SOME SUFFICIENT CONDITIONS FOR A GROUP TO BE
NILPOTENT

In commemoration of G. A. Miller

BY
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1. Let
1) G=G>GC>G> - >Gn=1

be a chain of subgroups of the group G. Following Kaloujnine [1], we define
the stability group of the chain (1) to be the group A of all automorphisms « of
G such that

(2) (G, x)“ = G«; X

holds for all x € G;_; and for each 7z = 1,2, --- , m.

If the subgroups G; are all normal in G, then it is easy to show that 4 is
nilpotent and of class at most m — 1. But without some such assumption of
normality, the nature of the group 4 is not so clear. In [1], however, Kalouj-
nine proved that A is always at least a soluble group, and the length d of its
derived series cannot exceed m — 1. He remarks of this result that it is
“wahrscheinlich nicht endgiiltig.”” In fact, we shall find that 4 is still nil-
potent even in the general case. This is stated in

TaEOREM 1. The stability group A of any subgroup-chain (1) of length m is
nilpotent and of class at most 3m(m — 1).

It was shown in [3] that a nilpotent group A of derived length d must be of
class at least 2°". Thus Theorem 1 yields the bound

3) d = [logs m(m — 1)]

for the derived length of the stability group A. This bound never exceeds
m — 1 and is smaller than m — 1 form > 5. Indeed, it is of a smaller order
of magnitude as m — «. Hence Kaloujnine’s theorem follows from (3).

For the class of A we have the bounds m — 1 and 3m(m — 1) which apply
in the normal case and the general case, respectively. These bounds first
differ when m = 3. That the difference is significant we show by constructing
a group with a subgroup-chain of length 3 for which the stability group is of
class 3. It will also be proved that the subgroup of G generated by all the
commutators £ 'z* with ¢ G and « ¢ A is always locally nilpotent. This
commutator subgroup is known to be always nilpotent in the normal case:
cf. [1], Satz 4. We show by an example that this need not be so in the general
case.
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Let M be a nilpotent normal subgroup of G. If G/M is nilpotent, G is
soluble but need not be nilpotent. However, if G/M’ is nilpotent, where M’
is the derived group of M, then as we shall show G is also nilpotent. These
results will be used to derive sufficient conditions for the join {H, K} of two
subgroups of a group to be nilpotent.

2. If we replace G in (1) by its regular representation G, the condition (2)
on the elements « of 4 becomes

(4) [G’,'._l ’ A] = G-i ('L = 1, 2, trt, m),

where G, is the subgroup of G corresponding to G;. The notation here is the
standard one: if H and K are subgroups, then [H, K] is the subgroup generated
by all the commutators [z, y] = 'y "2y withz ¢ H and y ¢ K. Since [y, z] =
[z, y]™, we have [K, H] = [H, K]. As usual we also write ¥ for y zy.
However, when repeated commutations are needed, this notation is in-
convenient. Instead, we shall use a bracketless notation and write

(5) [H, K] = yHK,
the symbol v standing for the operation of commutation. For example,
[[H, K], L] = ¥’"HKL; [---[[H, K], K], --- ,K] = v"HK";
\——""V—_'—_/
n

the lower central series of a group G is
(6) G; 'YGz = G'y 72G3, Tty “/n—lGn’ Tty

and so on. G is nilpotent of class less than n if and only if v"7'G" = 1.
Since the operation of commutation is commutative, though not associative,
we have yXY = v¥YX and ¥HKL = v'KHL = yLyHK = yLyKH for any
three subgroups H, K, and L. On the other hand the three subgroups
v’'HKL, ¥KLH, and v’'LHK are usually distinct. It will be understood, of
course, that v’G®, for example, is an abbreviation for yyGGG. In spite of
the absence of brackets, this symbolism is unambiguous.

The relations (4) now take the form yG;.; A < G ; and since Go = G,
Gn = 1, they imply that y"GA™ = 1. Theorem 1 therefore follows from

TueoreM 2. Let H and K be subgroups of a group, and suppose
that y"HK™ = 1. Then y""K""'H = 1, where n = 3m(m — 1).

For if we take H = G and K = A in this theorem, we obtain yBG = 1,
where B = y"A™"'. But this means that every element 8 ¢ B commutes
with every element of G and therefore also with every element of G. Hence
B consists only of the identical automorphism of @, and the stability group
A is nilpotent of class at most n. However, Theorem 2 is more general than
Theorem 1 only in appearance.
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3. Before proving Theorem 2, we must recall a few well known facts about
commutators.

Let x, y, and z be elements of a group. Then we have the identities

) [zy, 2] = [z, 2)'[y, 2];

@®) [, y2] = [, 2llz, yI;

and

(9) v, ¥, &y, e, alle, 27, y)" = L

In (9), we have used the convention [u, v, w] = [[u, v], w]. Of these formulae,
(7) and (8) are immediate. To obtain (9), let @ = xzz 'yz, and let b and ¢
be derived from a by cyclic permutation of z, y, and 2. Then

[,y 2" = a7'b,

so that (9) becomes a 'bb ec 'a = 1.

Let H and K be subgroups of a group G, and let M = yHK. 1If, in (7),
we take xr and y in H, and z in K, we obtain M* < M. Hence H normal-
izes M. Since M = yKH, K also normalizes M. Therefore

(10) vHK < {H, K}.

Here, following Wielandt [4], we use M < J to mean that M is a normal
subgroup of the group J.

Now let L be a third subgroup of G. In (9), choose z ¢ H, y ¢ K, and
2 € L; and write

(11) U = v’KLH, V = ¥’'LHK, W = 4"HKL.

The three factors on the left of (9) then belong, respectively, to W*, U?, and
V®. Let N be a normal subgroup of G containing both U and V. Then
U” < N, V* £ N; and so, since N is normal, (9) gives [z, ', 2] e N. Asz
runs through H, and y through K, the commutators [z, 3] generate yHK.
Consequently, every element z of L commutes modulo N with every element
of yYHK. 1In other words, W = 4’HKL is also contained in N. This gives

Lemma 1. Let H, K, and L be subgroups of a group G. Then any normal
subgroup of G which contains two of the three subgroups (11) contains also the
third.

CoRroLLARY. If the subgroups (11) are themselves normal in G, then each of
them s contained in the product of the other two.

This result was first proved in [3] for the special case in which H, K, and
L are all normal in G, and this case is sufficient for many applications. How-
ever, we shall need the general case, as stated in Lemma 1. This is due to
Kaloujnine [2]; cf. the essentially equivalent Fundamentalhilfssatz of [1],
p. 165.



790 P. HALL

LemMa 2. Suppose that L < J = {H, K} and that YHKL = 1. Then
v LHK = ~’LKH, and this group is normal in J.

For, let C be the centralizer of YHK in J. Then C < J, by (10); and
L = C, by hypothesis. Hence yLH < C. LetxeH, yeK, and t e yLH.
Then teC and [z, y '] e yHK; and so ¢ commutes with [z, y™']. But
y° = [z, y "y, and (8) gives [t, y°] = [t, y]. Hence y’LHK® = ¥'LHK. Since
xeH, we also have yLH = (yLH)?, by (10). Therefore (Y'LHK)® =
v(vyLH)’K* = ¥’'LHK® = 4’LHK. Thus H normalizes ¥'LHK. By (10), K
also normalizes y"LHK. Hence v’LHK is normal in J. Since y'KHL =
v'HKL = 1, we find similarly by interchanging H and K that y’LKH is
normal in J. By noting that y'LKH = +’KLH, Lemma 2 now follows from
the corollary to Lemma 1.

We now deduce Theorem 2 by induction on m. Whenm = 1, n = 0, and
the result is immediate. Let m > 1, and write H, = yHK. Then
Y"'H, K™™' = 4y"HK™ = 1, by hypothesis. Therefore we may suppose
inductively that y""'K""'H, = 1, wherel = n — m 4+ land n = Im(m — 1).

Hence K, = 4 'K’ centralizes H; for all r > I. Lemma 2 now gives
vK,HK = 'K, KH = yK,4; H for r > 1; and so
YK HK"™ = y" K1, HK™? = .-+ = YK, HK = yK,. H.

Since K11 < K, we have yK;.. H £ yKH = vyHK; and so
'YKn+1 H = ‘ymKH.]_ HKm_l é 'YmHKm.
But y"HK™ = 1, and vKn,u H = v"7'K""'H, so Theorem 2 follows.
4. We consider next, though without solving it, the problem of the least
upper bound ¢(m) for the class of the stability group 4 in terms of the length

m of the chain (1).
Let H and K be subgroups of a group G, and let

(12) H=HyzH zH, 2 --
be a series of normal subgroups of H such that

(13) YKH; < Hia (i=0,1,2 ).
Then we have

(14) YK'H; £ Hiy;

forall¢ = 0andj = 1. For, by (12) and (13), K normalizes each H; ; and
since H; < H, by hypothesis, we have H;<{ {H, K}. Forj = 1, (14) reduces
to (13). Assume (14) for a given 7 = 1 and all 7, and apply Lemma 1 with
H;, K, and K; = v"'K’ for H, K, and L. By (13) and (14), v’'H; KK, <
YHin K; = vKjHiw S Hipj; and YK HiK £ yHio; K £ Hign
Since Hiy 41 is normal in {H, K}, Lemma 1 gives v'KK;H; £ Hij41, or
v K™ H; < Hipjs1. Thus (14) holds generally by induction on j.
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In particular, if H, = 1, we obtain v"K™H = 1. This gives the result
already mentioned which is stated in

LemMa 3. The stability group of a chain of normal subgroups of length m
28 nilpotent of class at most m — 1.

It is also well known that this bound m — 11is best possible. For example,
let G be an elementary Abelian p-group of order p™ with a basis a; , az, - - -

Om,andlet G; = {@ia, Giz2, *** , Om }. The stability group A of this cham
(G,) contains the elements 7; z = 1, 2, --- , m — 1), where

ai' = @i, 0 =a; (J#F19);
and [ry, 72, -+ , Tm_1 ] MAps @, into a; a» ; so that the class of 4 is at least

m — 1, and therefore equal to m — 1 by Lemma 3. In fact,
A = {71’7-2’ oo ;7m—1}

and is a Sylow p-subgroup of the group of automorphisms of G. Also it is
easy to see that A = T,.(p), the group of all unitriangular m X m matrices
with coefficients in the prime field of p elements.

This example, in conjunction with Theorem 2, yields

(15) m—1=c¢im) < imim — 1),

so that ¢(1) = 0 and ¢(2) = 1. We shall now show by another example that
¢(8) = 3, so that there is a genuine difference between the normal case and
the general one.

First, it will be convenient to have a suitable system of generators for a
commutator group.

LemMa 4. Let H = {X} and K = {Y} be subgroups of a group J; and let
T be the set of all elements of J of the form [z, y]™, with x e X, ye Y, uweH,
and ve K. Then vyHK = {T}.

Since [z, y] e YHK, which is normal in {H, K} by (10), we have {T} < vyHK.
Thus we need only show that every commutator [a, b] with ¢ e H and b ¢ K
is expressible in terms of elements of 7. This may be done by using a “col-
lecting process’ represented by the formula

(16) alblazbg---anbn=ala2-- a,,blbgn-b,,,

where b; = bi+1%+2"""*»  Here, the a; and b; are arbitrary elements of any
group. Since H = {X}, every element a of H is expressible in the form
a = x1'x3% - ", where each z; ¢ X and the r; are integers. Then

b7ab = JIia(e: i, D)™
Applying (16), we obtain
(a7) o, b = tits - 4,
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where r = |7 | 4+ | 72| 4+ -+ 4+ | 7w |, and each ¢; is either the transform by
an element of H of some [z;, b], or else the inverse of such a transform. If
beK, wehave b = yi'ys? - -+ yi', where each y; ¢ ¥ and the s; are integers.
Then
aibws = [Limys lys, @ ).

Applying (16) again, and noting that [z, b] = [b, 2:]" and |z:, y;] =
lyi, x: ™", we obtain [z;,b] = 212 -+ - 2, where s = | 8| + || + --+ +
| s1|, and each 2; is either the transform by an element of K of some [z;, ¥, ],
or else the inverse of such a transform. Substituting for the [z;, b] in (17),
we find the required expression for [a, b] in terms of elements of T'.

6. We now prove

TuroreMm 3. There exists a nilpotent group G of class 2 with a subgroup-
chain of length 3 whose stability group s of class 3.

We define G to be the group generated by the elements
(18) x, Xy, X2, %12, Ta
subject only to the following defining relations:

(19) All commutators of weight 3 in the generators (18) are equal to 1;

(20) [T, 2] = 1;

2D [, ze]l =, ]l =ca;  [r, ] = [, o] =o0;
and

(22) ¢i=c =1

The relations (19) by themselves would define the free nilpotent group F
of class 2 with (18) as a system of free generators. F’ is then a free Abelian
group with the ten commutators [z, z1], [z, 22 ], - - [212, %21 ] a8 a system of
free generators. F’ is also the centre of F. Consequently, in the group G
obtained by imposing the additional relations (20), (21), and (22), the ele-
ments ¢; and ¢; are actually of order 2. In particular,

(23) a # 1.

The defining relations of G are easily seen to be invariant under the two
transformations which map (18) into

(24) xXry, X1, X2Tan, iz, T2
and
(25) Txy, 1212, X2, X1z, T,

respectively. Hence these fransformations define two endomorphisms 7 and
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n2 of G. Clearly, @™ = G™ = G. In fact, ; and 5. are automorphisms of
@; for n; has an inverse which maps (18) into

—1 —1
(26) xxy, %1, X2Z21, 12, X2,

and similarly for . .

Let K = {n., 72}. We shall suppose @ identified in the natural way with
its regular representation, so that G' and K can be considered as subgroups
of the holomorph of G. Let J = {G, K}, so that yGK <1 J by (10); and
vGK contains the group

(27) Gl = {G/’ X1 ’ 2 ) Z12 ) Loy },

since [z, 7:] = %, %12 = [T1, 2] and 2y = [x2, m]. But Gy < J, and J/Gy
is the direct product of G; K/G, and G/G,. Hence

(28) G1 = ")‘GK .

To calculate G» = vG; K = v’GK*, we use Lemma 4. By (27), G, is gener-
ated by the set X consisting of z; , 22 , %12 , a1 together with the commutators
of these four elements with z; while K is generated by 7 and #.. Let £ be
one of &y, T2, T12, Tu . Since G is of class 2, we have [z, £§]" = [zz;, £"] =
[x, &"[x:, £]. If & 5 x5, then " = § and so [z, &, m] = [n, £. But

[z, 22, m] = [z, Zal[21 , 22 221] = [, ][ , Te)er -
Similarly, if £ # x;, then £ = £ and [z, £, n2] = [z2, £]; while
[z, 21, no] = [, 2eo[22 , T1]e2

It now follows from Lemma 4 that G, is generated by the transforms of the
six elements

(29) Tz, Ta, C, C, b, b
by the elements of the product KG, , where
h = [x7 x2l][x1 s x2]7 by = [x’ xl2][x2 3 171].

But the defining relations of G show that the elements (29) all commute with
71 and g, and hence with every element of K. Since the ¢’s and ¢’s belong to
the centre of G and 27§ = xac;, 231 = am ¢i, it follows that G is generated
by (29) and

vG. K = v'GK® = 1.

Hence K is contained in the stability group of the chain of subgroups (G:) of
@G, where Gp = G and G; = 1.

Using (24), (25), and (26) to transform z successively by #1°, 72", m1 , 72 , We
obtain the sequence

. -1, —1 —1, -1 -1 —1, —1 -1 _—1
X, XTX1 ; XTX2 X121 ; XTI X21 Lo X12%1 5 T2 X1 Xy2 X212 Ty
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Using (19)-(22), this gives

(30) [.'17,[111 ) 772]] = T12 x?ll[x2 ) xl]'
Similarly,
(31) [z,[n2 , ml] = % 235 (21, 22].

Since G2 <1 G1, Lemma 3 applied to the chain G, G., 1 shows that [, %]
commutes with every element of G;. Using (24), (26), (30), and (31) to
transform « successively by [ns, ml, 71, [n1, 72, and n; , we find the sequence

T; Ty T [ , ;2T T xﬁl[xl , To)[x1 zatl;
Txy2 xz_ll[wz , Z)aT o 12 21 , Tojer = zxiler ;o xer .

In this calculation, we have used the defining relations of G, from which it
follows that [z , z31] = ¢; and that 27" commutes with 212 2. The final term
zc; shows that [x,[n1 , 72, m]] = e ; and so, by (23), K is of class at least 3. By
Theorem 1, the class of K must be exactly 3. Thus Theorem 3 is proved.

The group @ used in this example is infinite. If we impose additional de-
fining relations to make G, for example, a group of exponent 4, the above
calculations are unaffected, but G becomes a finite 2-group of order 2. No
doubt smaller groups could also be found with the relevant property.

6. We return now to the case of general m as in Theorem 2. Let H and K
be subgroups of any group @, and let J = {H, K}. We write

(32) H, = ¥'HK’ (r=1,23,--),
and
(33) K,=KH,.

Since K normalizes H, , the product K, is a subgroup of J. In particular, K,
is the normal closure of K in J; and

is the normal closure of H in J. It is clear that
(35) H, = yHK = vHK.

In considering the consequences of the relation H,, = 1, there would therefore
be no loss of generality in replacing H by H; this would be equivalent to
assuming H normal in J, or H = H, .

According to Theorem 2, the relation H,, = 1 implies y""'K""'H = 1 with
n = im(m — 1). But (35) shows that H,, = 1 is equivalent to y"HK™ = 1;
therefore it implies v""'K"™H = 1, which represents a limitation on the
class of the group of automorphisms induced by K in H. In this way, we
recover Theorem 1 from Theorem 2.
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We shall now show that H, = 1 implies that the group H; is locally nil-
potent. More precisely, the result is

TueEOREM 4. Let H and K be subgroups of a group G such that y"HK™ = 1.
Let H, = yHK, and let H = HH, and K, = KH, be the normal closures of H
and K, respectively, in J = {H,K}. Let C be the centralizer of H in K1 . Then
the groups Ki/C and H; are locally nilpotent.

It should be noted that C'<] J, since both H and K, are normal in J. It
will be sufficient to consider the group K;/C. For if this is locally nilpotent,
so is its subgroup CH,/C = H,/Cn H,. Since C n H, is contained in the
centre of H, , it then follows that H, itself is locally nilpotent.

To prove Theorem 4, we need an important result due to Hirsch [5]. This
is stated in

THEOREM 5. In any group G, the join N(G) of all normal locally nilpotent
subgroups of G s tself locally nilpotent.

Obviously, A(G) is a characteristic subgroup of G.
CoroLLARY. If K s a subnormal subgroup of G, then AN(K) = MG)n K.

For, to say that K is subnormal in G (nachinvariant in the sense of Wielandt
[4]) means that there is a finite chain of subgroups

K=Kn]Kna1<4- <Kl Ko=G

stretching from K to @, each member of the chain being normal in the next.
Since L, = A(K,) is characteristic in K, , it is normal in K, ;. Since L, is
locally nilpotent, by Hirsch’s theorem, it follows that L, < L,,. Hence
MK)=L,=M=XGnK=LinK. But A\(@)<IG and so MJK.
As a subgroup of \(@), M is also locally nilpotent. Hence M < A(K). Com-
bining, we find M = A(K) as required.

In the proof of Theorem 4, we shall use the notations (32) and (33), so that
H,=1and K,, = K. By (10), K normalizes H,, and so H,;; < H, ; and
then H,., <1 H,, again by (10). Hence

(36) 1=Hup]Hpa - ---<]H ]J.
We shall show that
(37) K=KndKna< - -<K1J.

For (36) shows that K,;; < K,. Letyand y; be elements of K, let x ¢ H, and
21eH,yy. Then 3. =yl eK, and 22 = 23" ¢ H,1, since K and H, both
normalize H,;;. Hence (y121)" = yz&2 = ya2[y2, z]xs. Since therefore
ly2, ] eyKH, = H,,,, we have (y; 21)"" e KH,y1 = K;11. But yz and y, 2y
are arbitrary elements of K, and K,.., respectively. Thus K,; <] K, for
r=1,2, ---,m— 1, and (37) is proved.

As already noted, H,, = 1 implies y""'K™""'H = 1, so that y"K"*' is con-
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tained in C. Hence CK/C = K/C n K is nilpotent. It follows from (37)
that CK/C is subnormal in J/C. By the corollary to Theorem 5, we now
have CK/C = NMCK/C) = N(J/C) = L/C, say. Then K < L<J, and
consequently L contains the normal closure K; of K in J. Since L/C is locally
nilpotent, it follows that K,/C is locally nilpotent. This concludes the proof
of Theorem 4.

7. It follows from Theorem 4 that, if yY"HK™ = 1, then yHK is nilpotent
provided that it is finitely generated. This will certainly be the case if
{H, K} is finite. We shall now show by examples that vHK need not be
nilpotent in general; and that even when {H, K} is finite, and so yHK is nil-
potent, there is no bound for the class of yHK in terms of m provided that
m > 2. This is stated in

THEOREM 6. There exists a group {H, K} such that YHK® = 1 and yHK s
not nilpotent. Given any integer n, there exists a finite group {H, K} such that
YHK® = 1 and yHK 1is nilpotent of class at least n. On the other hand,
v'HK® = 1 implies that yYHK is Abelian.

The last remark was already noted by Kaloujnine in [1]. If ¥’HK® = 1,
then K centralizes H; = yHK. Since H,<| J = {H, K}, it follows that the
normal closure K; of K in J also centralizes H; . But K; = KH,, so that in
this case H; is contained in the centre of K; .

Let V be a vector space over the prime field of p elements, and let (v,),
n =0, 1, £2, ---  be a basis of V. We take H to be {£}, where £ is the
linear transformation of V defined by

(38) vnE = Unpt1
for all n. We take K to be {5}, where 7 is defined by
(39) von=vo+v; Vnn=uv, if n=0.

The normal closure K; of K in J = {£, 4} is then the group generated by the
conjugates 9, = £ " of 9 (n = 0, £1, &2, ---). Hence vy n = vk + Vi1
and v; m = v; if j % k. If V, is the subspace of V spanned by the vectors
Uk, Ukt1, Ukse , - - - , then K leaves each V; invariant.

Let A be the group of all elements of K; which transform identically both V,
and V/V,. Then K < A by (39), and A<{K;. Obviously A is Abelian.
But H,=+vHK < K,, and so Hy=vH; K S vyK; K £ A. Since A is
Abelian and contains K, we have y'HK® = yH; K = 1. Now H, contains the
elements [5, £l = n g, = ¢a, say. Since

vl{g-lyg‘z) "'7§'n]=vl+vn+1,

and » is arbitrary, H; cannot be nilpotent. This proves the first statement of
Theorem 6.
To prove the second part of the theorem, we must proceed rather differently.
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Let L, be the group generated by n elements xz; , &2, - - - , z, subject only to
the defining relations which express that

(1) 2” = 1for all x ¢ L, ,where p is a given prime > 7n; and

(ii) x; commutes with all its conjugates in L, foreach¢ = 1,2, --- , n.

We show first that L, is nilpotent of class n. We recall a well known
theorem of Fitting [6]:

LEmMmA 5. Let X, and X, be normal subgroups of a group G. If X; is nil-
potent of class ¢, and X, is nilpotent of class c. , then Xy X, is nilpotent of class
at most ¢ + ¢z .

Now let X; be the subgroup generated by the conjugates of z;in L, . Then
X;4L,foreach s, and L, = X; X, --- X,. By (ii), the X; are all Abelian.
Hence L, is nilpotent of class at most n, by Lemma 5. To show that the
class of L. is actually equal to n, we compare L, with the group
Y= {m,n, -, n. ) of linear transformations of V, where n; = £ *nt’ and
£, 7 are defined by (38) and (39). It is easy to verify that each »; commutes
with all its conjugates in Y, and so, as for L, , Y, is nilpotent of class at most
n. Also 4} = 1 foreach. Since n < p, by hypothesis, it follows from the
theory of regular p-groups developed in [3] (the relevant theorems are 4.13,
p. 73 and 4.26, p. 76) that y* = 1 forally ¢ Y,. Hence the mapping z; — »;

¢t=1, 2, ---, n) defines a homomorphism of L, onto Y,. But
[m,m2, 7. ] mapsv; onto v; + v,41 and so ¥, is of class at least n. Conse-
quently, the class of L, cannot be less than n.

Now L, has an automorphism permuting the generators x;, 22, -, Za

cyclically. Hence L, may be embedded in a group G = {L,, t} such that
2% = x4y for ¢ <mn and 2, = 2. Define H = {t} and K = {x; }. Then
H,=~+vHK = L,, since K =<L,<G And H,=+yH,K £ X,, since
K £ X,<dL,. So+’HK®=yH,K = 1, since X; is Abelian. But H; con-
tains the elements [2;, ) = a7'2: ¢ = 2,3, ---,n). Hence X, Hy = L, .
But L, /X1 =2 L., which is a group of class n — 1. Since H, /X; n H; &%
L, /X, it follows that H; is of class at least n — 1. This concludes the proof
of Theorem 6.

For the sake of completeness we note the very simple result which is related
to Theorem 4 in much the same way as Lemma 3 is related to Theorem 1.
This is

LEmma 6. Let K and L be subgroups of any group, and suppose that there
exists a chain of subgroups L = Ly =2 L, = -+ = L, = 1, all normal in L
and such that yL;y K < L; foreacht = 1,2, --- ,m. Let M = yLK, and let
K = KM be the normal closure of K in J = {K, L}. Let C be the centralizer of
L in K. Then the groups K/C and M are nilpotent of class at most m — 1.

For in this case the groups L; are all normal in J; and therefore yL;1 K = L;
impljes yLiwK s Liforl<¢=m. It now follows from Lemma 3 that
v'K’L; £ Liy; for i +j < m. Hence y" K™ centralizes L, so that K/C is
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n_ilpotent of class less than m. Also y" K™ centralizes L, . But M =<
KnL;. Hencey™"M™"is contained in the centre of M, so that M also is
nilpotent of class less than m. Cf. Satz 4 of Kaloujnine [1].

8. We conclude with a criterion for nilpotency of a rather different kind
from those considered above. This is based on

LemMa 7. Let K and L be subgroups of any group, and suppose that K
normalizes L and that y"LK™ < L' = vL?, the derived group of L. Then
yrerKrm-—r+1 é ’YTLT-H fOT r o= 1’ 2’ 3’ R

The case m = 1 states that, if K centralizes the first factor group L/L’ of
the lower central series of L, then K centralizes all the factors y" L’ /y"L"™" of
that series; this is well known.

To prove the lemma, we form the series L = Ly =2 Ly = -+ Z Lw = L'
where L; = L'-(y'LK"). Then each L; is normal in L, and vL;; K < L; for
each z=1, 2, ---, m. As in the proof of Lemma 6, it follows that

yL;_; K £ L; for each ¢, where K is the normal closure of K in J = {K, L}.
Hence y"LK™ < L’. Therefore there will be no loss of generality if we
assume K, as well as L, to be normal in J. Thus Lemma 7 is really a theorem
about normal subgroups.

For any normal subgroup X of J, we write Xo = X and X, = v"XK" for
n > 0. Assuming K< J, X, is then also normal in J. The corollary to
Lemma 1 then gives

(40) (yXL)1 £ (vXo L1)(vX; Lo).

By induction on n we deduce that
(41) XL), = H?ao (vX; Lns).

For let P = P, P; - -- P, , where each P; is normal in J. Then by (7), we
have yPK = @1 Q2 - -- Q. , where Q; = yvP; K. Taking P; = yX. Ln;,
we have Q; = R,y R; by Lemma 1, where R, = vX; L,—;. This gives the
induction step from n — 1 to n in (41).

We prove Lemma 7 by induction on r, the case r = 1 being true by hy-
pothesis. Assume that the result holds for a given r = 1, and take X =
y7'L" and n=(r+4+1)m —r in (41). By the induction hypothesis,
Xn—mt1 < ¥XL. Of the factors on the right of (41), those for which ¢ > n — m
have X; < yXL; and since L,_; £ L, each of these factors is contained in
v*XL’. In each of the remaining factors we have n — ¢ = m, so that
L,.; £ L'; and since X; < X, each of these factors is contained in yXL' =
¥YL’X. But+L’X = +v’XL’ by Lemma 1. Hence (yXL), < v’XL?, which
is the result required for the next value of . This concludes the proof of the
lemma. An immediate corollary is
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THEOREM 7. Let L be a normal subgroup of a group K. If L s nilpotent of
class ¢ and K/L' is nilpotent of class d, then K 1is nilpotent of class at most

fe) = ()d — (3).

For +'K**' < I/, and so v’LK® < I’. Using the notation X, = v"XK",
Lemma 7 gives (Y 'L )a—ppr = v L forr=1,2,3, ---. Since I’ = yL?,
we obtain ' YK’ < 4L for i = 1, 2, 3, - - - by induction on %, owing to
fG) —fG — 1) =4d — i+ 1. But +°'L°™ =1, and so YK " =1, so
that K is nilpotent of class at most f(c).

CoroLLARY 1. If H is a normal subgroup of G such that H = G, then
YTH = y7'Q for all r > 1. If H and M are normal subgroups of G such
that yYHM and H' are both contained in M’, then ¥ "H' is contained in v "M"
for all r > 1.

For N = v 'H'<1G. Applying Theorem 7 with d = 1 to the groups
L = H/N and K = G/N gives the first part of the corollary. If J = HM,
then J' = H'M'-yHM = M’ and so ¥y 'H" < ~+'J" = M by the first
part.

A discussion of the question whether the bound f(¢) in Theorem 7 is the
best possible one for given ¢ and d would probably be rather tedious, and we
shall not attempt it here. Instead, we note the following criterion for the
nilpotency of the join of two subgroups:

COROLLARY 2. Let H and K be subgroups of any group, let J = {H, K} and
M = ~yHK. If J/M and M are both nilpotent, and if there exist integers m and
n such that y"MH™ < M’ and v"MK" = M’, then J is also nilpotent.

It is clear that these conditions are necessary if J is to be nilpotent. Note
also that J/M is in any case a homomorphic image of the direct product of
H and K, so that J/M will certainly be nilpotent if both H and K are nilpo-
tent.

Let H = HM be the normal closure of H in J. Suppose first that M’ = 1
so that M is Abelian. If 4 and » are in M and z in H, we then have [u, vz] =
[, z]; and so y"MH™ = y"MH™ = 1. Hence M is contained in the m* term
of the upper central series of H. Since H/M is a subgroup of J/M, it is nil-
potent. Hence H, and similarly K = KM, are both nilpotent. Thus
J = HK is the product of two normal nilpotent subgroups. So J is nilpotent
by Lemma 5. In the general case where M’ > 1, we conclude that J/M' is
nilpotent. By hypothesis, M is nilpotent; and since M < J by (10), it follows
from Theorem 7 that J is nilpotent in this case also.

The criterion of Corollary 2 may be compared with the following criterion
which follows easily from Hirsch’s Theorem 5.

TueorREM 8. Let H and K be subgroups of any group such that y"HK™ =
v"KH" = 1 for suitable integers m and n. If H and K are both locally nilpo-
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tent, then so is J = {H, K}. If H and K are both finitely generated nilpotent
groups, then so s J.

The second statement follows immediately from the first. As we saw in
proving Theorem 4, the equation y"HK™ = 1 implies that K is subnormal in
J, equation (37). Consequently, if K is locally nilpotent, we have K =
MK) = A(J) by the corollary to Hirsch’s theorem. Hence the normal closure
K of K in J is contained in A\(J). Similarly, if y"KH" = 1, and if H is locally
nilpotent, the normal closure H of H in J is also contained in A(J). Hence
J = HK = \(J) is locally nilpotent.

In Theorem 8, no use has been made of our main result, Theorem 2. Ac-
cording to this theorem, if (' is the centralizer of H in K, then y"HK™ = 1
implies that K/C is nilpotent. Consequently, K will be itself nilpotent, if
we assume in addition that v"CK" £ yHK for some r. Similarly, if D is the
centralizer of H in K, then y"KH" = 1 and ¥°'DH’ < yHK together imply
that H is nilpotent. Thus we may state

LemMma 8. Let H and K be the normal closures of the subgroups H and K in
J = {H, K}; let C and D be the centralizers of H in K and of K in H, respec-
tively; and let M = yHK. Then, if y"HK™ = y"KH" = 1, and if y'CK and
v'DK® are both contained in M for suitable integers m, n, r, and s, it follows that
J/M <s nilpotent.

We could infer at once that J itself is nilpotent, by Corollary 2 to Lemma 7,
provided we knew that M was nilpotent. By Theorem 4, the equation
¥Y"HK™ = 1 by itself already implies that M is locally nilpotent. It seems
reasonable to think that the equations y"HK™ = y"KH" = 1 taken to-
gether should enable us to show that M is in fact nilpotent. But we have
not been able to prove this. The doubt disappears when J is finite. Hence
we may state the

CoroLLARY. If J is finite, the hypotheses of Lemma 8 are sufficient to ensure
that J is nilpotent.

Indeed, in this case, the condition y"KH" = 1 may be weakened to
v"KH" < M’. For the similar condition y"HK™ = 1 already ensures the
nilpotency of M; and that being so, y"KH" = v""MH"™ < M’ implies
v’KH?” = 1 for some p, by Lemma, 7.

On the other hand, the conditionsy"CK" < M and ¥'DH’ £ M of Lemma 8
cannot be omitted. For example, if G is the icosahedral group, and if we
form J*=J X @, K* = K X G and H* = H, then J* = {H* K*} fulfils
all the hypotheses of Lemma 8 except the one involving C* = C X G, the
centralizer of H* = 0 in K*. And obviously M* = yH*K* = M, so that
J*/M* = G X J/M and is not nilpotent.
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