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1. Several Banach algebras arise naturally in summability theory. These
are algebras of infinite matrices A (ak), n, ] 1, 2, The study of
these algebras may have two products: the generation of examples of Banach
algebras with certain properties; and, on the other hand, applications to the
theory of summability which has, since 1929, benefited greatly from the
theory of Banach space and linear topological space in general. An example
of such an application of Banach algebra is the observation that an element
near the identity element has an inverse, which was applied to summability
by Agnew and, for instance, was used extensively in [7].

2. Let AII supk ak I. Then if A < , A is an endomorphism
(= continuous linear transformation) of m, the Banach space of all bounded
complex sequences, and A is its norm. However, much significance is
attached to the way in which A transforms sequences not in m. Let , be
the set of all matrices A with AII < . Then is a Banach algebra;it is
a closed proper subalgebra of the algebra of all endomorphisms of m. Let
c, Co be the spaces of convergent and null sequences.
For each n, ]c, [ak --< A and so the entries are continuous linear

functionals on . Let T be the subset of consisting of the triangular mat-
rices, i.e. the matrices A such that auk 0 if ]C > n. Since the entries are
continuous, T is closed in . It is clearly a subalgebra and has its inverses,
i.e. A e T, A-le together imply A-le T.

Let F be the subset, clearly a subalgebra, of I, consisting of the conservative
matrices, i.e. matrices A such that Ax e c whenever x e c. A matrix A e

belongs to F if and only if ak lim ank exists for each ]c (in which case
[ ak < oo) and lim k ak exists. Since auk and k ak are all linear
functionals of unit norm, this shows that F is closed in . We have also,
[8], that F contains its inverses, i.e. A e P, A-1

e imply A- e F. It is in
the proof of this result that we are forced (as far as we know) to consider the
action of A on unbounded sequences.
For A P, let x(A) lim k ank ak. Then x is a multiplicative

linear functional, [8]. If x(A) 0, A is called co-null, otherwise co-regular.
These terms were introduced in [6].

Let A P n T, the set of conservative triangular matrices. Many of the
classical summability methods are defined by matrices in A, for example the
Cesro, Nhrlund and Hausdorff methods. We shall see, below, several funda-
mental structural differences between A and P, and individual differences
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between their members. For example, if A e A and A-le A, then A must
be a triangle (i.e. triangular and a 0 for each n). In this case A sums
no divergent sequences, i.e. Ax c if x e c. For bounded x this is trivial
since A and A-1 preserve c as operators on re;for unbounded x it is also true
since A-I(Ax) x. The situation is quite different for F. If A e F and
A-le F, A sums no bounded divergent sequences, but may sum unbounded
ones. Indeed A need not be 1-1 for sequences outside m; see [8], Theorem 7,
for a regular matrix which is its own inverse but is not 1-1; also we may con-
sider a "principal diagonal matrix"; see [7].
The crucial point is contained in this remark"

Remark. For A, B e T and any sequence x, Bx exists and A(Bx) AB(x).

This remains true with instead of T if x is assumed bounded, but not if
x is not assumed bounded. Indeed there exists A F with A-1

e , and sequence
x 0 such that Ax 0, as was pointed out just preceding the remark.

3. Let us consider an algebra with identity I. Following [5] we define
the radical to be the set of points A such that I BA has an inverse for
every B. (In our case, I BA will occasionally have an inverse matrix
which does not lie in the space considered, i.e. no inverse "exists".) We note
the facts, given in [5]:I BA has an inverse if and only if I AB does.
The radical is a two-sided ideal. If the algebra is a Banach algebra, the radi-
cal is closed. The algebra is called semisimple if the radical contains only 0.
The spectrum of A is the set of scalars z such that A zI has no inverse. If
A is in the radical, its spectrum contains only 0.

It is clear that if f is a linear and multiplicative functional, f O, then for
each A, f(A) is in the spectrum of A (since f(A IfA) 0 and fz is an ideal).
Hence every element A in the radical has f(A) 0. This, applied to A with

f x, proves that every matrix in the radical of A is co-null. Theorem 2,
below, proves much more than this. We can also apply this remark to A or T
with f(A) an, for a fixed n. This proves that every matrix in the radical
of z or T has all its diagonal elements zero.

THEOREM 1. and r are semisimple. T and n are not semisimple.

Given A e , A 0, let x c, Ax O. For example, if, for a certain n, k,
we have ak 0, we may take x ti, a sequence of zeros save for a one in
the ]ct place. Define B e F as follows: B consists entirely of zeros except
for a single column, and BAx x. Then I BA carries x into 0, hence is
not 1-1 and has no inverse. This proves that A is not in the radical of or F,
and hence that these spces are semisimple.
To prove the second part of the theorem is relatively easy. For example,

a triangular matrix with a single nonzero element, and that one occurring
below the main diagonal, is easily seen to be in the radical of T and A. How-
ever, we can give an exact description of these radicals.
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THEOREM 2. For both T and A, a matrix A is in the radical if and only if
its diagonal elements are zero and kl ankl is uniformly convergent. For A

this last condition is equivalent to "A is coercive," i.e. Ax is convergent whenever
x is bounded.

The proof of the "if" part of this theorem was suggested by J. A. Schatz.
The details of the proof were worked out by E. K. Dorff.
We proved just before the statement of Theorem 1, that a matrix in the

radical of A or T has zero diagonal.
Next, we shall show that a radical matrix A must have the uniform conver-

gence property mentioned.
Consider first the case in which A is conservative, i.e. A e A. Suppose that
k ak is not uniformly convergent. We first observe that A is not coercive
since a coercive matrix must have, along with other properties, uniform
convergence of the series mentioned. Thus there exists a bounded sequence
x such that y Ax is divergent; y must be bounded since A has finite norm,
hence y has two distinct limit points, say yp(,) --+ a, yq(n) --+ . We may
assume p(n) T o q(n)
each n. Let B be defined as follows" for n < q(1) and all ], let
b 0; for q(r) <= n < q(r q- 1) let b, 0 for ] p(r), ]c q(r), while

Yp(r) XnXn Yq(r) bn,q(r)
yp(r) yq(r) y,(r) yq(r)

The matrix B belongs to
where M is an upper bound for all x I, [Y [; b 1 for each n >_- q(1),
and each column of B terminates in a string of zeros. (Thus, in fact, B is
regular.) Also By is a sequence whose nth term, for n >- q(1) is x. Hence
(I BA)x x By is a sequence terminating in zeros, a convergent se-
quence; call it z. Thus the matrix I BA is a conservative triangular matrix
which transforms a divergent sequence, x, into a convergent one, z. Thus
I BA cannot have an inverse, D, in A, since Dz would have to be convergent,
while Dz x. Hence A is not in the radical of A. (The above construction
is inspired by [1].)

In the second case where A is not necessarily conservative, let us assume
that A is in the radical and that 7 an is not uniformly convergent. We

-m(+i)can find
fori 1, 2,.... LetBbea diagonal matrix withbnn lforn n(1),
n(2), b 0 otherwise. Then BA, a row submatrix of A, has no row
submatrix with the uniform convergence property. Similarly, form C such
that CBA is a row submatrix of BA with the sequence of row sums convergent.
Then form DCBA with convergent first column, EDCBA with convergent
second column, and so on. Each of B, C, D, E,... is diagonal with zeros
and ones on the diagonal. Let F be the matrix whose first row is the first
row of A, whose second row is the second row of BA, whose third row is the
third row of CBA, and so on; F is a submatrix of A, thus F GA with G
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diagonal with zeros and ones on the diagonal; F is conservative but not co-
ercive. As above we can find H e A such that I HF has no inverse in A.
Then it has no inverse in T for F contains its inverses in (I, and so A contains
its inverses in T. Thus F is not in the radical of T. But F GA, and this
contradicts the assumption that A is in the radical and the fact that the
radical is an ideal.
We now turn to the proof that if k a is uniformly convergent nd

if a 0 for each n, then A belongs to the rdicM of T or A, whichever is
appropriate.

First let us notice that A is u limit point of right-finite matrices, i.e. matrices
B with b 0 for/c > m, m being some number depending only on B. (This
is not to be confused with row-finite, in which m depends on n.) This is
true since given e > 0 we choose K such that k>K ank < e for all n. Let
bk a for ]c __< K, b 0 otherwise. Then B is right-finite and
lIB- d]] < .

Since the rdieM is closed, we have only to prove tha any right-finite
mtrix with zero diagonal is in the radical. Since the radicM is closed under
addition, it is sufficient to prove that matrix with only one nonzero column
and zero diagonal is in the radical. This we now do. Let m be positive
integer, and let a 0 for M1 n, k excep when k m; leta 0 for n _-< m.
Let B be an arbitrrymatrix in T. (If A A, tak B A.) Let D I BA.
Clearly d 1 and D is triangular; heno D- exists. Our next step is to
see that D- < . Let x be an rbitrary bounded sequence, and
y D-x. Thenx Dy y-- BAy; hence

Yn Xn + Ym bnrarm aIid [yn - tXn[ + ’[Ym[" I!ali ][A
r-----m+l

Thus y is bounded, and D-1 is a matrix which preserves boundedness, i.e.
]]D-1]I < . HenceD-l

e w and so A is in the radical of w. In caseAeA,
then D e A and D-1

e T; as mentioned in 2 then D-1
e A. Hence A is in

the radical of A.
It is perhaps of interest to observe that the matrices in the radical are totally

continuous operators on m since they are limits of operators of finite rank.

4. Contained in the proof of Theorem 2 is the following result:

LEMMA 4.1. In T, if A has an inverse (in T), then so does A + B for any
right-finite B e T such that A + B is a triangle.

Related to this is

LEMMA 4.2. Let A e A and] ann l for all n, and let 1 ak > [[ A ]] 2.
Then A- e A, and A sums no divergent sequences. The result is best possible
in that the condition a 1 cannot be dropped and the 2 cannot be increased.

m--1Proof. Let _k=, [ak > > A 2; then for lrgen, .’ ak > t,
and so ’’2 a ’-_ ]a 1 ’:t a < A 1 < 1,
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and A differs by a right-finite matrix from a matrix in the unit neighborhood
of I. By Lemma 4.1, the result follows. To see that it cannot be improved
in the way mentioned, consider first the Cesro matrix. It satisfies
’]akl > I]AII 2 but not a 1. Consider also the matrixA with
ann an,n-1 1, ak 0 otherwise. This matrix has a 1 and

The result can be improved by replacing a 1 by a condition of the
type lim a 1 with appropriate modifications.
An application of Lemma 4.2 is the known result that x is convergent if

lx + -1 a xk is convergent, l ak < for the corresponding matrix
A has ’lal ]IAI] 1.

5. The set of co-null matrices is a two-sided ideal in, and a maximal linear
subspace of 1 (since x is linear and multiplicative) but is not, clearly, an ideal
in . Indeed there exists co-null A with right inverse in (it could not have
a left inverse in ); see [8]. This shows that x cannot be extended to (I, so as
to be linear and multiplicative.
We examine other subsets of P for the property of being an ideal. For

any sequence x, let (x) be the set of conservative matrices which sum x, i.e.
transform x into a convergent sequence. Clearly (x) F if and only if x is
convergent, or equivalently I (x) if and only if (x) P.

LEMMA 5.1. (X) C (y) if and only if (x) (y) or (y) F.

This result is essentially due to Brudno, and t Erd6s and Rosenbloom, who
prove it for bounded x; see [4]. If x is unbounded, choose A e r such that A
transforms into convergent sequences only sequences of the form ax -t- u,
where a is a scalar, and u is convergent. See [7] for existence of A. Since
A e (y), it follows that y a x + u.

THEOREM 3. In F, (x) is a right ideal if and only if x is convergent, a left
ideal if and only if x is bounded. (x) n A is, in A, a right ideal if and only

if x is convergent, but is always a left ideal.

If x is bounded, we simply consider it as a point of m, and since we are
dealing with endomorphisms of m, the result is trivial since A(Bx) (AB)x
for any A, B e . The same is true for A, B e A, whether x is bounded or not
since A is row-finite. See the earlier remark.
Next we assume that x is unbounded and show that (x) is not a left ideal

in F. There exists, [7], A (x) such that A has a two-sided inverse, iu fact

IIA Ill < 1.
Next we assume that x is divergent and show that (x) is not a right ideal.

Buck [2, 3] has shown that if A is any regular matrix and x is divergent, there
exists a subsequence of x not summable by A. Let B be the matrix such that
Bx is the subsequence of x; then AB . (x) and the result follows.
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LEMMA 5.2. Let x be such that (x) is a closed subset of F (x) n A is a closed
subset of /), then f(A) lim Ax for A (x) defines a continuous function f
o (x) (o (x) a).

Here lim Ax means the limit of the convergent sequence Ax. The result
follows from the Banach-Steinhaus closure theorem and the facts

f(A) lim limm ak xk, 7 ax <_- max
k=l k=l l_k_m

THEOREM 4. (X) is closed in F if and only if x is bounded. (x) A is
closed in A if and only if x is bounded.

Let x be bounded. Let un(A) =1 aRk xk. Then

lug(A)] <= (sup x I)ll A

Thus/u is a uniformly bounded sequence of functionals, and so (x) is closed,
being the set of all A such that lim u(A) exists.
For x unbounded, let r be any number, and n a subscript such that x > r.

Let A A be a matrix with only one nonzero column, the nh, which has n
zeros and then ones. Then A 1, lira Ax ]x > r. By Lemma
5.2, (x) is not closed. This completes the proof. We could have shown that
(x) is not closed in F for unbounded x by noting that I e (x); but this is false
for A since I AII < 1, A e A, implies that A sums no divergent sequences.
Since we can, in fact, find a regular matrix A e (x) with III A as small
as we wish, this yields a similar result for the subset of F consisting of multi-
plicative matrices, i.e. such that ak 0 for all It. (They are called multiplieR-
rive since for x c, Ax converges to a constant multiple, viz. lim a, of
lim x.) But this is not so for the subset of consisting of multiplicative
matrices; call this subset M.

THEOREM 4’. (X) M is closed in M if and only if x is bounded.

Let x be unbounded. As for the previous result we need merely show that
given any positive integer s, there exists A e (x) i with AI] 1, lim Ax s.
(This cannot be found in [1], although it contains many examples of this
type.)

Let {Xpn be a subsequence of x with xp > max (s, n). For n < p let
auk n (the Kronecker delta), for p =< n < p+, let a 0 for lc p,
ak S/Xpr if / p.

5. Agnew, [1], has given several results of this type: if x and y are sequences,
x divergent, then there exists a regular matrix A with y Ax. He remarks
that A cannot be expected to be triangular. In fact, as we shall now see,
the situation is worse with respect to triangular matrices, in that we cannot
even expect to come close to y with Ax. This is clearly related to the semi-
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simplicity of q) and lack thereof of T; for if, given arbitrary x, y, we could
find A e T with Ax y, then, given B e T, let x By, choose A with Ax y,
and so (I AB)y O, and B is not in the radical of T; hence T would be
semisimple.

THEOREM 5. Let x be a bounded divergent sequence, y a bounded sequence;
then there exists A e A such that y Ax has a finite number of nonzero terms,
and hence is convergent. There exist unbounded sequences x, y such that y Ax
is divergent for every A e A.

The matrix mentioned in the first part of the theorem is the one called
B, constructed in the proof of Theorem 2 so that By has x for its nh term
for n sufficiently large. For our present purpose we have interchanged x, y.

For the second part of the theorem, let B be the matrix given by b.n-1 e,
n 1, 2,..- ;bn 0for]c n 1;where lenl < . Letybea
sequence such that x By is unbounded. By Theorem 2, B is in the radical
of A; hence, for any A A, I AB has an inverse and so does not transform
.any divergent sequence into c. In particular (I AB)y c, and the theorem
is proved.

Let s be the set of all sequences. Agnew’s results, mentioned above,
state that the map from I’ to s given by A ---. Ax is onto, x being a fixed un-
bounded sequence. Indeed it is onto from the subset of I’ consisting of the
regular matrices. Theorem 5 says that it is onto sic as a map of A if x is
bounded and divergent, but need not be onto sic if x is unbounded.

7. The maximal group G of a Banach algebra is the set of elements with
inverses. The elements which are in the closure of the maximal group are
of some general interest. Mercer’s theorem states that the Cesro matrix
is such an element. The following example is instructive. Let A be the
multiplicative matrix given by ann 1, a.... s, a 0 otherwise. Then
for0 =< s < 1, IlI- A[[ s < 1;henceAA, andAeG. Fors > 1,
let B be the matrix gotten from A by omitting the first row. Then B e F,
I s-lB 1Is < 1; hence B-1

e F, and, [7], Bx convergent implies that
x u -t- av, where u e c, a is a scalar, and v is a fixed unbounded sequence.
(Here we also have used the fact that the set of sequences v such that By 0
is one-dimensional.) But Bx is convergent if and only if Ax is. Hence for
0 =< s < 1 and s > 1, A sums no bounded divergent sequences; and in the
first case, 0 =< s < 1, A. belongs to the maximal group.
The dividing line s 1 yields the matrix A1 which sums the bounded

divergent sequence {(-1)}. We conjecture that this behaviour is general"
i.e., let A be a matrix in A with ann 0 and with A not in the maximal group
(i.e. A sums divergent sequences); then (we conjecture) A sums bounded di-
vergent sequences if and only if it is in the closure of the maximal group. Some
writers have classed as pathological those matrices not summing any bounded
divergent sequences. The conjecture would relegate the nonpathological
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matrices to a thin veneer on the maximal group. As an indication of the
possible difficulty of the problem we note the proof of Mercer’s theorem.
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