vm,m—-83+i)7
where the first homomorphism (®5:77) is zero for ¢ < 4, s = 2, bijective for
1=23,8 = 1,and zero forz = 2,s = 1.

The value of the last homomorphism is obtained using Lemma 2. Since
€35 = Ess-1 © Mot , it Tollows that ®ie_;(es,) = Pasi(€se1) © Mss—1 . We have
seen that ®es(es—1) is divisible by 8 for 7 < 6, s = 2. It follows that
B3:_i(es) = Ofors < 6,5 = 2. We also have ®5;_;(e5,) = 0 for ¢ < 2 and
s = 1, for mgs( Vo msss2) = Ofors = 1.

This gives an exact sequence

I1.10. 0 — mge1(Vimmesors) — me(SO(88 — 1)) — m,(SO(m)) = Zy — 0,

1 £ 1o if it does for ¢ = 7. We use this with 4y = 4 for s = 2, a case where
the splitting is obvious since mssi1(Vm,m-sgs+4) = 0. If s = 1, the sequence
is known to split for ¢ < 1 (see Serre [10]). However it does not split for
’i = 2 (1(3(80(6)) = Z24).

The groups wss—1(SO(8s — 2)) for 1 = ¢ = 5. Consider the sequence

8s
Pgy i

valid for7 < 6, s = 2and ¢ < 2,s = 1. Again the sequence splits for any

”"83(80(27”)) 7r88(V2m,2m——-8.s+i) - Wss_l(SO(SS - ’&))

- 7"83—1(80(21”)),
for i < 5. Since ®5._; is zero for s = 2, it follows that ms,_1(SO(8s — 1)) is
isomorphic to the direct sum of Z and mss(Vam,2m-ss+i). Thus,

I1.11. For s = 2, m:1(SO(8s — 4)) = Z + Z, for 3 = 1

and mg 1(SO(8s — 7)) = Z fors = 1, 2.
For s = 1, the groups are well known.

IIA

5,

The groups mss+3(SO(8s — %)) for ¢ < 1 are obtained from the sequence
Tas44(SO(m)) = 0 — wgoya(Vim,msoqi) — maey3(SO(8s — 7))

- 1I'gs+3(80(m)) i 7|'83+3(Vm,m—83+i)~
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We know that ®552: m5,43(SO(m)) — Taers(Vm.mssss) is zero for s = 2,
1= 2 ands=1,7=0.

Consequently, ms;43(SO(8s — 7)) & Tgsa(Vinymssts) + Zfore < 2,8 = 2,
and s = 1,7 £ 0.

The groups mss14(SO(8s + 7)) and ws;15(SO(8s + 7 + 1)) for ¢ = 0 follow
from the sequences

0= W33+5(S0(m)) g 7|'8.s+5(Vm,m——88—i)

— 5e44(SO(8s + 1)) — mge4a(SO(m)) = 0
and

0= 7|'83+6(SO(m)) - 7"88+6( V'm,m—8s—'i—l)
— m545(SO(8s + ¢ 4+ 1)) = m,45(8S0(m)) = 0,

where m is to be large (m > 8s 4+ 7), by using G. F. Paechter’s computa-
tions [8].
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