METABELIAN p-GROUPS WITH FIVE GENERATORS AND
ORDERS p* AND p"

In commemoration of G. A. Miller

BY
H. R. BraHANA

1. Introduction

This paper continues the study of metabelian groups with elements of
order p which are generated by five elements, and which are not direct prod-
ucts of abelian groups and metabelian groups with fewer generators. The
problem is stated precisely and the method of investigation is explained in an
earlier paper." In that paper the existence and the distinctness of eighty-five
such groups of orders from p”° to p" were established. This paper will
establish the completeness® of the list for these orders.

The considerations will all be geometric; nevertheless this is a paper about
groups. The groups motivate the study of the complicated considerations
required to determine invariants and to show in each case that a given set of
invariants is sufficient to characterize a space. We shall be interested in
planes and three-spaces in the finite nine-dimensional projective space S
which is determined by the Pliicker coordinates of the lines of a projective
four-space X over GF(p). We classify planes and three-spaces of S under
collineations of X.

2. Geometric formulation

We state the problem in geometric terms; the reader is referred to the
earlier paper for consideration of the bearing of this study, and also for any
proofs required for statements in this section.

Denote the five elements which generate G, any one of these groups, by
U,,U,, -+, Us. Designate commutators of pairs of U’s as follows:

U'UU, = Ui,  Us'UsUs = Usss,  Ui'UsUs = Usss,
FUWUs = Ugse, Ud'UUs = Usss,  Us'UsUs = Usss,

U7'U Uy = Usss, 31U Us = Ussy,

Us'UUs = Usss, Us'UsUs = Ussyo .

Received May 5, 1958.

1 Finite metabelian groups and the lines of a projective four-space, Amer. J. Math.,
vol. 73 (1951), pp. 539-555.

2 Strietly, the paper establishes the completeness of a corrected list. Four groups,
those connected with spaces of 97, 207, 207, and 21’, were overlooked in the earlier paper.
Spaces 20’ and 21’ were first noted by Dr. W. E. Koss and Mr. Peter Yff respectively.
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If the s/s are all independent, the group is of order p“; all other groups
satisfying the given conditions are quotient groups of this with respect to
subgroups of the central C = {s;, sz, -+ - , S10}.

Any element of @ is cUT'Us? --- Us*, where ¢ is an element of C
and 2, @z, - -+, 5 are numbers in GF(p). To this element we let correspond
the point @, 22, - -+ , @5 in a finite projective space X of four dimensions. A
second element ¢/ U1 U%? - - - U of G determines a second point y; , %2, * -+ , ¥s
of X. The commutator of these two elements is si'ss® - -- s1y” where
01,02, +++ , ap are the Pliicker line-coordinates of the line zy in X. These
numbers can be used as the coordinates of a point in projective nine-space S
over GF(p). Every point of S determines a cyclic subgroup of C, the central
and the commutator subgroup of G of order p*.

The points of S which correspond to commutators, or which correspond to
lines of X, are points of the V§ definedby B, = B, = --- = Bs = 0, where

B; = mas — 06 + 0305,
By = a109 — az07 + 0405,
B; = a1010 — @307 + G405,
Bs = ax010 — 0309 + 403,
B; = asa10 — asts + aras .

We shall designate this locus by V.

Every group satisfying the given conditions will be obtained by setting
certain elements of the commutator subgroup of the biggest group equal to
identity. Elements dependent on those set equal to identity will constitute a
subgroup of C' and will correspond to a linear space in S. Different subgroups
of the same order will correspond to subspaces of the same dimension; if
these subspaces of S have different relations to V, then the corresponding
quotient groups of G will be groups that are not simply isomorphic. We are
to see that there are just 22 types of plane and 58 types of three-space in S;
points and lines were discussed completely in the earlier paper.

We list some facts that will be needed in all that follows.

(1) The lines of a pencil in X determine the points of a ruling of V.

(2) A point P of S not on V is on a line joining two points of V'; a choice
of coordinate system in X will put P in the form 1,0, 0, 0, 0, 0, 0, 1, 0, O.

(3) Two points of ¥ on a line with P not on V are images on V of two skew
lines in X ; these lines determine a three-space R in X; R depends on P only,
and not on the points of V which were used to define it.

(4) The equation of R is Bst;y — B, + Byrs — Bexy + Bixs = 0, where
the B’s are those for the point P which determines R.
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(5) We denote by Z the five-space in S determined by the lines of a three-
space in X ; a point P in S is in one and only one = unless P is on V. Lines,
planes, ete. in a = are called =-lines, =-planes, ete.

(6) A line in S not a Z-line has one or no points on V; respective canonical
forms are k,0,0,1,0,0,0,%,0,0and £,7,0,0,0,0,, k, 0, 0.

(7) The line %, 1, 0,0, 0, 0, I, k, 0, 0 determines a unique point M on V
such that the plane determined by M and the line is tangent to V at M. The
six-dimensional space tangent to V at M contains planes, three-spaces, etc.,
which we shall call 7-planes, r-three-spaces, etc.

(8) So much use will be made of the close connection between the canoni-
cal form %, 1,0,0,0,0, [, k, 0, 0 in S and the frame of reference in X that we
shall describe it briefly here. Let I be a line in S which is not a Z-line and
has no point on V. Let P; and P, be arbitrary points on I; let R; and R,
be the corresponding three-spaces in X; let the plane of intersection of R,
and R, be o; let the images on V of the lines of ¢ be the points of the plane r;
and let Z; and =, be the five-spaces in S which contain P; and P, respectively.
The polar of P; with respect to the intersection of V and Z, intersects = in a
line I, ; likewise P, determines a line I in w. Lines l; and I, intersect in the
point M. A line joining P; to a point @; on I, and not M intersects V in a
second point Qs ; a line joining P, to a point Q. on l; and not M intersects V
in Qs. The points M, @1, Q:, Q1 , Qs are images on V of lines m, 1, g2, g1,
¢z in X; these lines have the following relations: m, ¢, , and ¢, are in the plane
g, and the intersection of ¢; and ¢. may be taken to be 4; = 1,0, 0,0, 0; m and
¢ intersect at 4, = 0,1,0,0,0; m and ¢, intersect at 4A; = 0,0, 1,0, 0; q{
passes through A; and contains 4, = 0,0, 0, 1, 0; g5 passes through 4, and
contains As = 0,0,0,0,1. With this choice of a coordinate system in X
and the corresponding determination of the coordinate system in S, the line
takes the canonical form above. This rapid description shows the great
arbitrariness in choosing a coordinate system to give a line the canonical
form. By taking advantage of this arbitrariness we get a start in classifying
planes.

3. The planes of S

(1) =-planes in S. There are Z-planes in S; each such plane lies in the =
determined by the lines of a three-space in X. In dealing with them we may
neglect X and consider only the three-space. These planes were all deter-
mined in a previous paper.’ The Z-planes are

1. %,1,0,0,m,0,0,0,0,0, theimage of a plane of lines in X.
2. k,1,m,0,0,0,0,0,0,0, theimage of a bundle of lines in X.

3 Finite metabelian groups and Pliicker line-coérdinates, Amer. J. Math., vol. 62 (1940),
pp. 365-379.
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,0,0,0,0,0, m, 0,0, which intersects V in two lines.
k, 0, 0, which intersects V in one line.
, 0, k, 0,0, which intersects V in a conic.
, 1, m,0,0,r,0,k 0,0 (rnotasquare), which intersects V in a

A

The intersection of ¥V and 2 is a four-dimensional hyperquadric. Any
plane in 2 then intersects V in a conic or else lies wholly on V. The latter
possibilities are 1 and 2. If the conic is not degenerate, the plane is 5; if the
conic is degenerate with one vertex, it is 3 if the quadratic polynomial is
factorable in GF(p), otherwise it is 6; if the conic has a line of vertices, the
plane is 4. The proofs that planes having the properties listed can be put in
the forms given are not attempted here; they are given, however, in the paper
cited, and they are not hard to supply.

(ii) A preliminary classification of planes not in any =. A plane p which is
not in any = contains points not on V, for a plane lying on V is determined by
three points of ¥V which are images of three lines in X that intersect in pairs,
and three such lines either lie in a plane or pass through a point, in either of
which events they lie in a three-space. Let p contain the point P which is
not on V. P determines a five-space =, and p does not lie in Z. If p con-
tained as many as four points of V no three of which were collinear, then p
would be a Z-plane. One of the vertices of the diagonal triangle of the quad-
rangle determined by the four points would be not on ¥ and so could be
taken for P above. The three-space determined in X by P would contain
the lines of which the four points of V are images, and so the corresponding =
would contain p. Therefore any plane of S which is not a =-plane intersects
V in 0, 1, 2, 3 points, in a line, or in a line and one additional point.

Unless p is a Z-plane, it cannot contain two Z-lines which intersect in a
point not on V. Hence every p which is not a Z-plane contains a line I which
is not a Z-line. If p intersects V in a line, then every I has a point on V; if p
does not contain a line of V, then p contains an I which has no point on V.
Hence, any plane p which is not a Z-plane contains one or the other of the
lines given in (6) of Section 2.

(iii) Some transformations of S which leave a line fixred. The planes p of S
which contain 0, 1, 2, or 3 points of V all contain the line %, [, 0, 0,0, 0, [, %, 0, O
which we shall call P,P, with P; given by I = 0 and P, by k¥ = 0. Each such
p is given by one additional point whose coordinates may be modified by using
some of the freedom noted when we discussed the canonical form of PP, .
We give here three transformations of S into itself which leave the form of
PP, unchanged. We employ the notation of Section 2.

For the first transformation we move A, along ¢; and A; along ¢s , leaving
Py, Py, Q:,Q:,Q1, Q: fixed. Denote this transformation by T, . The effect
of T in X is described by the matrix of coefficients
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S oo oOo~
OO =O
o8 =, OO0
o= O 0OO0C
-0 000

in expressions of the new coordinates in terms of the old. The matrix which
follows is the description of 7T'; in S by means of the matrix of coefficients in
the expressions of the old coordinates in terms of the new; its elements are the
properly ordered two-rowed minors of the inverse of the matrix above.

"1 0 00 0 000 O 0]
0 1 00 0 00O O O
0 —a 10 0 000 0 0
-5 0 01 0 000G O O
|0 0 00 1 000 0 0
0 0 00 —a 100 0 O}
0 0 00 0 010 O O
0 0 00 O 0O01 0 O
0 0 00 b5 000 1 0
0 0 00 —ab b 00 —a 1

The second transformation T, represents the changes in the coordinate
systems brought about by moving @, and Q. along the lines l; and [; respec-
tively, still leaving P; and P, fixed. The points A, and 4; are not determined
by the @’s, but a combination of T'; and T'» will do all that can be done in that
respect. The following transformation moves @ to @, = @, + kM and
Q:t0 Qs = Qo + IM.

1 000 -k 0 O 0 00O
100 -1 0 0 0 00O

-k 010 ¥ -1 0 k 00

0 I 01 = 0 =1 0 kO
T2=0000100000
0O 000 O 1 0 0 00O

0 000 ! O 1 0 00

0 000 kK O O 1 00

0 000 O O O 0 10
0 00 0 —kI 0 —k =1 0 1]

For the third transformation T'; we let the point aP; + P, play the role
of P, and determine a coordinate system so that P; and the new P, have co-
ordinates in canonical form. There is arbitrariness in the choice of Q; and @,
as well as in the choice of Asand As. We shall carry out the selections which
determine the matrices of T3 in X and in S.
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P, =10,0,0,0,0,0,1,0,0.
R, : z=0.

0,1,0,0,0
s =+0,0,1,0,0
-1,0,0,a,0
l _IO’ 7010’170)0’0)0)0
' " le, —1,0,0,0,d",0, —a,0,0.
M =0,0,0,0,1,0,0,0,0,0.
Q =1,0,0,0,0,a,0,0,0,0.
Q: =a,—1,0,0,0,d" 0, —a,0,0.

- JO’ 17 07 0’ 07 A2
® =1-1,0,0,4,0, 4,
,_ [0,—a,1,0,0, A,
@ =%,0,0,1,0, A.

The A’s at the right just above designate the points selected for the vertices
of the new frame of reference in X. The matrix of T’; in X is the set of A’s

The matrix in S is

in their proper order.

1 0 0
a 1 0
0 0 1
0 0 —a
0 0 0
Ts=1 o 0 0
—2a 0 0
0 0 0
-2 -2 0
| 0 0 —2a

(iv) Planes with no point on V.

H. R. BRAHANA

Py =14a,1,0,0,0,0,1,a,0,0.
Ry: axy + x4 + a’zs = 0.

omqumaqmo
™ 1,0,0,0,0,a,0,0,0,0.
QLQQQQQ@QO
; 0,0,0,0,1,0,0,0,0,0
* 7 11,0,0,0,0,q,0,0,0,0.
Q1 =0,0,0,0,0, —a,0,1,0,0.
Q: = —20,0,0,0,0, —d’
_f{-1,0,0,a,0
£ =0, —¢,1,0,0.
_{0,1,0,0,0

!
& = 124,0,0, —a?, —1, 4s.

00 —a 0 0 0 0]
00 —> 0 —a 00
00 0 0 0 00O
10 0 0 0 0 a
01 0 0 0 00
00 1 0 0 00
00 & 1 0 00
00 « 0 1 00
00 o a & 10
00 0 0 0 0 1]

Among planes which contain the line

PP, of (iii) are those with no point on V. These planes are

7. k,1,0,0,0,m, 1, k+ rm, m, 0.

8. & 1,m,0,
9. %,1,0,0,m,0,1k 0, m.

We proceed to show that if p is not a =-plane and has no point on V it can
The plane is determined by P;, P;, and a

be put in one of these forms.

—rm, 0,1, k, 0, 0.

third point which may be taken to be

P;=0,0,03,04, 05,0, 01, 0, Gy, Qo -

, —1,0,0,0.
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We consider first the possibility that p is a r-plane. The line P;P; is in
the space tangent to Vat M = 0,0,0,0,1,0,0,0, 0, 0. If P;is in that
tangent space, a3 = @s = apo = 0. Any point in pis P = kP; + IPy + mP;.
Conditions that P be on V are

K + askm — aglm = 0, askm — I — ardm = 0,
(aras — asae)m” + kl + askm + agdm = 0.
Eliminating m between the last two congruences, we get
ak’ — @ikl + askl’ — ad’ = 0.

Since there exist irreducible cubic congruences, it follows that there exist
7-planes with no point on V. We note that the above conditions are in-
dependent of a5 . Moreover, neither ag nor a, is zero, and so a or b in T can
be selected so that P has a5 = 0.

Now let p be the plane determined by P;, P, , and

P3=0,0,0,0,0,&3,&7,03,&9,0

where the cubic a6’ — a:6° 4 as6 — agis irreducible. If we apply transforma-
tion T with ¢ = 1, the point P; goes into

Py = —2a; — 2a, —2a, 0, 0,0, ag + a7 + as + as, a7+ a9, a5 + a5, as,0.

The point in p whose first two (new) coordinates are zeros has for its nonzero
coordinates a¢ , a7, as , as which are the coefficients of the transform of the
irreducible cubic by 6 = ¢’ — 1. The interchange of P; and P, performs the
same transformation on the cubic as does § = 1/6’; the transformation in X
which leaves the vertices of the frame of reference fixed and changes the unit
point to d, 1, d, 1, d* performs the transformation § = dé’ on the cubic. These
transformations generate the linear fractional group on 6, and under this
group all irreducible cubics are conjugate. Hence, in any 7-plane which has
no point on V, points can be selected so that P; and Ps are in canonical form
and P; = 0,0,0,0,0, 1,0, r, 1, 0, where 2* 4+ 72 — 1 is an arbitrary irre-
ducible polynomial. This is plane 7.

For any other plane on PP, the tangent space at M cannot contain P;,
and hence not all of az, as, and ay are zero. We note that transformations
Ty, T:, and T, all leave a, unchanged, and that T and T leave a; and ay
unchanged also. We separate the planes into two classes: (1) those de-
termined by P; with a; = 0, and (2) those determined by P; with a; # 0.

(1) Suppose as = 0 and ay % 0. We may apply T with a; — 2a;0 = 0
and obtain a; = 0. Since p contains P; and P, , it contains a point
P;=0,0,0,0,a5, 05,07, 05,09, a0." Application of T will give a7 = as = 0,
and T, will give as = as = 0. By proper choice of the unit point we obtain

(a) P;=0,000,100,00,1.

4+ We omit accents for the new coordinates; we wish only to differentiate here between
coordinates which are zero and those that are not known to be zero.
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The other planes of set (1) are those for which a;p = 0 and hence a3 = 0.
Applying T with 2ask + as = 0 and —agl + as = 0 gives as = 0 and a; = as
Then p contains the point P; = 0,0, a3, 0, a5, 0, a7,0, a,0. When ay # 0,
we may apply T with a5 + bay = 0 and —aza = ay to remove s and to make
az = a;. When ay = 0, T can be applied to make a; = a;. In both cases,
P; can be changed to a point which has a; = a; = 0. Thus we have the
possibilities:

(b) P3=0,0,0;,0,0,0,0,0, 0,0,
© P;=00 a0 a,0,0,0,0,0.

We note that in the case of (¢) the line PP; is a =-line.

(2) Now suppose a4 # 0. Then in consideration of 7; we may suppose
apw = 0. We consider first those planes given by P; with a3 # 0. With
proper choice of k& and I, T5 gives as = a9 = 0. P; can be selected in p so that
a; = ag = 0. Applying T, with proper choice of a and b will change @, and
as to zero. Hence, we have

d P3;=0,0,a3,0a,05,0,0,0,0,0.

Finally, suppose a; = 0. T, and a change of P; will remove ax, a7, as,
and ay , introducing a; % 0. We then have

P; = al,O,O,a4,a5,ae,O,O,0,0.

T; can be used to remove a; and to remove a; if ag # 0. We have the pos-
sibilities:

(¢) P;3=0,0,0,0,0,0,0,0,0,0,

f) Py=0,0,0,04,0as,0,0,0,0,0.

In the case of (f), P.P;is a Z-line.

We shall now show that the plane determined by (a) contains no Z-line,
so that planes (c¢) and (f) are different from (a). Denote the plane given by
(a) as k,1,0,0,m, 0,1, k, 0, m. A point P =k, I, m in it determines the
three-space

R: (m’ + kl)x, — lmxy + kmas + Pxy + Kas = 0.

If P is on the line m = 0 (i.e., the line P,P), R is klx, + I'xs + kx5 = 0. If
PisP;,Risxz; = 0. Forno k and [ can these be the same R, and hence a
Z-line in p does not pass through P;. A Z-line in p must therefore intersect
P1P; and P,P; in distinet points. If Pison the linel = 0, R is m*x; 4 kma; +
Kxs = 0;if Pison k = 0, then R is m*z; — Imas + P24 = 0. These R’s are
the same only if the corresponding P’s are the same. Hence, p contains
no Z-line.

We next show that the planes determined by (a), (b), (d), and (e) are the
same, and those determined by (¢) and (f) are the same; they are respectively
planes 9 and 8 above.
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The transformations used so far to simplify the coordinates of P; have all
left the line PP, fixed; in order to go farther it will be convenient to change
to a different PPy . If in (b) wemakethechange Py = Py, P; = P;, Py = P,
and then change the coordinate system so that Pj and P; are in canonical
form,” P3 becomes 0, 0, 0, 0, 1,0, 0, 0, 0, 1. If in (e) we interchange the
réles of P; and P; ,we obtain (a) again. In (d) we may take P; = P; + P,

= P, — Py, Py = P;, and this will change (d) into (a). Hence, any plane
in S which has no point on V, contains no =-line, and is not a 7-plane can
be put in the form 8.

Interchange of P; and P, interchanges (¢) and (f). Hence, any plane in
S which has no point on V, is not a 7-plane, but which contains a =-line, can
be put in the form 9. This concludes the determination of planes that do
not intersect V.

(v) Planes with 1, 2, or 3 points on V. The planes with 1, 2, or 3 points
on V all contain a line PiP;. The transformations in (iv) still pertain; the
present, planes were excluded by requiring that there be no point on V. By
looking more closely at that requirement we determine the planes:

10. k,1,0,0,m,0,1k, 0, 0.

11. %,1,0,0,0,m,1, %k, 0,0
12. k,1,m,0,0,0,70 k0,0
13. %,1,0,0,0, m,1 —rm, k, 0,0 (r not a square).
14. kI, m,m™m, 0,0,k 0,O0.
15. %,1,0,0,0,0,1 &, 0, m.
16. k k0
k

» Yy » Yy 0.
17. ) 07 0; la ka O, 0.
18. k+m,1+m,0,0,0,0,1 k&, 0,0.

When p is a 7-plane, it will be determined by P;P; and the pomt
P;=10,0,0,0, a5, as, ar, as, @, 0. The polynomial f(6) = a6’ — a:6° +
as0 — ag will now be reducible. The transformations on this polynomial in
(iv) show that unless f(6) is identically zero we may suppose ag or ay is not
zero, and hence a; may be made zero. The one case it may not be made
zero gives plane 10; this plane is obviously unique, since PP, determines
the unique point P; = M. Plane 10 has one point on V and is tangent to
V at that point.

The reducible f(8) may be a cube as is given by 11.° This plane has one
point on V and contains the tangent line [ =

If f(8) is the product of a linear and an irreducible quadratic factor, the
plane is 13 which has one point on ¥V and no line tangent to V. If f(6) is the
product of a linear factor by the square of another, the plane is 16. For this

8 We omit the computation because of its length; it is exactly like that which deter-
mined the matrix T'; .

6 In this case f(§) = — 1. The transformation 6 = 1/6’ in (iv) applies, giving
1o = 0.
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the P; in the proper form gives f(6) which is reduced to 6. f(8) = 0 has the
root zero and the double root infinity. Plane 16 has two points on V. If
f(6) has three distinct linear factors, the plane is 18; it has three points on
V;f(6) = 6 — 6.

When p is not a 7-plane, P; can be made to take one of the forms (a) to (f)
of (iv) with the added possibility that some of the a’s are zeros. Case (a)
was obtained on the assumption that a, % 0; if in this case a; = 0, we have
plane 15. This plane has one point on ¥ and no tangent line.

In cases (b) and (c) we have a; % 0. If in the respective cases ay = 0 and
as = 0, we have plane 12 which has one point on V and the line I = 0 tangent
to V. Ifin (¢) r = —as/as is not a square, we have plane 8 with no point on
V, but if r is a square we have plane 17, with two points on V.’

Both (e) and (f) reduce to 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 which gives a p that is
changed into 12 by interchanging P; and P, .

In case (d) we could have a5 = 0, in which case we have plane 14 if r =
as/az is not a square. This has one point on V and no tangent line. If r
is a square, the plane will still have one point on V and no tangent line. The
planes for r a square and r not a square are different. To see this, consider
the plane

k1, m,rm, 0,0,k 0,0.

The three-space in X determined by a point k, I, m is
kley — rkmay — lmas 4 Py + K5 = 0.

By means of this relation every point of X determines a conic in p. Now, p
has a special point, P; , which is on V and is the image of a line p;in X. The
points of p; determine the conics of a special pencil in p.

_/1,0,0,0,0
~10,0,0, 1,7’

and these points on ps give the conics k&l = 0 and I’ 4+ rk* = 0. The special
pencil of conics is 7&* + Ml + ¥ = 0. When r is not a square, every conic
of the pencil consists of two distinct lines; when r is a square, there are two
conics each of which is a line counted twice. This was the difference be-
tween planes 14 and 15 that was explained in the earlier paper. Since we
have now found all planes which contain PP, , it should follow that plane
15 and this last one with r a square are the same.® To see that they are the

P;=0,0,1,70,0,0,0,0,0 and ps

7 If p has two points on V, it contains a =-line, so we should expect it to come from
(e) or (f).

8 One reason for keeping the above canonical form for plane 15 is that it is in print;
another reason is to exhibit one of the places where it would be easy to go astray in
accounting for all the possibilities. It would not be hard to miss the fact that it makes
a difference whether or not as/a; is a square. Plane 15 was found first, and many at-
tempts were made to change 14 into 15 before they were looked at closely enough to see
the difference explained above.
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same, we notice that in the case of plane 15 the points P; and P, are one each
on the two degenerate parabolas. Making this change in the case where
as/as is a square gives the form 15.

(vi) Planes with a line on V that are not Z-planes. There are four planes,
not Z-planes, each of which contains a ruling of V':

19. %,0,0,0,0,0,0,0, m.
20. 0,0,0,10,0,% m,O0.
21. %,0,0,0,0,0,1 k m,O0.
22. %,0,0,0,0,0,0, k, I, m.

Plane 19 has the line £ = 0 and the point I = m = 0 on V; any plane with
a line and a point on V can be put in the form 19. For the line PyP; de-
termines a pencil of lines in X which may be taken to be in the plane ¢ =
A3A A with vertex of the pencil at A5. The other point Py in p and on V
determines a line p; in X. The line p, cannot intersect the plane o for then
Py, P,, and P; would all be in a five-space = determined by the lines of a
three-space in X and p would be a Z-plane. Hence, 4; and 4, may be selected
on p; , and p takes the form 19.

Let p be a plane, not a Z-plane, intersecting V in one line PyP; only, and
let P; be a point of p not on V. There is no more than one Z-line in p on
P, ; hence there is no more than one line through P; tangent to V. There-
fore, p is in no more than one of the spaces tangent to V at points of P.P; .

Suppose p is tangent to V at the point P.. Then since any tangent is
conjugate to any other, we may take PP, to be

k,0,0,0,7,0,0, k0, O.

The points of the line P,P; image the lines of a pencil in a plane ¢ in X. P,
determines the three-space R; in X; R; does not contain ¢ and hence inter-
sects it in the line p». p; is a line in ¢ and intersects R, only at its inter-
section with p,. We wish to show that this intersection can be taken to be

. . 10,1,0,0,0 . .
As. The line p; is {0’ 0.1,0,0° The point P; is on QlQ{ where
Q. =1,0,00000,0,0,0 and Q =0,0,0,0,0,0,0,1,0,0.
’ 0, a, b, 0, 0
If we take a new ¢1 = {0’ 0,010 we have

Q:=0,0000a0b00 and @, =1,0,0,0,0, —a,0,0,0,0.

Hence, Q1 and Q, can be selected so that P;P; is in the above form and so that
ps passes through 4; = 0, 0, 1, 0, 0, the intersection of p, and ¢; . Then As
may be taken on p;, not in RB;. p is then in the form 20; p is tangent to
V at P. 2 .

Now suppose p intersects V in a line and is not tangent to V at any point
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of the line. Let P; be a point of p not on V; let PoP; be the ruling of V; let
o and R; be as above. The intersection ¢ of R; and o does not pass through
the vertex of the pencil pyp; for then p would be in the space tangent to V at
a point of P,P;. Hence, g intersects p, and p; at distinct points. The point
@, on V, may or may not be such that QP; is a tangent to V. If it is not, then
QP; meets V in a point @'. By selecting A; and A, on ¢’, A3 on p» and g,
A4 on p; and ¢, and A5 on p, and p;, we have the canonical form 22. This
plane is not a r-plane.

If @ above is on the polar of P, a coordinate system in R, can be selected
so that

P, =1,0,00000100 and @ =0,0,0,0,1,0,0,0,0,O0.

The line common to o and R; is 4:4;. As can be taken at the vertex of the
pencil p;p; , which is not in B; . The plane p is then plane 21 which is in the
space tangent to V at Q. This completes the determination of the types of
plane in S.

4. Some collineations of S leaving certain planes unchanged in form

In the determination of the types of plane in S it was necessary to obtain
more information about lines than was required to determine the types of
line. Likewise, in the determination of types of three-space it will be neces-
sary to have more information about certain of the types of plane. A three-
space with certain relations to V can often readily be seen to contain a plane
of a certain type. Knowing that a plane of a given type is present, we know
that a coordinate system can be selected to exhibit it in a particular
form. TUsually that can be done in many ways. That it could be done at all
was enough to fix a canonical form for the type, but to determine a canonical
form for the three-space that will give the plane the canonical form for its
type generally will require a special selection of the frame of reference in the
plane. It may thus become necessary to know all possible selections of the
coordinate system to present a given plane in canonical form. The col-
lineations that were found necessary in classifying the three-spaces are col-
lected in this section.

(1) The plane k,1,0,0,0,0, 1, k, 0, m. This plane intersects V in the point
P;:k = I = 0 only; it is not a 7-plane and contains no =-line. We ask how
much is the freedom of choice of P; and P, if the form is to remain unchanged.

We note first that the lines P,P; and P,P; are completely determined by
the plane’s relation to V. Let P = (k, [, m) be any point of the plane. For
P we have the following:

Bl = kz, Bz = —lz, 33 = km, B4 = lm, Ba = kl.

The three-space R in X determined by P is klz: — Imxy + kmas + Fzy +
K'zs = 0. If k, I, m are given, this defines R. If 2;, a2, --- , x5 are given,
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this defines a conic in the plane. The point P;, being on V, is the image of
0,0,0,1,0
0,0,0,0,1°

This pencil of points in X, which has a special relation to the plane, de-
termines a pencil of conics in the plane, namely, k¥* + A’ = 0. The pencil
of conics contains the two degenerate parabolas k* = 0 and ¥ = 0, given by
A =0and A = «, respectively. Hence, the lines & = 0 and [ = 0 are special
lines in the plane. If the plane is to have the given form, P; and P, must be
selected on these lines.

If P, and P, are left fixed, the coordinate system can be changed, still
leaving the coordinates of P, and P, unchanged. Transformations 7 and
Ts do this. Neither T nor T, leaves P; unchanged. Hence, if we wish the
plane to retain the above form, choice of P;and P, , necessarily on the special
lines, determines the coordinate system excepting that there is left some free-
dom in the choice of the unit point.

We give the transformation resulting from the choices P; = P; + aP; and
P; = P + bP;.

a line in X, namely, the line

1 0 —-b 0 00O0O0O0O O
0 1 0 a 00O0O0O0 O
0 0 1 0 00O0O0O0 O
0 0 0 1 00000 O

T, = —b —a V¥ —a*1 0 ¢ b 0 —ab

‘1o 0 —a 0 01000 O
0 0 O —a 00100 —b
0 0 b 0 00010 —a
0 0 0 b 000O0T1 0O
0 0 0 0 00O0O0O0 1 |

(i1) The plane k, k, 0,0, 0,0, 1, m, 0, 0. This is one form of the plane with
three points on V. A transformation which leaves every point of the plane
fixed is

1 0 00 a 0 0 0 0 0

0 1 00 —a O 0 0 0 0

0 -1 0 a —a 0 —a 0 O

—c 0 01 —ac 0 —-a O —a O

T, — 0 0 00 1 0 0 0 0 0
s 0 0 00 —-b 1 0 0 0 O
0 0 00 O 0 1 0 0 0

0 0 00 O 0 0 1 0 0

0 0 00 ¢ 0 0 0 1 0

L 0 0 0 0 —bc ¢ 0 0 —-b 1

(iii) The plane k, 1, 0, 0, 0, 0, I, m, 0, 0. This is a form of plane 16; it is
useful in dealing with three-spaces with two points on V. A transformation
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which leaves every point of the plane fixed is

1 0 00 0 0 0 0 o0 o0

0 1 00 —a 0 O O 0 O

0 -b 10 a —a 0 0 0 O

—¢ a 01 —¢> 0 —a O 0 O

T, — 0 0 00 1 O 0O 0 0 o
O 0 00 —=b 1 0 0 0 Of

0O 0 00 « O 1 0 O0 O

0 0 00 0 O O 1 0 O

0 0 00 ¢ 0 0 o0 1 0

| 0 0 0 0 —bc c 0 —a —-b 1]

The points P; and P; are obviously special points in the plane, being on V;
the line PP, is special, being tangent to V at P;. A transformation of the
plane into itself which keeps the form could only move P, along the line
P 1P 2. Such is

Ty

It
cCooc o000 OH
coocoocoT O

[

Sl eNeNeNeoBeBol S 2=
[=NeNeNal A= == )
(=Nl e NoNe Nl o N ]
SO OOOOoO0OO
T OO0 O0O0OOO
HOOOOoOOoOOoOOoOOQO

SO oo oOoO+HOOO
QOO THOOOO

1 0 be

(iv) The plane k, I, m, 0,0, 0, I, k, 0, 0. The line P,P; is tangent to V at
P;. 1If the form of the plane is to remain unchanged, P; must remain on that
line. We note that T'; leaves P; unchanged, and hence P, may be moved
along the line P1P,. Then if we combine T3 with a transformation which
moves P; along P;P; and leaves P, fixed, we will have a transformation which
leaves the plane in canonical form with P;P; any line not on P;, and P, any
point, except P, on that line. KEven then we can change the coordinate
system by applying T; with @ = 0. The following transformation moves
Pito P{ = P; + aPsand Py to Py = Py + bP;.

10 0 0 0 0 00O O
01 —=b 0 0 0 000 O
00 1L 0 0 0 00O O
00 0 1 0 0 000 0

7|0 0 0 1 =000 0
00 0 0 0 1 000 0
00 0 0 0 0 100 0
00 —a 0 0 0 010 0O
00 0 —a 0 0 00 1 —b
0o 0 0 0 0 000 1|
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(v) The plane k, 1,0,0,0,0,0,0,0, m. This is a plane with a ruling and
an additional point on V; it is not tangent to V at any point of the inter-
section. The line of V represents a pencil of lines in X with vertex at 4; ;
the pencil lies in the plane A;A4,4; ; the other point on V is the image of the
line A445 in X. If the form of the plane is left unchanged, the point A,,
the plane 44243 and the line 4,45 must be left unchanged. The most
general transformation in X is

100 00
a 1 b 0O
c d 1 00
0 0 01 e
000 fF 1
The corresponding transformation in S is
1 b 0 0 0 0 0 0 0 O
d 1 0 0 0 0 0 0 O 0
0 0 1 e 0 0 0 0 O 0
0 0 f 1 0 0 0 0 O 0
T, — ad—c¢ a—bc 0 0 1—-bd 0O O O O 0
0 0 a ae 0 1 e b be 0
0 0 aof a 0 f 1 o b 0
0 0 c ce 0 d de 1 e 0
0 0 o ¢ 0 a d f 1 0
| 0 0 0 0 0 0 0 0 0 1—ef]

(vi) The plane k, 1,0,0,0, m, I, k, 0, 0. The line P,P; is tangent to V at
P; ; P, is an arbitrary point not on P;P;. Transformations 7> and 7T'; leave
the form of the plane unchanged, and 7T with @ = 0 does also. The follow-
ing transformation moves P; and P along the lines P,P; and P,P; .

| | -
ol osocooco]
cs o000 Oo~O
coocococo~ooo
cocoomoooo

omoococooOo
ol mocoococoooo
oc~oco0oco0oco00O
~—ococoocococococoo

(vii) The planek, 1, 0,0, 0, m,l 4+ m, k, 0, 0. This is a 7-plane with P; on
V;1+ m = 0is a Z-line; there is no line tangent to V. The following trans-
formation moves P; along the Z-line.
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1]

d 0 0 0 —ad 0 0 O0 0 O
0 d 0 0 0 0 —ad 0 0 O
0 0 d 0 0 0 0 0 00
0 0 0 d 02 0 0 0 0 ad
0 0 0 0 d& 0 0 0 00 2
Tw={ o o0 o0 o0 a4 0 o0 o ol@=1ta)
—ad O 0 0 0 dd & 0 0 0
0 a O 0 0 0 0 d 00
0 —ad O 0 0 0 0 ddd o
| 0 0 —ad —ad 0 0 0 0 0 d_

We shall have use for another transformation, which leaves P, fixed but
moves P, along P,P; .

d 0 0 00 0 0 0 0 0]
0d 0 00 0 0 0 00
00 d 00 0 0 0 00
00 =510 0 0 0 00
00 0 0d 0 0 0 00
Te=100 0 00 a4 0 o o0 of @=b+D
00 0 00 =51 0 00
00 0 00 0 0 d 00
00 0 00 0 0 —b 10
00 0 00 0 0 0 0 1]

(viii) The plane k, 1, m, 0, —rm, 0,1, k, 0, 0. This plane has no point on V;
it contains the =-line P1P;. If the form of the plane is to remain unchanged,
P; and P; must remain on the =-line. Pj; is determined by P;, since they
are conjugates with respect to the hyperquadric in which 2 intersects V.
The transformation T3, which moves P along the line P,P;, leaves P; and
P; unchanged; T, with @ = 0 also leaves P; unchanged. We give a trans-
formation which moves P; along P:P; and leaves P, fixed. This with T;
will allow us to select any line in the plane, except PiPs, for PyP,. If P =
Py + aPy, then Py = —aP; + P;.

10 0 0 —a 002000
01 0 0 0 000O0TO0O
00 1 0 O 0O0a0O
00 0 1 0 000O0a O

m,—|20 0 0 1 00000
00 0 O O 10000
00 0 O 0 01000
00 —a 0 0 00100
00 0 —a 0 00010
00 0 0 0 0000 1
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(ix) The plane k, 1,0, 0,0, m, I, k + am, m, 0. This is a r-plane, with no
point on V if 2* 4+ ax — 1 is irreducible. In determining the canonical form
it was necessary to move P, along P:P,, to interchange P; and P, and to
change the unit point; it was not necessary to change the line PiP;. This
is a 7-plane, and it contains no Z-line; any line in it can be taken for PP, .
The point P; is determined by P.P;. There is only one point on a given line
that can serve for P; and give the canonical cubic, because the group of trans-
formations of the line into itself is exactly the group of linear fractional trans-
formations of z. In order to show that P; may be taken to be any point in
the plane, it is necessary only to show that a change of the line PyP, in the
pencil on P, , leaving P; fixed, changes the polynomial in . For, since every
line has a P; and no point is the P; of more than one line, every point must be
the P; of some line. The following transformation has P; = P; and P; =
aP 2 '+' P 3.

a3 —a 0 0 0 —a*(wa—1) O aa—1 0 0
ale a—1) a? 0 0 0 —(ea—1) 0 alexa—1) 0 0
0 0 ) 0 0 0 0 0 0 0
0 0 —(a*+a%a—a) a O 0 0 0 0 aa—1
- 0 0 0 05 0 0 0o 0 0
a? -1 0 0 0 at 0 —-az 0 0 ’
—aa? o 0 0 0 —a? a? a -1 0
aa—1 a 0 0 0 aaa—1) 0 a? 0 o0
—alaa—1) —aa 0 0 0 —al@a—1) aa—1 —a* a O
R 0 0 —alea—1) =10 0 0 0 0 a |

3

d=a + aa — 1.
This transforms the point P, into
—a,a +d5,0,0,0, —a® — (aa — 1)}, d’, @ — aaa — 1), —1, 0.
The point Pj is
0,0,0,0,0,d + (a2 — 1)°, @, —2a + a(ea — 1), 1, 0.
The corresponding cubic is
2 — a2’ + alaa — 3)2 — [a® + (aa — 1)’] = 0.

Since this cannot be transformed into 2* + ax — 1 = 0 by a change that
leaves P;P; and also the point P, fixed, it follows that P; may be taken to be
any point in the plane, and then P, and P3; may be determined so that the
plane has the above canonical form.

(x) The plane k, 1,0,0,0,m, 0,0,0,0. Thisis a Z-plane in the five-space
determined by the lines in B: 25 = 0; it intersects V in the two lines I = 0 and
m = 0. The two lines on V determine two pencils of lines in R; the planes
of the pencils in R intersect in a line which belongs to both pencils. To ob-
tain the above form, A; and A, are selected at the vertices of the two pencils,
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A; in the plane of the pencil with vertex at A;, and A4 in the plane of the
other. Aj; may be moved about its plane, and likewise A, , and also 45 may
be selected anywhere outside of R without affecting the form of the plane.
These changes are made by

B 1 0 0 0 0 0 0 0 0 0]

—b 1 0 0 0 0 0 0 0 0

—d 0 1 0 0 0 0 0O 0 0

bg+dh—f —g —h 1 0 0 0 0 0 0

Ty = a 0 0 0 1 0 0 0 0 0
¢ 0 0 0 1 0 0o 0 o)

—ag—ch+e 0 0 0 —g —h 1 0 0 0

ad—bc c —a 0 d —b 0 1 0 0

5 e—ch  ah —a f—dh  bh -b —-h 1 0

| 82 cg e—ag —c dg f-bg —a g 0 1]

o1 = af — adh + bch — be, 8, = ¢f — beg + adg — de.

(xi) The plane k, I, m, —m, 0, 0, I, k, 0, 0. This plane contains P; on V;
it contains no special line; any line not on P; can be taken for P,P,. We
give a transformation which moves P; and P, along the lines P,P; and P.P;
respectively.

10 0 « 0 0 00 O O]
o1 - 0 O 0 O0O0 O 0
00 1 0O 0 0 00 O 0
00 O 1 0 0 0 O0 O 0
Ty = a b = & 1 —b 0 0 —a ab
00 b 0O 0 1 00 0 =-—a
0 0 O b 0 0 1 0 O 0
0 0 —a 0O 0 0 01 O 0
00 O —-a 0 0 0 0 1 -—b
|0 0 O 0O 0 0 0 O0 o 1

(xii) The plane k, 1, 0, 0, m, O, I, k, 0, m. This plane involves the most
complex considerations of all because it has no points or lines that are ob-
viously special, and there is no point on V specially related to it as, for ex-
ample, in the case of a r-plane. Yet its relation to V does determine a special
locus in the plane.

For any point P = (k, I, m) in the plane we have

Bi=1k, By=—0I, By=1km, By=1Inm, By = m® + kl.

Setting the B’s equal to zero gives five conics in the plane. These conics are
linearly independent and determine a unique conic apolar to them. This
absolute conic is C: m* — 2kl = 0. C depends only on the plane; it does not
depend on the coordinate system, for a change of coordinates would change
the conics among conics of the linear set, and C is apolar to all of them. The
points P; and P, are on C, and P; is the pole of the line PP, with respect to
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C. We shall show that P; and P, can be taken to be any two points of C,
and then if P; is taken to be the pole of P;P,, a coordinate system can be
selected so that the plane is in the canonical form.

We look for the relations of Py, Py, and P; to V which characterize the
canonical form.

P, =100000,0,1,0,0, P, =01000,0,1,0,0,0,
P; =10,0,0,0,1,0,0,0,0, 1.
P,P; is in the space tangent to V at
M =10,0001000,0,0.
The point P; is on the line joining M to a second point on V,
Q: =0,0,0,0,0,0,0,0,0, 1.
P, is on the line joining two points of V:
Q. =1,00,000,000,0 and Q =0,0,0,0,0,0,0,1,0,0.
P, is on the line joining
Q. =0,1,0,0,0,00,0,0,0 and Q; =0,0,0,0,0,0,1,0,0,0. ,

Corresponding to points Q,, Q1, Q», Qs, M, Qs on V are lines ¢1, q1, ¢
¢s,m, gsin X. These lines have incidences which have been described earlier
(Section 2) for the first five. The sixth line ¢s intersects g1 and ¢». These
relations make it possible to select the frame of reference in X to give the
canonical form.

We now prove that Pj; is the only point in the plane, not on PP, such
that the line joining it to M has a second point on V. The points of the line
joining M to an arbitrary point of the plane are

kr,Ilr, 0,0, mr 4+ 1,0, Ir, kr, 0, mr r=0,1,---,p— 1, o).

Conditions that this point be on V are B; = P = 0, B, = = 0,
Bi=km’ =0 By=1lmr'=0, Bs= '+ ki) +mr=0. Iftm =0,
these equations are all quadratic with a double root zero (where they are not
identically zero) corresponding to the fact that a line joining M to a point
of PP, is a tangent to V. If m £ 0, the last equation has a term of the first
degree in r; hence the others must be identically zero, and hence k = [ = 0.
Therefore, there will be a second point of V on the line only if (k, I, m) =
(0, 0, 1).

Any line in the plane is ak + bl — ¢m = 0. This line is in the space tangent
to V at the point’

M' = b, ac’, b’c, —d’c, (2ab + )¢, b°, —a(ab + &), —blab + ¢*), ¢’, —abe.

9 This point is obtained as the intersection of the polar spaces of (¢, 0, @) and (0, ¢, b).
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Conditions on P = (k, I, m) derived from requiring M’ + rP to be on V for
some r give P = (b, a, ¢). This is a necessary condition on P; and the line
P,P; if the plane is to have the canonical form. A further condition is that
P;P; must cut C in two points, i.e., ¢ — 2ab must be a square, not zero.

Conversely, if ¢ — 2ab is a square, not zero, and P, and P; are intersections
of ak + bl — em = 0 with m* — 2kl = 0, then Q;, Q1, Q., Qs can be de-
termined so that P;, P., P; have the required coordinates. If P; is moved
along the line PiP;, which is tangent to C' at P;, and P, is moved along C
to the polar of the new P;, and if then a coordinate system exists such that
P;, P;, P; have the above form, it will follow that P; may be taken to be
any point of the plane outside C; the result comes from the fact that P; and
P, enter symmetrically in relation to P; , to C, and also in relation to the frame
of reference in X.

We give the transformation which leaves P, fixed, moves P; to P, + cP;,
¢ # 0, and moves P, along C.

[5¢ 0 6 0 0 0 0 0 0 O]
4t 6 6 0 28 4 0 3¢ 0 0
0 0 ¢&& 0 0 5 0 0 0 O
% 5¢° q 2c° q q 3¢ q 0 65
2cc 0 ¢ 0 4 4 0 5¢ 0 O
Ta=1% 0 0 o 0 3 o0 o o o Urp="7.
22 0 & 0 & 3% 6 3 0 3¢
0 0 ¢ 0 0 6° 0 5° 0 o0
6c 6c Hc 2¢ 6¢c 3¢ b5c Hc 3¢ 2
0 0 6 0 0 3 0 4 0 4

It may be verified that Ty puts
1,0,0,0,0,0,0,1,0,0 into 1,0,0,0,0,0,0,1,0,0,
1,24, 0,0,2c0,2¢ 1,0,2¢ into 0,1,0,0,0,0,1,0,0,0,
1,0,0,0,¢0,0,1,0,¢ into 0,0,0,0,1,0,0,0,0, 1.

5. Three-spaces which intersect V in at least one point

(1) Introduction. The three-spaces most easily dealt with are those having
large intersections with V'; one of the two three-spaces with no point on V
requires more work than all the others, and for this reason the two are sepa-
rated from them.

There is one three-space S; which will not be included in our list because
it leads to a group that has been excluded. This S; lies wholly on V. Since
every pair of points in S; is the image of a pair of intersecting lines in X, all
of these lines must pass through a point. If this point is taken to be 4, , then
A., Az, Ay, As may be selected arbitrarily, except that all five A’s must be
linearly independent, and then S; will be k, I, m, n, 0,0,0,0,0,0. The group
of order p" defined by this three-space is given by the additional relations:
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81 = 8 = 83 = 8 = 1; it is the direct product of the metabelian group
{Us, Us, Uy, Us} of order p and the eyclic group {Uh}.

(ii) Three-spaces containing a Z-plane cutting V in a nondegenerate conic.

1. k,0,m,0,n,0,0,17, 0,0, theruled quadric k&l + mn = O0on V.

2. k1,m0n —1,0, k0,0, thequadrick’ + % 4+ mn =0on V.

3. k1,n,0,0,1,0,m,0,0, theconekm — I =0onV.

4. n,1,0,0,k m,0,0,m,1, theconickl —m’ = 0,n = 0and the line

l=m=0onV.

5. k14 n,m,0,n,n1k-+n0,0, theconick’+ kn—n’+ mn =0,
I = 0, and the point 1,1,0, —1 on V.,

6. 7n,0,0,0, k m,0,n,m,1, theconickl—m’'=0,n=0onV.

If the intersection of S; and V contains a nondegenerate conic, the plane
of the conic will be a Z-plane. Hence, the spaces in this set all contain =-
planes at least; the first three are actually =-three-spaces, in the Z determined
by the lines of the three-space 2; = 0 in X.

If S;liesin a Z, the intersection of V and Z cuts it in a quadric; if the quadrie
is degenerate, it can be at worst a cone with a single vertex, since we insist that
some plane of S; intersect V in a nondegenerate conic. Suppose the quadrie
is not degenerate and that it has rulings. Let P; be an arbitrary point of the
quadric; let P; and P; be arbitrary points, one on each of the rulings through
P, ; and let P, be the intersection of two other rulings, one through P, and
the other through P;. Corresponding to these four points of V are four lines
1, P2, D3, pa in X. p; intersects p, and ps; and does not intersect ps. P4
intersects p. and p; , and p, does not intersect ps. 1, P2, and p; determine
a three-space, and py lies in it; this three-space determines in S the ¥ in which
S; lies. We select a frame of reference in X as follows: A; is on p; and p; ;
A, is on p; and p; ; Az is on p; and ps ; A4 is on p; and py ; As is anywhere
outside the three-space already determined. Then S; will have the form 1.

Let S; intersect V in a nondegenerate quadric which has no rulings. S;
contains a plane which cuts the quadric in a nondegenerate conic; this plane
is a Z-plane. Let P be a point of this plane not on V; a line joining P to a
point of the quadric not in the plane cuts V twice or else is a tangent, and
hence the line is a =-line. The quadric and S; are thus seen to be in a =.
A coordinate system can be selected so that the plane of the conic is

k,0,m,0,n,0,0,*k,O0,0.

The three-space in X determined by a point of the plane is x5 = 0. Hence,
Sz is in the five-space as = a7 = @ = ap = 0. Any point of S; is

a1,0:,03,0,0;5,0a6,0,0a,0,0.

S; contains a point P; = 0, a2, 0,0, 0, as, 0, as, 0, 0. The polar spaces of
P; =0,0,1,0 and P, = 0, 0, 0, 1 with respect to V are respectively a5 =
ar=a = 0and a; = as = a = 0. Both contain P; and P;. P; is not on
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V, and hence the line P,P; contains a point P, conjugate to P; with respect
to V. For this point we have a; + as = 0, and hence

Py, = (11,(12,0,0,0,(15,0, “‘04,0,0.
A change of coordinates:
Al = ady + ads, AL = aA; — ads, Ai=A;, i#1,4,

and a proper choice of the unit point gives P, = 0, 1,0,0,0,7,0,0,0, 0, rnot
a square. This is space 2.

Let S; intersect V in a cone, and let the vertex of the cone be P,. Every
point of S; is in the space tangent to V at P,. Let p be a plane which cuts
the cone in a conic C. Let P; and P, be points of C, and let P; be the pole
of PP, with respect to C. Then p; and p, are two skew lines in X, and p4
intersects both of them. If A, is the intersection of p; and p., A4 the inter-
section of p, and py, A, an arbitrary point not A; on p;, and A4; an arbitrary
point not A4 on p; , we have

P, =100000000,0, P, =00000001,0,0,
pr,=001000,0,0,0,0.
The three-space containing p; and ps is x5 = 0. Consequently,
P;=a,0,03,0,05,0,0,as,0,0.

Since P; is in the space tangent to V at Py, a5 = 0. Since P.P; is tangent
to V at P1, as = 0; and since P.P; is tangent to V at Pz, a; = 0. By rotating
the plane of C' on P,P; we may move P; to the point 0, a5, 0, 0,0, ¢, 0, 0, 0, 0,
and then by a choice of the unit point we may make @, = ag = 1. This
gives 3.

Whenever S; lies in a five-space Z, S; will intersect V in a quadric. We
have taken care of all such S;’s except such as contain a plane of V. It has
seemed desirable to consider S;’s with planes on V separately. The remain-
ing spaces under the present heading all intersect at least one 2 in a plane.
Ss cannot contain a second Z-plane, for the intersection of the two planes
would contain points not on V and S; would lie in the £ determined by such
a point.

Suppose S; contains two points on V besides the points of the conic.
Neither of the two points can be in the plane of the conic, since no =-plane
intersects V in a conic and an additional point. Denote the line on the two
points by L. L intersects the plane of the conic in a point which must be
on the conic, for otherwise S; would be in the 2 determined by that point.
L then has three points on V and hence lies wholly on V. If P,is taken to be
a point on L not on the conie, P, as the point on L and the conic, P; on the
conic, and P; the pole of P.P; with respect to the conie, coordinates can be
chosen so that we have 4.
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Suppose next that S; contains a conic C and an additional point P; on V,
but contains no ruling of V. Coordinates can be selected so that the plane of
Cisk,0,1,0,m,0,0,% 0,0. The equation of C is k¥* + Im = 0. The
points of C are kI, 0, I’, 0, —k%, 0,0, k1,0,0. The lines of X imaged on these
1,0,k 0,0
0,%k0,1,0°
Xy — X = 0, 25 = 0. Any point of the plane of C, not on C, determines
the three-space R: x5 = 0, which contains the above quadric. P, is not in R,
but it intersects R in a point. The point of intersection cannot be on the
quadric, since S; contains no ruling of V. We may take A to be on ps, and
the intersection of p, and R to be a4, a7 , a9, a10 , 0; since this point is not
on the quadrie, asaz — asa % 0. P, = 0,0,0, a1, 0,0, a7, 0, ay, ayp -
We show that S; cannot be in the space tangent to V at any of its points. If
B =by, b, -+, by is a point of V such that the plane n = 0 of S; is in the
tangent space at B, it is easily seen that B = b, b,, 0,0, 0, bs, 0, —b,, 0, 0.
The requirement that P, be in the tangent space at B gives a.a; — aya0 = 0,
which is not so. We determine a canonical form for S;. Let K be the point
in which p, intersects . Through K take a line ¢ in R which intersects the
quadric in two points; these points will lie on two distinct rulings of the
quadric which are imaged on V on two points of C; let these two points be
P, and P;. Denote the pole of P,P; with respect to C by P;. The polar
space of P, with respect to ¥ does not contain the point 7', which is the image
on V of the line £ in X, for otherwise S; would lie in the space tangent to V at
T. Hence, the line joining P, to T intersects V again at a point which we
denote by Q1. The line ¢ in X intersects both p, and p; , since P; and T are
both in the tangent spaces at P; and P;. The lines ps, s, t, g1,and psin X
are related as follows: ¢ and ¢y are skew and intersect both ps and ps ; ¢ also
intersects p4 , which is not in the space of p. and p; . Denote the intersections
of ¢ with p, and p; by A, and A, respectively, and the intersections of g1 with
p2 and p; by As and Aj; select the unit point in R so that K is 1, 1, 0,0, 0,
and select As on ps. Then S; takes the form 5.

Suppose S; intersects V in the conic C and in no other point. Any point
of the plane p of the conic, not on V, determines the three-space R and the
five-space Z. Let R be #; = 0. If P, and P, are chosen on C and P; is the
pole of P,P, with respect to C, a frame of reference in X can be chosen with 4,
arbitrary, not in R, so that p is0,0,0,0, k, m, 0,0, m,l. There is a point in
Ss , not on p, with coordinates a1, a2, a3, a4, 0, as, a7, as, 0,0. If A;is re-
placed by A1 = 1, a, b, ¢, d and the other A’s are left unchanged, this point
has new coordinates a1, - -+, a1o. The numbers a, b, ¢, d can be selected so
that as = a¢ and a7 = 0. S; contains a point

points are{ These lines are rulings of one set of the quadric

Pi=a1,0:,03,04,0,0,0,0a5,0,0

(dropping the accents). Since P, is not on V, as # 0, and not both a; and
a4 are zero. Any point in S; is
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P = ain, asn, asn, am, k, m, 0, agn, m, .
For P we have
B1 = agkn — aymn + a1a8n27

B, = askn + aymn,

B; = ayln + agmn,

By = azln — agmn + awasn’,
Bs = kl — m’".

The conditions that P be on V are (1) n = 0, kl — m’ = 0, which gives C, or
@2)n =0,

azk — agm + aasn = 0
ask + aym =0
al + agm =0

asl — azm + asasn = 0.

The last three equations have a solution k, I, m, n not all zeros. n # 0 re-
quires either a,a; + axas £ 0 or a, = 0. Suppose @105 + @04 # 0, a4 = 0;
then &, 1, m,n = a105,0,0, —a;, and a; = 0. This is a solution of the four
equations, and hence gives a point on V not on C. This is not possible with
this S;. Suppose aa; + @04 5% 0, a4 % 0. Then if a; # 0, the solution of
the last three equations is ay, a3/a;, — as, — (@105 + @204)/a,a5 Which also
satisfies the first equation. If a; = 0, the solution of the last three has n = 0
and satisfies the first, and hence is not suitable. Then suppose a,a; + azxa4 = 0,
as = 0. Since P,is not on V, a; ¥ 0 and hence a; = 0. A solution of the
last three equations is k, 0, 0, 1, k& arbitrary, and this does not satisfy the
first. Hence in this case

P4=01,02,0,0,0,0,0,03,0,0, mas # 0.

R, intersects R in the plane x; = x5 = 0. We note also that S; contains a
r-plane P,P;P, tangent to V at the point P; which is on C. If @, is not zero,
it may be made so by moving 4, to As = A + a:ds/a1, and 45 to Ay =
—azAs/a; + As. Then proper choice of the unit point puts S; in the form 6.

There remains the possibility that aia; + a:04 = 0, as % 0. We show that
this is not different from the space just considered, showing first that it con-
tains a plane tangent to V at a point of C.

The space tangent to V at the point B = by, - - -, by is"

bsxy — bers + bsxs 4 bsxs — bexe + bixs = 0,
bery — brxs + bsrs + bsxs — bavr + bixe = 0,

10 We call attention to this, for we shall have frequent use for this space in what
follows.
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b1y — bixs 4+ bexs + baxs — bszr + by = 0,
bioxe — boxs + bsts + bas — by + b0 = 0,
biews — bexs -+ bstr 4 brrs — bexe -+ bsrio = 0.

Its intersection with S; is

bsk — bym + (asby + asbs — asbs + arbs)n = 0,
bk + bym 4+ (asbs — asbr + abe)n =0,
bl + bam + (asbs — asbr + asbio)n =0,
bol — bym + (asbs + asbs — azby + asbio)n = 0,
bk + bsl — (be + by)m + asbn = 0.

If this intersection is a plane, the rank of the matrix of coefficients must be 1.
This requires that b, = by = by = by = 0. If the plane is not n = 0, then
the coefficients of n in the first four equations are zero. This gives four
linear equations in bg, -+, biw. Two obvious solutions are

az,03,a,0,0,0 and 0,0,0:,0,02,0a;s.

On the line joining them is —a1a2 , —a1a3, 0, 0, aya4 , asas which is also a solu-
tion. The point is in the plane p since a;a3 + aa. = 0, and is also on C.
The 7-plane, which is given by the last equation above, passes through P,,
since b, is zero. If now this point of C is selected for P; and coordinates are
determined as before, P, will have a3 = a4 = 0 since P, is in the tangent space
at P;. This completes the consideration of Sy’s with a nondegenerate conic
on V.

(iii) Three-spaces with a plane on V.

k,1,m,0,,0,0,0,0,O0.

L
3
=
=)
L

The planes of V are of two types: (1) planes whose points represent the
lines of a plane in X, and (2) planes whose points represent the lines of a
bundle. In the first four spaces above, the plane n = 0 is of the second type;
in the other two the only plane on V is of the first type. Space 7 has two
planes on V'; space 8 has a plane and a line; spaces 9 and 9’ intersect V only in
a plane. Space 9’ is in the space tangent to V at each point of PP, ; space 9
is not a 7-space. Space 11 is a 7-space, and 10 is not.

11 Spaces 9’, and later 20’ and 20”, were missing from the paper cited earlier; it is
desired to keep the numbering of the earlier paper for the other spaces.
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Suppose S; contains a plane p of the second type. The points of p represent
the lines of a bundle in X; these lines lie in a three-space B. The vertex of
the bundle may be taken to be 4;, and 4., A;, A4may be taken on any three
independent lines of the bundle. Then p will take the form of » = 0 in
7,8,9,9. If S;contained another plane of the second type, their line of
intersection would represent the lines of a pencil common to the two bundles,
and so the two bundles would have the same vertex and S; would lie on V.
This possibility has been dealt with. So a second plane on V must be of
the first type. This second plane intersects p in a line, and hence its points
represent the lines of a plane in X which lies in R and passes through 4, .
S; is therefore in the = determined by R. The plane in R may be taken to be
A;14,4;5. If Asis selected to be any point not in B, S; takes the form 7. This
is a =-space; the two planes constitute the degenerate quadric in which S;
intersects V.

Suppose S; contains p and a point P, on V and not on p. The line p; is not
in R, for if it were, S; would be a Z-space and would intersect V in a quadric
consisting of two planes since it contains p and an additional point. Hence,
P4 intersects R in a point. The point cannot be A;, for then S; would lie
wholly on B. The point may be taken to be 4;. Az may be taken on p;,
and then S; has the form 8. This space intersects V in the plane p and the
linel = m = 0.

Any other S; which contains p can have no further point on V. Let S;
contain p and a point Py not on V. P, determines a three-space R, in X. R,
and R cannot coincide, for then S; would be a 2-space intersecting V in a
quadric consisting of the plane counted twice, and P; would be in each space
tangent to V at a point of p. There is no such point not on V. Therefore R,
intersects R in a plane ¢. If ¢ does not pass through A4,, the plane = on V
whose points represent the lines of ¢ does not intersect p. The polar of P,
with respect to V intersects « in a line. If @, is selected in = not on the polar
of P4, then the line P,Q, will intersect V in a second point Qi. qliesin o,
and gs , which lies in Ry, intersects o. A, and A3 may be taken on ¢, A4 on
s and o, and As on gs. Then S; will take the form 9.

Next, suppose the plane o of the last paragraph passes through 4,. The
planes p and = will intersect in a line A;. The polar of P, intersects = in a
line 2. Suppose A; and A; coincide. Then the point P; is in each tangent
space to V at a point of A\; which we may take to be P.P,. It then follows
that P, = 0,0,0, a4, a5,0,0,0,0,0. A choice of the unit point puts S; in the
form 9’. This space is then tangent to V at every point of PP, .

Space 9 is not in the space tangent to V at any point of V'; however, to show
that 9 and 9’ are different, we need only to note that in 9 the point P, is not
in the space tangent to V at any point of p.

There is one further possibility to consider. If the lines A; and A; in the
plane 7 do not coincide, they intersect in a point which we may take to be
P,. P, would be in the space tangent to V at P;; hence P, =
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0,0,0,a4,0a5,06,0r,0,0,0. By examining S; for points on V, it is found
that unless a; = 0 there is a point %, [, m, n = 0, a5, asa6 , a7 on V and not
on p. In that case the space is 8 with an additional line on V; if a; = 0 and
as # 0, P4 can be selected so that \; and \; coincide, showing S; to be 9.

An S; which contains a plane on V and is not one of the foregoing contains
a plane of the first type. A coordinate system can be chosen so that the plane
isn = 0 of 10 and 11, 4;, 4., and A; being arbitrary independent points of
the plane ¢ in X whose lines are imaged on the plane p in S;. If P, is a point
of S; on V and not in p, then the line p, in X may or may not intersect o. If
it intersects o, we have S; in a five-space = given by a three-space in X ; S; then
intersects V in two planes, giving 7, or else lies wholly on V. If p, does not
intersect o, A4 and 45 may be selected on ps and we have 10.

Finally, suppose S; contains the plane p of the last paragraph and no other
point of V. Let P, be a point of S; not on p. The three-space R4 intersects o
in a line, for if ¢ were in R4, S; would be in the five-space determined by R,
and would be 7. This line of intersection of ¢ and R is imaged on V in a point
of p which is such that the line joining it to P, is tangent to V, being in a = and
having no other point on V. If @, is selected in R, so that g, intersects the
above line, then ¢; will intersect the above line also. These intersections may
be taken to be A; and Aj;, respectively. If then A, is taken on ¢ and As on
gs, Ss will have the form 11.

We have considered all the possibilities for S; with a plane on V.

(iv) Three-spaces containing at least two rulings but no plane of V.

12. %,1,0,0,0,m,0,0,0, n.
13. k,1,0,n,0,m,n,0,0,0.
14. k,1,0,0,0,m,0,0, n,n.
15. k,1,0,n,0,m,0,n,0,0.
16. k,1,0,n,0,m,n,n,0,0.
17. k,1,0,0,n,m,0,0,0,n.
18. k,1,0,n,n,m,0,0,0,0

The first two have three rulings on V'; in 13 the rulings pass through a point;
in 12 they do not. In each of the rest there are two intersecting rulings; 14
contains one additional point and the others none. 15 and 18 are r-spaces;
16 and 17 are not. 18 is in the space tangent to V at a point of intersection
with V'; 15 is in the space tangent to V at a point not in S;. The distinction
between 16 and 17 is more difficult; it is shown at the end of this section.

If S; contains rulings of V' but no planes or nondegenerate conics, the
number of rulings cannot be greater than three since otherwise S; would
contain planes with four or more discrete points on V. If S; contains three
rulings of V, each ruling must intersect another for otherwise S; would con-
tain planes on one ruling intersecting V in two additional points and no such
planes exist.
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Suppose S; contains three rulings which do not pass through a point. De-
note the rulings by Ui, I, and l;, and let [; and I, intersect. I; and [, are
images of two pencils of lines in X whose planes have a line in common. The
planes of the pencils lie in a three-space B. An obvious choice of the co-
ordinate system in X gives the plane /;/; the form of the plane n = 0 in the
spaces above. The line /; intersects one of the lines I; and [ ; we may assume
the intersection to be P; . Any point on /3 is in the space tangent to V at P;,
and hence its coordinates satisfy a; = a4 = as = 0; and since it is a point of V,

aag + azas = 0, a0 — azar = 0, asyo -+ azas = 0.
Hence, as/a1 = an/ar = —as/as = r. The line in X which is imaged on this
s (11,0, —aa,O, —az .
point is {0’ 1,0,7,0 . The lines p1, 2, ps are
_11,0,0,0,0 _ /1,0,0,0,0 __Jo,1,0,0,0
Pr=30,1,0,0,0° P2=%0,0,1,0,0° ¥~ 0,0,0,1,0°

A change of coordinates: A; = A;,7=1,2,3, A= (1/r)4s+ Ay, As=
Ay — asA; — azAs leaves Py, P», P; unchanged, but makes the point on /3
take the form P, = 0,0,0,0,0,0,0, 0,0, 1. S; has the form 12.

When S; contains three rulings which pass through a point, P, , Py, P; may
be taken as above, and the third ruling passes through P;. For any point P,
on this ruling, we have a3 = a9 = a0 = 0, and

a0 — azas = 0, sty — a5 = 0, aza; — asag = 0.

From this as/a; = as/a; = az/as = r. Py = {(1): 76’0&20’, 23’ 4
coordinates: Ai = A;, i =1, -+ ,4, As = ads + a3As + @145 and a proper
selection of the unit point give the form 13.

A three-space S; containing two skew lines ; and I, which are rulings of V
has three or more lines which are rulings of V. The lines [; and I, determine
two pencils of lines in X lying in two planes ¢; and ¢, . If the planes intersect
in a line, they lie in a three-space, and S; is a Z-space. S is of the form 1 and
intersects V in a nondegenerate ruled quadric. If o; and o2 intersect in a
point, that point cannot be the vertex of either pencil, for otherwise one line
of one pencil would intersect every line of the other and S; would contain a
plane and a line of V; it would be 7 or 8. The remaining possibility allows us
to take the pencils in the planes 4;4,4, and A;4:4; with vertices at A, and
As. Then S;isk,1,0,0,0,m,0,0,n 0 which has three rulings and is 12.

The remaining Ss’s in this section contain two rulings, and the two rulings
intersect. The plane of S; containing the rulings is the plane n = 0 above.
We designate this =-plane by p and the corresponding three-space in X by E.

Let S; contain an additional point P, on V. The line p, intersects R in a
point. This point is not in either of the planes determined by the lines of p
on V, for if p were the line of the pencil through that point, PP, would be a

A change of
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pencil of points on V representing the pencil of lines ppy, and S; would con-
tain a third line of V. A line may be taken through the intersection of ps and
R intersecting the planes of the two pencils in points which may be taken for
A; and A, without changing the coordinates of Py, Pz, or P;. Then 4; may
be selected on py not in B. S; becomes 14.

Any other S; which contains two rulings of V contains the plane n = 0
above and a point

Py=0,0,a3,0:s,05,0,0a7,03, a9, 0.

To this S; we apply transformation Tla (page 658). This transforms p into
itself, and transforms P,into Py = a;, -+, a1. Thereis in S; a point for
which a1 = a5 = a¢ = 0, and

as = @3 — ash — 50 + wah + aple — of), @i = as — @@ — G,
’
as = a5 — g + asd + ao(f — dh) + awdg, a1 = ar — ab — awa,
as = a3 — aoh + ang, Gy =, G = ap.

(a) Suppose asa0 # 0. Then since b appears only in a7, ¢ only in ay, d in
as, and e in a3, we may make a5 = a;s = a5 = a7 = az = 0 by selecting
a, f, g, h, to satisfy azs — ash + aiog = 0 and solving for b, ¢, d, and e. This
gives 14 again.

(b) Suppose as = 0, a0 # 0. a and ¢ can be selected to make a7 = a = 0;
then if g # 0, d, ¢, e can be selected to make az = az = a3 = 0. This is 12
again. If g =0, weget P,=0,0,0,0,1,0,0,0,0, 1, which is 17.

(c) Suppose as # 0, ap = 0. b and k can be selected to make a; = as = 0;
then f and a can be selected to make as = a5 = 0. a3 is then determined; it
cannot be zero since P, is not on V, but a choice of the unit point will make
as = as . We shall postpone the identification of S : k, I, n, 0, 0, m, 0, 0, n, 0.

(d) Suppose ay = ap = 0.

(i) aras # 0. asand a5 can bemadezero. as, a7 , as cannot be changed.
We have the possibilities:

P,=0,0,0,0:,,0,0,07,0,0,0. This is space 16.
P,=0,0,00,0,0,07,0as,0,0.
(ii) a; =0,as#0. dand a can be selected to make a; = az = 0.
P,=0,0,0,1,0,0,0,1,0,0.

(i) a0, as=0. g can be selected to make as = 0. Then if
as # 0, a3 can be made zero, and Py is on V. Hence a; = 0 and

P, =0,0,1,0,0,0,1,0,0,0.

(iv) ar = as = 0. Then a4 # 0 since R, is not B. a5 # 0, since P, is
not on V. a3 can be made zero. 8;is 18.
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The transformation T'js is the most general collineation of X that leaves the
form of p unchanged and also leaves A; and A, unchanged. A collineation
which interchanges A; and 4., and of course interchanges the pencils with
vertices at A4; and A, , leaves p unchanged. If 4; and A, are interchanged as
well as A; and A4, , the pencils will be interchanged. This transformation puts
the space of (¢) above into that of (b); it puts the second space of (d, i) into
the space of (d, ii), which is 15; and it puts the space of (d, iii) into that of
, iv).

To distinguish between spaces 16 and 17 we note that any point &, I, m, n of
16 determines in X the three-space

n'wy — n'xs + mnaxs + nxs + (n — Im)xs = 0;
any point of 17 determines the three-space
n'xy — Inxy + knaxs — lmas = 0.

All the spaces in X determined by points of 16 pass through 1, 1, 0, 0, 0, which
is a point of the special line, the line in both pencils determined by the inter-
sections of Sz and V. All the spaces in X determined by points of 17 pass
through 0, 0, 0, 1, 0, which is not on the special line.

(v) Three-spaces containing one ruling of V.

19. m,0,0,%k0,0,7,n,k, L
20. £,1,0,0,0,n,0,0,n, m.

20'. k,1,0,n,n,0,0,0,0,m.
20”. k,1,0,n,n,m,0,0,0,m.

21. k,1,m,n,0,rn,m,0,0,0.
2. k,1I,m,n,m,mn0,0,0,0.
22. k1,0,0,0,n,m, m,rn,O0.
23. k,I,m,0,m,0,n,n,0,0.
24. k,1,0,0,n,0,m m,0, —rn.
25. k,l,m,0,n,0,0,0, m, n.
26. k,1,n, 0,00, m, m,n,0.
27. k,l,m,n,0,0,m,n,0,O0.

b
Each r above is a not-square.

Space 19 has a ruling and two points on V. Only spaces 20, 20’, and 20”
have the ruling and one additional point on V'; space 20 contains a line tangent
to V at P; ; the other two do not have such a tangent; space 20’ contains the
3-plane P,P,P; ; space 20” contains no =-plane. Spaces 21 and 21’ are in the
space tangent to V at P;, 21’ having a plane tangent to V at P, , 21 having
no such plane; space 22 is not in a space tangent to V at a point of PP, ; it is
in the space tangent to V at a point not in it; none of the others isa r-space.
To distinguish among the remaining five we state some geometric facts that
are obviously sufficient, and then to show how these facts may be established
we carry out in detail the argument for space 23.
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In space 23 every plane on P; is a 7-plane, and every line in P;P,P; is
tangent to V at its intersection with P;P,. The space 24 contains a r-plane
n = 0, which is in the space tangent to V at 0,0,0,0, 1,0, 0,0, 0, 0; it con-
tains a pencil of 7-planes on P3P, ; P3P, is a Z-line which does not intersect
the ruling. All the 7-planes pass through P;, but not every plane on P; is a
r-plane. Space 25 contains a pencil of 7-planes on PyP3; and no others. Space
26 contains a pencil of 7-planes on PP, ; the plane m = 0 is tangent to V at
P, ; there is no plane tangent at any other point of P1P,. Space 27 contains
a pencil of 7-planes on P1P, ;m = 0 is tangent to V at P., and n = 0 at P; .

We now establish the facts stated for space 23. Let B = by, by, -, by be
a point of V. The space tangent to V at B is given on page 664. Substituting
in these equations the coordinates of a point in space 23, we get five linear
equations in k, I, m, n with the following matrix of coefficients:

bs —bs bs+ bs by

bg —by by - b2
M=]|bo 0 —br —bs |.
0 blo - bg b4

0 0 b1o b + bs

If S; were a 7-space, it would be possible to select B so that the rank of M
would be zero; this would require all the b;’s to be zero. Hence, S; is not a
r-space. If the rank of M is one, the space tangent to V at the point B will
intersect S; in a plane. This requires by = by = bg = by = bjp = 0; hence all
the 7-planes pass through P;. In addition, we should have either (a) bs = 0
and by + bs = 0, or (b) b = by = 0. In case (a) the r-planeisn = 0;itis a
Z-plane. In case (b) the 7-plane is —bsl + bsm + bin = 0. Since b, , b5, be
are arbitrary, every plane on P; is a 7-plane.

We now show that the above are the only three-spaces meeting V only in one
ruling and possibly some isolated points. S; can have no more than two
isolated points on V, for if it had three, the plane on them would intersect the
ruling or contain it, and no such plane exists. If S; contains two points of V'
besides the ruling, the line joining the two points must be skew to the ruling.

Let S; contain the ruling P,P; and the two points P; and Py on V. Then
in X the lines ps and ps are skew to each other, and both are skew to the plane
of the pencil pip: . The lines p; and p, determine a three-space R which inter-
sects the plane pyp. in a line A. The line A may belong to the pencil pip. , or it
may not. If A does not belong to the pencil, it intersects the two lines p; and ps
in two distinet points, O; and O, respectively. The plane p;0; intersects py
in a point we take to be A3, and 430 intersects p; in a point we take to be 4, .
By means of O; we determine 4, on p, and 4, on p;. O may be taken to be
A+ As, and O, to be A, + As. A may be taken to be the vertex of the
pencil pipe . Then S; will be 19.

If \ belongs to the pencil p;p., we may suppose that it coincides with p; .
We may take O; to be the vertex of the pencil and O. any other point on p; .
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We may proceed as above and finally take 45 to be a point of p,. Then S;
will have the form
k+m,0,k 1, —k, 0,0,k + n,l,0.

It is easy to verify that this S; has a conic and a line on ¥ and hence is space 4.

We consider an S; which intersects V only in the line P,P; and the additional
point P;. In X the plane of the pencil pip; is skew to the line p; . The plane
of the pencil may be taken as A;4.4;, with A; the vertex of the pencil, and
4,4 and As may be taken on p;. The plane P,P,P; will then have the form
k,1,0,0,0,0,0,0,0,m. In S; there is the point

P4=0;0,a3;a4’a57a6’a’1;a81a9’0-

The space tangent to V at P; does not intersect the line PP, so its inter-
section with S; will be the line P3P, if a5 = 0, or will be P; alone if a5 # 0.
The space tangent to V at a point of P;P, does not contain P;, and hence its
intersection with S; will be at most the plane P,PyP,, but may be only the
line PP .

Now suppose a; = 0, so that P3P, is a tangent. Conditions that P,P,P, be
tangent to V at the point aP; + bP, are

aza — aghb = 0, ast — azb = Q.

If a and b exist so that these equations are satisfied we must have asay —
aas = 0. In that case S; has an additional point” on V. So an S; with only
a line and a point on V, with a line tangent to V at P;, has P, with asay —
aas % 0. The three-space R, determined by P, does not contain A;.
Hence the intersection of R, and pip., which is a line, may be taken to be
A24; ; we denote the line by ¢,. The corresponding point @4 on V is such
that P,Q, intersects V in a second point unless it is a tangent. Suppose PsQ
is a tangent. Then since @, =0,0,0,0,1,0,0,0,0,0, P, must have
a3 = as = ap = 0. Since asay — aya3 # 0, we may select
Ay = asds + As and  Ag = asds + apds.

Then P, becomes 0, 0,0,0,0, 1,0, 0, 1, 0, and S; is the space 20.

The final supposition, that led to space 20, was that P.Q, is tangent to V.
If this were not so, there would exist a ¢ such that @, 4+ ¢P, would be on V.
The Bs for this point is (asas — aras)t?, which requires ¢ = 0. We have thus
shown that the only S; with a line and a point on V and with a line tangent to

V at the isolated point is 20; and space 20 has no plane tangent to V at a
point of the line on V.

12 The additional point is
Gs, 08,03, 04,0,0a6,ar,as, ay, (a7 — G406)/0s , if as = 0;
a7 ,0,03,04,0,0,0;,0,00, 05, if ag = 0, a7 = 0;

0,1,as,04,0,0,0, ag, a, (@309 — G403) if ag = ay = 0.
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We now consider S; with a point and a line on V which contains a plane
tangent to V at every point of the line; such a plane is a Z-plane in the five-
space = determined by any point in the plane not on V. For the point Py,
which is in the =-plane, has as = a7 = a3 = a9 = 0. S; contains no tangent
line at Ps, s0 a5 #0. P, =10,0,0a3,04,0,0,0,0,0,0. A5 can be moved
along p; so that S; becomes 20’.

Suppose S; contains a plane tangent to V at one and only one point of P,P;.
The point may be taken to be Py. Then Pyhasas = a3 =0,0a; #0. P, =
0,0,a3,0:,05,05,07,0,0,0. R, intersects p; at 0,0,0, a3, a, ; using this
point for A we reduce a; to zero. We can now move 4, t0 0, 0, 0, as , a7y and
remove ay , if ag % 0. In that case S; is 20”.

If as = 0 just above, S; intersects V in another point, namely,

0, aqas/0r,0,04,05,0,0ar,0,0,0.

We will now show that this list of Sj’s containing a point and a line on V,
and no other point on V, is complete by showing that such an S; having no
plane tangent to V at a point of the line is 20. As shown above, the fact that
S3 contains no plane tangent to V at a point of PP, requires P; to be such

that ae@e — a0s ¥ 0. Now, making use of Ts ,, the pomt P, =
0,0,a3,04,05,0,07,0s, 0, 01schangedtoP4 =ay,0s, a0,
o = as(ad — c¢), az = as(a — be),

= a3 + asf + asa + araf + asc + aocf,
as = ae + a; + aae + aa + asce + agc,

at = as(1 — bd), as = as + arf + asd + aodf,
a1 = ae + a7 + axde + ad,  ai = adb + aibf + as + af,
as = aghe + azb + ase + an, ato = 0.

Since asap — aras = 0, a and ¢ in T can be found to make as = a¢ = 0. Then
the change of A, and A5 on ps that gave 20, and if necessary a change of Py in
the plane P1P>P; to makea; = az = 0, will give P, = 0,0, 0,0, a5,1,0,0, 1, 0.
Examining S; for points on V, we find the additional point k = I = aym —n =
0, which is one too many points unless a; = 0.

We consider a space S; which contains the ruling P1P, and no other point of
V, and which lies in the space tangent to V at P; ; no S; with only one line on
V could lie in more than one such tangent space. Let P; and P, be two points
of S; which are on a line skew to P,P,. The plane P.P3P, is tangent to V
since every line in it through P; is a tangent. Pj; and P, determine two three-
spaces B3 and B, in X. R; and R; may or may not be distinet, but both cer-
tainly contain the line p; . If R; and R, coincide, then P1 P3P, is a plane in a
five-space =, and it has one point on V. This is plane 6 of the list of planes.
Coordinates can be selected so that the plane is k, 0, m, n, 0, rn, m, 0,0,0, r
not a square. The space R; = Rsis x5 = 0.
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The line p; is in Ry, and consequently the vertex of the pencil pip; is in R .
We now show that coordinates can be selected so that Py, P;, and P, have
the above form and at the same time A; is at the vertex of the pencil pip, .
Let ¢ be an arbitrary plane in B; on the line p; , and let = be the image on V
of . The polar spaces of P; and P, with respect to V cut = in two distinct
lines which intersect at P; ; let the lines be respectively Az and Ay . @ and @,
may be selected respectively on Ay and A; to give the above form of the co-
ordinates of Py, P, and P,. The point A, is the intersection of p;, ¢; , and
qs; As is the intersection of p;, ¢s, and ¢.. Since 4; and A, enter sym-
metrically, if either is the vertex of the pencil pip. , we may take it to be 4, .
If neither is the vertex of the pencil, we may move P; along P;P,. The line
\; then swings in 7 about P; , and the intersection of ¢; and p; moves along p; .
Thus we may move A; to the vertex of the pencil pips .

Now, the plane of the pencil p;p. is not in Rj , for otherwise S; would be in
the space tangent to V at each point of PiP,. Therefore the line p, inter-
sects R only at A; , and any other point on it may be taken for A5 . S;is thus
seen to be 21.

If there were any other S; intersecting V only in a ruling and tangent to V'
at a point of it, then for no selection of P; and P, would R; and R, coincide.
For any selection of P; and P, the line p; would be in both R; and B,. Co-
ordinates can be selected so that

P, =0,0,0,0,1,0,0,0,0,0, P;=1,0,0,0,0,0,0,1,0,0,
P.=0,1,0,0,0,0,1,0,0,0.

P, is in the space tangent to V at P; and hence has a; = a4 = a1p = 0. We
may suppose that the vertex of the pencil pip. is at A, (see, for example, the
change in A; in deriving 7T3). p. will be a line joining A, to a point
of A;434445. Hence,

P2=al,O,O,O,aa,ae,a7,0,0,O.

We may move P along the line P,P,, and so we may assume a; = 0. Then
any point in S; is

P=m+4al,n0,0,k, ad,n + a;l, m, 0, 0.

For this point we have

B, = m’ + ajlm — agn,
B; = —n(n + ai),

B; =0,

B, =0,

Bs = m(n + ail).

n =+ a;l = 0 gives a plane every point of which determines the three-space
25 = 0, which is B3 . Thus PP; is a Z-line which does not intersect P:P; for
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arbitrary m unless a; = 0. If a; = 0, a; # 0, S; has another point on V, and
hence is no new space. If a; = a; = 0, an obvious change of coordinates puts
S; in the form 21’.

We now consider an S; which intersects V only in the line PP, which is
in the space tangent to V at a point but not in the space tangent to V at a
point of P,P,. We may select points P; and P, in S; so that P3P, is skew to
PP, and such that R; and R, are distinct. This follows from the fact that
since S; is not in the tangent space at P; , it can contain at most a plane which
is in that tangent space, and the plane contains P;. P; can be selected so
that P,P; is not a tangent, and then P; will not be in the five-space =; deter-
mined by P;. So if P; and P, determine the same three-spaces in X, then
P; + P; and P, will determine distinet three-spaces.

The line P3P, determines a point M on V such that MP;P, is tangent to
V at M ; P,P, is in the space tangent to V at M. PP, does not pass through
M, since S; is not in the space tangent to V at a point of P.P,. The plane
P;P,M lies wholly on V. Two possibilities arise: (a) the lines p, , p., and m
lie in a plane; or (b) the vertex of the pencil pip; is on m.

In case (a) the plane of intersection of B3 and R, and the plane of the pencil
pip: intersect in the line m. We may take the vertex of the pencil to be 4, ,
and we may take A, and A; to be respectively the intersections of m with p;
and p.. Then P; and P, will be in the space tangent to V at M =
0,0,0,0,1,0,0,0,0,0; hence, for each we have a; = a; = a0 = 0. Now,
we may determine two other points for P; and P,, each of the form
0,0,0,0,a5,a6,07,0as,09,0. The new line P3P, is a Z-line; the -cor-
responding three-space in X is x; = 0. Since coordinates of P; and P, can
be put in canonical form by transformations in the space x; = 0, and since
P; and P, are arbitrary points of P1P,, S; becomes 22.

In case (b) the vertex of the pencil pip. is on m. We may take the vertex
to be A;, the plane of the pencil to be A14.4;, and the line m to be 414, .
Then P; and P, , being in the space tangent to V at M, will each have a5 =
a; = a9 = 0; moreover, for each we may take a; = a; = 0, since each may be
moved in the plane determined by it and the line PP, without affecting the
relations in consideration. Then on the line joining P; and P, there will be a
point 0,0, a3,0,0, as, 0, as , 0, a;p which is on V. Hence, case (b) gives no
S; with the required properties.

None of the remaining S3’s with a ruling on V is in the space tangent to V
at a point; the largest intersection of S; with a tangent space would be a 7-
plane. S; may have several such planes.

We consider first the possibility that S; contains a r-plane PP.P;, where
P,P, is a ruling of V and the plane is tangent to V at every point of PP, ;
the plane is a =-plane. The line joining P; to any point of P;P; is tangent to
V, and hence the three-space R; contains the plane of the pencil pyps. If
P, is any point of S; not in P,PyP; , R4 cannot be R; , for otherwise P1P, would
be a tangent and S; would be in the space tangent to ¥ at P;. Coordinates
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can be selected so that
P;=0,0,1,0,1,0,0,0,0,0, P;=0,0,0,0,0,0,1,1,0,0.

The line P3P, is in the space tangent to V at M = 0,0,0,0,0,1,0,0,0,0.
The tangent space at M is a; = a, = ay = 0; the five-space Z determined by
Psisa, = ar = a9 = a0 = 0. Since S; is not in the tangent space at M, not
both P; and P, can have a; = 0; one point of PP, does have a, = 0, and we
may takeit to be P; . Hence, S; contains a 7-plane P1P;P,, which is not tan-
gent at P; but is in the space tangent to V at M. Therefore, p; intersects
m; pe does not intersect m, for otherwise S; would be in the space tangent to
V at M. The plane o of intersection of R; and R, contains m. The point
P, can be selected on P3P, so that g; passes through the intersection of p; and
m. The plane pip; is not ¢ since p, is not in Ry. The line P,P; is a tan-
gent; p; intersects ¢; and hence must intersect g5 . ¢s may be moved in the
pencil gsm until it passes through the vertex of the pencil pips ; then 4; may
be moved along ¢s to this point. P; then becomes 1, 0, 0, 0, 0, 0, 0, 0, 0, 0.
P;is in the space tangent to V at P;. p, intersects gs and hence must also
intersect g3 . Therefore, the intersection of pip; and ¢ is g3, and P; =
0,1,0,0,0,0,0,0,0,0. So an S; containing only a ruling on V, contain-
ing a r-plane tangent at every point of the ruling, and not in the space tan-
gent to V at any point, is 23.

A Z-plane intersects V in at least one point; any line in the plane which
passes through the point on V is tangent to V at the point. Hence if S; inter-
sects V in a ruling PP, and no other point, and if S; contains a Z-plane, the
Z-plane contains PP, , or else S is in the tangent space to V at the point where
PP, intersects the Z-plane. Therefore, no other S; than those already con-
sidered contains a ruling and a Z-plane.

Let us suppose that S; contains two r-planes which intersect in a line skew
to P.P;. The line of intersection may be taken to be P;P,. The line is a
=-line, since otherwise it could not be in the spaces tangent to V at two points.
The two 7-planes intersect P1P; and may be taken to be P,P3;P, and P,P;P, .
Neither p; nor p; can be in either of the three-spaces R; or R,, for
then P;, P;, P;, and P, would be in the space tangent to V at P; (or Py).
The plane of the pencil pip. intersects R; in a line which is not a line of the
pencil. This line may be taken to be gs ; then g3 is determined, and g, and ¢
may be selected so that P; and P, are in canonical form (for a Z-line which does
not intersect V). The vertex of the pencil pip. is outside R; and may be taken
to be A;. Then S; has the form 24.

To help with the remaining cases we prove:

Every S; which contains a ruling and no other point of V contains at least p + 1
r-planes.

Unless S; contains a pencil of 7-planes on the ruling P,P; , it will contain a
plane on P.P; which has no other point on ¥V and which is not a 7-plane.
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Coordinates may be selected so that this plane is k,0,0,0,0,0,0,k, I, m.
(This is number 22 of the list of planes.) Then in S; we may select the point
Pi=a1,0,,a7,0,0,0. Any point of S; is

P =k 4+ am, an, azn, -+, am, k, I, m.

The conditions that B = b;, by, -+, b be a point of V such that the space
tangent to V at B intersect S; in a plane give a set of five linear congruences in
k, I, m, n which has for a matrix of coefficients

bi+ b 0 0 abs — ashs + asbs + asbs — aehs
be b 0 aiby — asbr + asbs + ashs — azbe
bio 0 b by — asbr + asbs + asbs — asbs |,
bs —bs be agbio — asby + abs
by —bs bs azbio — aeby -+ arbg

and it must be possible to select B so that the rank of the matrix is 1. If the
matrix has rank 1, b, = 0; then since Bison V,

b2b5 - b3b5 = 0, b2b7 d b4b5 = 0, b3b7 - b4b3 = 0

Unless b, = b; = by = 0, we have by = rb; , bg = rbs, by = rby. Under these
conditions the rank of the matrix is 1 if the first three elements in the fourth
column are zeros. These give

(asr — as)be + (a5 — aar)bs =0,
(agr — ar)bs + (a5 — ar)bs = 0,
(a4r - a7)b3 + (ae ol agr)b4 = (.

The determinant of the matrix of coefficients of the b’s is zero. Hence, for
any set of a’s there is a 7-plane bk — bsl 4+ b:m = 0, where

b23b3:b4 = QoI — Qp.Qgl — Qg Qg — Q7 .

These are not all zero since P,isnot on V. There is one for every r, and hence
there are p + 1 of them. The 7-planes all pass through the intersection of the
planes

ak — asgl +am =0 and ak — agl + asm =0

and hence constitute a pencil. A necessary and sufficient condition that this
line of intersection have a point in common with P,P; , the ruling of V, is that
asa6 — az0s = 0. When the condition is satisfied, the point of intersection of
the axis of the pencil of 7-planes and the rulingis k, [, m,n = 0, as,a3,0. The
0, 0, az, as, 0

0,0,0,0,1 The three-space R, in

line in X corresponding to this point is {
X, determined by P, , is

(— @307 + auae)xs — (— @27 + auas)2s = 0.

Hence the line in X is in R, , and the axis of the pencil of r-planes is a Z-line
with a point on V and is therefore a tangent to V at that point. The axis of
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the pencil of 7-planes and the ruling lie in a plane tangent to V at their inter-
section.

Any other S; which intersects V in a ruling only will consequently contain
a pencil of 7-planes whose axis is either a Z-line intersecting the ruling or the
ruling itself. We consider the first possibility.

Let S; contain the ruling P;P, and a pencil of 7-planes on P,P;, P; not on
P;P,. PyP;is a Z-line; P1P3P, is a 7-plane tangent to V at P;. P1P4is not
tangent, for otherwise p, would be in Ry and P1P;P, would be a Z-plane. Let
P, be any point of S; not in P1P3Ps. P» is not in the tangent space at P;,
for in that case S; would be a 7-space and of a type already considered. Since
P,P; is not a tangent, the line p; is not in R, . Hence R; and R, are distinct.
Therefore the plane P P.P; is a 7-plane, since it contains P1P;, with the line
P1P; tangent to V at P;. This is number 11 of the list of planes. Coordi-
nates can be selected so that P,PeP;is k, 1,0, 0,0, m, [, k, 0, 0. The point
P, is on V and is such that p; and p, intersect. The line p; is 4244. The
vertex of the pencil pip; is not A, , for then S; would be in the space tangent
toVatM =10,0,0,0,1,0,0,0,0,0. The vertex may be made 4, by proper
choice of @; on the line @M. Hence we have

_ fas, a5, 05,0, —ay and Py = 0,0,0a3,0,0,as,0,as,0,ap.
P17 %0,0,0,1,0,

By moving P; along P3;P,, as may be made to take any value. Now by
applying transformation T'; (page 646), which moves P, along P,P; , we may
keep the plane PP,P; unchanged and obtain

Py, =0,0, a5 — 2a50, 0,0, as + asa, 0, a5, 0, ap .

Selecting a to satisfy a; — 2aya = 0, and then selecting as so that as + asa =
0, we have P, = 0, 0,0, 0, 0, 0, 0, as, 0, aw. Applying T, with
k=0,a— al = 0, weget P, =0,0,0,0,0,0,0,0,0,1. Changing coordi-
nates will put S; in the form 25.

Every other S; which intersects V only in the ruling PP, contains a pencil
of r-planes on P,P;. We observe first that S; contains a line P3P, skew to
PP, and not a Z-line. Suppose P3P; to be a =-line skew to PiP; ; then no
point, say P; , of P1Ps can be in the five-space =, , for otherwise P,P;P, would
be a Z-plane, P1P; and PyP, would be tangents, and S; would be in the space
tangent to V at P;. Now since PiPj is not a Z-line, P; = P; + Pj deter-
mines in X an R; which is different from R4, and P3P, is skew to PP, .

Two 7-planes on PP, intersect P;P; in two points which may be taken to
be P; and P,. Let p be the plane of the pencil pip;; let o be the plane of
intersection of R3; and R, ; let 7 be the plane on ¥ whose points represent the
lines of &. The plane 7 contains a point M such that MP;P, is tangent to
V at M. Planes p and ¢ may coincide, may intersect in a line, or may inter-
sect in a point. If p and ¢ coincide, then P,P, is in , and S; is in the space
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tangent to V at M ; S; is then either 21 or 22 according as M is on or is not
on P 1P 2.

Now suppose p and ¢ do not coincide but intersect in a line I.  Let L be the
point of = which represents I; every point of P;P; is in the space tangent to
V at L. Hence if L coincides with M, S; is again a 7-space. So we suppose
! and m distinct but intersecting in the point D. If D is the vertex of the
pencil pyp. , every line of the pencil intersects m, and S; is in the space tangent
to V at M. We therefore suppose D is not the vertex of the pencil; D then
determines a line of the pencil which we may take to be p; . S; contains the
r-plane P1P3;P; which has one point on V. This 7-plane must be one of planes
10, 11, and 13 of the preceding list.

Plane 10 is tangent to V at its intersection with V, P, is in the space tangent
to V at Py, and hence if P1P;P, were plane 10, S; would be a r-space. We then
consider P1P;P, to be plane 11, which contains one line tangent to V at Py .
For the rest of this argument we interchange the roles of PP, and P3P, so we
may use the plane 11 in the given form. Plane 11 is P1P,P;

k,1,0,0,0,m,1,k,0,0;

it intersects V at P;, and contains the tangent line P1P;. Now the point
P,is on V and is in the space tangent to V at P; ; hence for Py, a, = a4 =
ay = 0, and

a Qg + azls = 0, 1010 — Q37 = O, 5010 + ads = 0.

Also, since P, may be any point on P3;P,, we may suppose as = 0. Unless

a; = as = a; = 0, the above conditions give as/a1 = —as/as = aw/ar = r.
The conditions that P.P;P, be a r-plane are the conditions that there exist a
B = by, by, -+, by on V with the plane P,P;P, in the tangent space at B.

The requirement leads to the result that all the b’s are zero except b, and bs
which satisfy ashy + asbs = @by = awbs = 0. Hence a;p = 0. Then (1)
r =0, or (2) az = 0. In case (2), the plane P.P;P, is a Z-plane, and S; is
space 23. Incase (1), Py = ¢,0,0,0, 05,0, ar,0,0,0. Then S; intersects
V in the line PsP; and also in the conic: I 4+ am = 0, k> + akn + aymn = 0.
If the only intersection is P3P, , we must have a; = a7 = 0, and S; is 21; it is
in the space tangent to V at P,. This disposes of plane 11.

Next suppose the plane PiP;P, above is plane 13, and take it in the form
P,P,P; = k,1,0,0,0,m,l + m, k,0,0. P,ison V and is in the space tangent
to V at P;. Hence for Py, a0y = a3 — as = a3 — a9 = 0. Also, either (1)
a = as = ar = 0, or (2) as/ay = —ag/as = aw/a; = r. The requirement that
P:P;P,; be a r-plane leads again to the requirement that a; = 0, and hence
that ra; = 0. So we have the possibilities:

!’
P4 =al,0y0,0,a5707a77070’0’
V4
Py =a,,0,ra1,70:,05,0,0, —ras, —ras, 0.
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P; gives an S; with additional points on V, unless @; = a; = 0, in which case
S, is in the space tangent to V at Py, If r = 0, Py is Ps ; if r 5 0, P{ gives
an S; whose 7-planes all pass through P,P; and hence is 25. This completes
consideration of plane 13; it also proves that no new 8S; is obtained by suppos-
ing that p and o intersect in a line.

We therefore suppose that p and ¢ intersect in a point D. The pencil of
lines in ¢ on D maps into a line d in w. If M is on d, then at least one of the
points of the ruling PP, , say Pi, is in the space tangent to V at M, and
P,P;P, is plane 10, 11, or 13. The argument just completed still holds.
Hence for a new S; , M isnot on d. Two new spaces, 26 and 27, are obtained
according as D is or is not the vertex of the pencil p;p. .

Since d does not pass through M it intersects the polars of P; and P, in two
distinct points which may be taken to be @, and @; respectively. The point
D is the intersection of ¢; and ¢, . Coordinates may be selected so that D is
A4;,=1,0,0,0,0, and

P;=1,0,0,0,0,0,0,1,0,0, P,=0,1,0,0,0,0,1,0,0,0.

If D is the vertex of the pencil pip., the line of intersection of p with each
of R; and R, is a line of the pencil since it contains D. These lines can be
taken to be p; and p. respectively. p; then passes through A, and a point of
AqA3A, , which cannot be on 4,4; since p; is not in B,. By moving 44 on
the line 434, (which can be done without changing the form of P; or P,),
the line p; may be made to intersect A;4,. Hence,

P, =4,0,1,0,0,0,0,0,0,0.

But since p; is in R, P1P; is tangent to V at P;. Hence, a = 0. By the
same considerations we may select 45 on p; , and have

P, =10,0010,00,0,0,0.

An interchange of names of vertices of the frame of reference in X changes this
into space 27.

If D is not the vertex of the pencil p;p; , the plane p meets R; in a line of the
pencil, say p:, but meets R, in a line not of the pencil. Coordinates can be
chosen so that P,, P;, and P, are as above and the vertex of the pencil is
A, . The intersection of p with R, is a line joining A; to a point of A.4345
which cannot be on A4.4; and hence can be taken to be on A3;A;. Thus
P,=0,0,0,0,00,0,a,0,1. Inorder for P.P.P, to be a r-plane, it is re-
quired that @ = 0. This is space 26. We have completed the determination
of all the spaces which contain one and only one ruling of V.

(vi) Three-spaces with at least three points but no plane curve on V.

28. k+mn,k 0,0,0,n,l, m,n,0.
29. k,k,n, —n, —mn,0,1m0,n.
30. k k,n —mn00,1I m,0, n
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31. k,k,nmn 00,1, m+ n,n,n.
32. k, k,n —mn,mn01m,O0n.
33. k,k 0,n,n,0,1 m,O0,n.

34. k,k 0,n,0,n, 1, m,O0,0.

35. k,k, n,n,n,n,l m,O0, n.

Spaces 28 and 29 intersect V respectively in a twisted cubic curve and in
five points; spaces 30 and 31 have four points on V, the first with a line
tangent to V at one of the points and the second with no such line; the others
intersect V in three points. In all the spaces the plane n = 0 contains
Z-lines joining pairs of Py, Ps, P; ; space 35 contains no other Z-line, space
34 contains one other which is tangent to V, and space 32 contains one other
which does not intersect V.

Suppose S; contains three points of ¥ and does not intersect ¥ in a line or a
conic. The three points can be taken tobe P;, P,, and P;, and coordinates
can be selected so that P P.P; is

k, k,0,0,0,0,1 m,0,O0.

If S; contains two more points of V, the line joining them cannot intersect
any of the lines P.Py, P1P;, or P;P;, for otherwise S; would contain a plane
with four points on V and hence would intersect V in a line or a conic. This
line intersects the plane of P1P:P; in a point P which can be taken to be the
unit point in the plane; furthermore the line is a 2-line and contains a point
uniquely defined as the conjugate of P with respect to V. Let this conjugate
of Pbe Py = a;, as, -+, aw. The fact that P, is conjugate to

P=11000,01,1,0,0
gives
a; — ag + as = 0, a+ ap — ay = 0,

—as + apw = 0, as + ap = 0, ar + az = 0.

These relations hold not only when S; has five points on V, but also whenever
S; has three points on V and the line PP, is a Z-line. We note that all or
none of az, a4, Gy are zero.

The transformation T's (page 653) leaves each of the points Py, Py, P;, P
unchanged, but changes P, to P: with

a = ay — a, as = —ase + as + aC,
a§=a2—a3b, ar = —ma + ay,
a§=a3, a§=—a3a+a8,

as = ag, as = —aa + ag — ayb,
as = ma — asb + az;ab — asac a1o = an .

+ a5 — asb + asc — awbe,
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In the case where a; = a4 = ap = 0, a, b, and ¢ can be selected to make
as = 0. We then have P; = a1, a5, 0,0, 0, as, ar, as,as,0. S;contains
the point P; = a7, 0,0,0,0, a5, 0,0, as , 0. It may be verified that if
atasa; = 0, S; intersects V in a line or a conic. An obvious change of the
unit point in X changes the a’sto 1’s. The space is thus shown to be 28. It
will be useful to consider this space more closely.

The B’s for a point in S; are
B, = km + mn — kn,
By = kn + n* — ki,
B; =0,
B, = 0,
Bs = lm — n".

Setting the B’s equal to zero we get three cones with vertices at Py, P, , and
P;. Each pair of the cones has a common ruling, and the remainder of the
intersection is a cubic curve; the ruling is not on the third cone, but the cubic
curve is. S; thus intersects V in the cubic curve; of course S; contains a line
tangent to the curve at each of its points.

In the case where azasa0 # 0 we may select a, b, and ¢ in T so that ar =
as = a7 = 0. Taking account of the fact that P; is conjugate to P and mak-
ing the proper selection of the unit point in X, we obtain

P;=0,01 —1, —7,0,0,0,0, 1.

Changing the unit point in X to 1, d, d, 1, 1 changes r in P; to rd’. Hence the
possibilities are: r is 0, 1, or a particular not-square. If r = 1, S; has five
points on V and is 29. Conversely, if S; has five pointson V, r = 1.

If r = 0, then P is on V, PPy is tangent to V, and S;is 30. Conversely,
if S; has just four points on V and contains a line tangent to V at one of them,
the above argument holds, and we obtain P; with » = 0.

If r is a not-square, then S; has only three points on V. The line PPy is a
Z-line not in the plane P1P,P; and with no point on V. This is space 32 and is
defined by these properties.

There is no other S; intersecting V in a curve or in five points. If there is
an S; other than 30 with just four points on V, it can have no line tangent to V'
at any of the four points. Let the four points on V be Py, Py, P;, P, where
P,P,Psis as above and Pyis a1, az, - -+ , 0. Any point in S;is

k + amn, k + am, amn, ---, 1 + am, m + asn, agn, apon.

If a3 = 0, the space tangent to V at P, intersects V in the line £ 4+ a:n =
m + asn = 0; likewise if a, = 0, the space tangent to V at P; intersects S; in
a line. We may therefore suppose that asas % 0. Then a, b, ¢ in Ts may be
selected so that P, = 0,0, a3, a4, a5, a5, 0, G, Gy, a1o. Since Pyison V,
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we have a;a5 = 005 = s = —as0y + Gz = aza10 — asty = 0. Thus,
as = as = 0, as = raz, a9 = rag. It may be verified that if a;o = 0, S; has a
line tangent to V at P, and if as = 0 it contains a line tangent at P,. The
unit point in X can be selected to make » = a3 = a5 = aio = 1. The space
is 31.

Any other space of this set will have just three points on V; if it has a
Z-line not in the plane of the three points, one of the three points may be on it;
it does not intersect the triangle P;P,P; elsewhere since no Z-plane intersects
¥V in two points. We suppose that S; has a Z-line tangent to V at P, ; we
take P1P2P; as above and P, an arbitrary point, not Pz, on the =-line. Then
Py=10a,,0,0,a,,05,0,0,0, a9, ao. We have the following possibilities:

(1) as = aw = 0. Psisnot on V and hence ay # 0. We may determine
¢ in Ts to make a; = 0. The unit point in X may be selected to make a; =
as = ay. This S;is 28.

(2) @410 # 0. Then ¢ in Ts can be selected to make ap = 0. If
a1t0 + a4as = 0, then as is also zero. a and b can be selected to make a5 = 0.
Proper choice of the unit point gives 33. If aja10 + asa6 # 0, selection of ¢ to
make a; = 0 makes as 0. Then b can be selected to make a5 = 0 and a
to make ag = 0. In this case S; has a fourth point on V, namely,

k,l,m,n = —aus, 0, aey, G .

(3) as=0,ap 0. candbin Ts can be selected to make as = as = 0.
If a; = 0, the plane k£ = 0 intersects V in a conic; if a; # 0, a can be selected
to make a5 = 0. Hence we need consider here only

k+n,k0,0,0,0,7 m,0,n.

(4) as# 0,a10 = 0. Tj5can be selected to make a1 = as = 0, and if ag = 0
to make a; = 0 also. If as = 0, the plane m = 0 intersects V in a conic.
Hence we have k, k, 0, n, 0, n, [, m, 0, 0.

Each of (2), (3), (4) gives an S; with three points on V and a line tangent to
V at P,. We examine their intersections with the spaces tangent to V at
P; and P; also. In the respective cases, the tangent spaces are

Case (2) atP;: k=1l=n=0, atPy: Il=m=mn=0,
Case 3) atP;: k+n=10=0, atPi: l=m=mn=0,
Case (4) atPy: k=1=n =0, atPy: m—n=1=0.

Hence S; in case (2) differs from the other two which are alike, as may be
shown by interchanging the roles of P; and P;. Case (4) is 34.

Finally, any other S; with just three points on V contains no line tangent to
V at any of the points. In P, none of a3, as, ay is zero. T can be selected
to make ai = as = as = 0. Then P; can be changed in S; to make
ay = as = 0. If either of as or ag is zero. there is a fourth point on V. This
Ss iS 35.
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(vii) Three-spaces with two points on V.

36. k+mn,1,n0,0,m1ik+rmm0, z*-+ re— 1irreducible.
37. k1,0, —n,n, 0,1, m,O0,n.

38. k,1,0,0,n,0,1,m, 0, n.

39. k,1,0,n,m,0,1 m,0,0.

40. k,1,0,n,0,n,l, m,n,0.

41. k,1,0,n,0,n,l, m,0,0.

42. k,l,n,n,n, 0,1, m,0,0.

The 7-plane » = 0 in 36 has no point on V; every r-plane in each of the
others has at least one point on V. Spaces 37 and 38 have three r-planes; in
37 one of the 7-planes contains both points of V; in 38 two of the 7-planes
contain both points of V. All of the planes on P; in 39 are 7-planes, and so
also is P.P.P,. Space 40 contains two 7-planes. Spaces 41 and 42 have
pencils of 7-planes on the two points of ¥, and in each the plane m = 0 is a
r-plane; the difference between them is harder to describe and will be left to
the end of this section.

We consider a three-space S; with two points, O; and O, , on V. The line
0,0, is obviously a Z-line. S; contains planes with no points on V'; such planes
are of three types: 7, 8, and 9 of the preceding list. We shall show first that
there is just one type of S; which contains a 7-plane with no point on V'; then
we shall show that every other S; on O, and O, contains a 7-plane on 0,0, .

Let S; contain the 7-plane which has no point on V:

k,1,0,0,0,m, I, k + rm, m, 0.

In considering transformation Ty, it was shown that P; could be chosen
arbitrarily and then P, and P; determined so that the plane has this form.
Hence we may assume that 0,0, passes through P; and that O is

P4=al,a2)a3yoaa57a3707a8)0a01

where a,as — a6 + asas = 0, and since P,P, intersects V in two points
a1 + as # 0. Transformation T, leaves P; and P, unchanged; it changes
P 3 and P 4 to

P;=0,0,0,0,7k 1,0,r, 1,0,

Pi=a,— ask, as, a3, 0, —ask — aol + ask® + a5 + ask, —asl + as, 0,
ask + as, 0,0

Transformation T; then changes Ps and Pj to

P;’=0,0,0,0,rk—a—l—b,l,O,r,l,O, P£,=a{,,a;,""’a{,01

13 Tt is to be noted that the k& and ! here are the parameters of transformation T'; .
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where
a = ay — ask, as = — a5l + as,
as = ap — asa, ar = 0,
as = as, a = ask + as,
ai =0, a; = 0,
as = — ak — agl + ask® + a5 4 ask — (—asl + as)a, ato = 0.
We select a, b, k, and [ to satisfy

ask + as = 0, —asl 4+ ag = 0, ay — aza = 0, rk—a-+b=0.
Then

P{ =0,0,0,0,0,1,0,7,1,0, P{=a;i,0,a5,0,az,0,0,0,0,0.

Since Pi ison V, asas = 0. If as = 0, S; would be in the space tangent to V
at 0,0,0,0,1,0,0,0,0, 0, and in particular S; would contain a r-plane on
0,0,. If ai = 0, P,P{ has only one point on V. An obvious choice of the
unit point in X changes P to 1,0, 1,0,0,0,0,0,0,0. S;is space 36. We
have thus shown that an S; with two points on V and a 7-plane which does
not irﬂsersect V either is 36 or else contains a 7-plane which has two points
onV.

Suppose S; contains plane 8, which has no point on ¥ but has a Z-line. The
planeis k, I, m, 0, —rm, 0, I, k, 0, 0, r not a square. P;P; is the =-line;
PP, is any line in the plane except the Z-line. The line 0,0, intersects this
plane in a point which cannot be on P1P;, for then the plane 0,P1P; would be
a Z-plane and would intersect V in more than two points. The intersection
can be taken to be P,. Rsyisay = 0. Hence O is

P,=a1,0,0,04,05,0,07,0,0,0, Gy — Q7 + asa5 = 0, as + a7 # 0.
Transformation Ty puts P; into
Pi= a1+ asa, a2, 0, ay — aat, a5 — @10, 0, a7, 0, aua + ag , 0.

If ay = 0, the plane k = 0 is a 7-plane on PP, ;if a, = 0, m = 0 is a r-plane
on P.P, ;if ay 0, then T3 may be selected to make as = 0. Hence in any
case S; contains a r-plane on 0,0, .

Any other S; contains a plane with no point on ¥ which is not a r-plane and
which contains no Z-line. This plane is 9:

k,1,0,0,m,0,1,k, 0, m.

The line 0,0, intersects this plane; we examine S; according to the location of
the intersection with respect to the conic C: m* — 2kl = 0. If the intersection

14 Tt will appear later that this second possible S; does not exist.
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is on C it may be taken to be P; ; if outside C, let it be P; ; if inside C, then let
ithe P, + P, =1,1,0,0,0,0,1,1,0,0.°
(a) The intersection is Py . 'We may take O; to be

Py = al,az,as,O,ag;,ae,O,ag,0,0,

where a1as — @206 + @305 = 0, a; + a5 # 0. The plane [ + asn = 0 is in the
space tangent to V at the point 0, 0, 0, 0, 0, 1, 0, 0, 0, 0. If a, = O, this
7-plane contains both O; and O, ; if a; 5 0, the 7-plane contains neither. So
S; either is 36 or else contains a 7-plane on 0,0, .

(b) The intersection is P;. The three-space Rz in X isx; = 0. Let O; be

P4—“—‘0,0,0,0,0/5,(13,07,as,ag,alo,

where asa10 — @609 + a7as = 0, a5 + a0 % 0. A r-plane intersects P1P:P; in a
line and hence is in the space tangent to V at the point

b, ad, b’e, —d’c, (2ab — c’)e, b°, —alab + ¢*), —b(ab + ¢*), a°, —abe.

a, b, ¢ must be such that the matrix

s asbe® — asac® + asb’c T
—d a b’ — arac’ — asa’c
be abe — arb’c — asa’c
ac anac — agb’c — aza’c

| ab+-¢  a10(2ab+c")e—as b*— as a(ab+c”) — arblab+¢*) — ag a® — as abe |

has rank 1. The space tangent to V at the above point meets P1P.P; in the
line ak 4+ bl — em = 0. If ¢ = 0, the rank of the matrix is 1 for @ and b
satisfying asa® + as0’b + azab® + agb® = 0. If this polynomial is reducible,
S; has a r-plane on P3;P,. So at this time we need consider only the case
where the polynomial is irreducible. Then a 7-plane would be given only by
a = b = 0. The 7-plane would be m + an = 0. It would pass through
0, = P, only if a;o = 0, in which case asty — a:as = 0 and the polynomial is
reducible. The r-plane exists and either it contains O; and O, , or S; is 36.

(¢) The intersection is P; 4+ P,;. O, and O, represent lines in the three-
space R determined by 1,1,0,0,0,0,1,1,0,0. We take O, to be

Pi=a1,as,05, —0as,05,08,0 — g, 05,02 — 0g , O3

with ayas — asus + asas = 0. An argument about 7-planes similar to that in
(b), with @ = b and ¢ = 0, shows that & + I 4 (a; + a2)n = 0 is a -plane.
If neither O; nor O, is in this plane, then S; is 36. If one of O; and O is in
the plane, we may suppose the oneis O;, and then a; + ay = 0. If
a + ay = 0, thena = a3,b = —a3, ¢ = —a, gives the 7-plane ask — asl +
aym = 0 which contains both O; and O,. This settles the question unless
a = a; = az = 0, and in this case m = 0 is a 7-plane which contains both

15 We recall that these forms are for p = 7; —1 is not a square.
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O, and O;. This completes the proof that S; with just two points on V either
is 36 or else contains a 7-plane on O, and O, .

We now investigate S’s containing a 7-plane on two points of V, and we
take the plane in the form

k,1,0,0,0,0,1 m,0,O0.

S; will contain the point P, = 0,0, as, as, a5, s, a7, 0, @y, aro. Trans-
formation T’ leaves P, , P, , P; unchanged and puts P, into P, where

’ 4
a1 = —ac, as = —a}a + as + auc,
’ ’
Az = —aab + asa, a7 = —a40 + ar,
’ ’
az = asg, as = —ayQ,
! ’
as = ay, as = a9 — ayb,
! !
as = aab — awa + a5 — agb 4+ aza + asec — axode, Q10 = Gy .

We shall sort the S;’s according to the zeros among as , a4, and ay .

(1) Suppose asasa0 # 0. Then b in Ts can be selected to make as = 0,
a to satisfy asb — 2a4¢ + ar = 0 making az = a7, then ¢ to make ag = 0.
In S; there is the point P; = 0,0, a3, a1, a5, 0,0,0,0, ao. Transformation
T , which leaves P; and P; fixed and moves P: along the Z-line P1P;, can be
applied with b = 0 and a3 + a,c = 0; this changes P! to

0,0,0,0a4,05,0,0,0,0, ap.
A change of the unit point'® gives P; = 0, 0,0, —1,1,0,0,0, 0, 1, and S,
is 37.

We have shown that a coordinate system can be selected so that the particu-
lar S; we have been studying takes the form 37. We seek information about
it that is independent of the coordinate system to help distinguish among
Sy’s given in different coordinate systems. We examine 37 for r-planes.

The space tangent to V at B = by, by, - - , by intersects S; in a plane if the
matrix
[ s —bs by by |
by —(a+b;) 0 bys— bs
bio —b; 0 b — b
0 bio by by — bs
| 0 bs br  bs + b _

16 There is getting to be less freedom in the change of the unit point, and we should
perhaps point out the details here. If in X the point 1, d; , ds , ds , d4 is taken for the new
unit point, the unit point in S is changed to

dy,ds,ds, ds, dids, dids, dids, dods , dods , dsds .

In order to keep the plane P1P,P; in the canonical form, it is necessary only to require
that dy = dids. In order to get P: into the desired form, we must have
asdid; = apdsds = — asds. These requirements can be satisfied since asas is not a
square; if asas were a square, S; would have three points on V.
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has rank 1. The only such points B and the corresponding r-planes are
0,0,0,0,0,0,0,0, 1,0, with plane & = 0;
1,0,0,0,0,1,0,0,0,0, with planel — m = 0;
0,0,0,0,1,0,0,0,0,0, with planen = 0.

Thus S; contains just three r-planes, and only one of them, n = 0, is on both
01 and 02 .
(2) Suppose a; = a4 = ap = 0. Then S; contains the point

P,=0,0,0,0,05,0as,0ar,0,a,0.

Since Py is not on V, agas % 0. Then T can be selected so that a5 = 0, and
the unit point can be selected so that P; = 0,0,0,0,0,1,7,0,1,0. If r = 0,
the line & = [ = 0 has two points on V, and hence S; has at least three; if
r = 0, S; intersects V in a cubic curve.

(3) Suppose a; = as = 0, ayp % 0. In Ts we may select b to make ag = 0,
¢ to make a¢ = 0. Then as = a5 — asb + aa. Hence if a7 % 0, we may
select @ to make a5 = 0, but in that case P; ison V. Hence with proper
choice of the unit point we have P; = 0,0,0,0, 1, 0,0, 0, 0, 1, and S; is 38.
It is readily verified that S; contains the three r-planes: &k = 0;1 = 0;n = 0.
Each of the last two is on 0,0, and therefore 37 and 38 are different.

(4) Suppose a; = app = 0, a; # 0. In T we may select a to make ar = ar ,
then as = —aa + a5 — agh + @@ + aec. We can select b and ¢ to make
as = O unless ag = ay = 0.

If ag = ay = 0, S3i8 39. The points of V whose tangent spaces intersect S;
in planes, and the planes, are:

1,0,0,0,0,0,0,0,0,0, withm = 0;
0,b6:,0,0,05,0,0,0, 0,0, with bk — bol + bsn = 0.

Thus every plane on P; is a 7-plane.
Suppose now that not both a¢ and a, are zero. Then

P4=0,0,0,a4,0,a6,0,0,a9,0.

Since Pyisnot on V, as = 0. If ay 5 0, S is space 40; it contains only two
r-planes: m = 0, and n = 0. The plane m = 0 does not pass through O, .

If a9 = 0, then S; is 41. S; contains the 7-plane m = 0 tangent to V at
0, , and the pencil of 7-planes bel 4+ bon = 0 each in the space tangent to V at
0, bs,b;3,0,b5,b6,0,0,0,0, where the b’s satisfy bsbs — bsbs = 0, b3 + bsbs = 0.

(5) Suppose as = an = 0, a3 ¥ 0. In T4, b can be selected to make
as = ar,and a to make as = 0. Then as = asab + a5 — ab + aa + axc
which can be made zero if @y > 0. If as = 0, S; intersects V in a conic.
Thus we have only to consider S; = k, [, n, 0, 0, 0, I, m, n, 0. It has three
r-planes, two on 0,0, ; it is the same as 38 with the two 7-planes on 0,0,
interchanged.
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(6) Suppose as = 0, asa0 = 0. In Ts, b can be selected to make as = 0,
a to make a; = a7, and ¢ to make a¢ = 0. If a5 0, this is 37; if a5 = 0,
Piison V.

(7) Suppose as = 0, asa0 %= 0. In Ts, b can be selected to make as = 0,
¢ to make as = 0, and @ to make a; = a7. as cannot be zero since Pj is not
on V. This S; has three r-planes, two on 0,0,. Transformation 7 can be
used to change it into 38.

(8) Suppose a0 = 0, azas ¥ 0. In T, a can be selected to make ag = 0,
b to make a; = a7, and then if gy ¥ 0, ¢ can be selected to make a5 = 0.
This S; has a third point on V. Hence ay = 0 and S; is 42. It contains the
7-plane m = 0 tangent to V at P;; it contains also the pencil of r-planes
bsl — bam = 0 each in the space tangent to V at 0, b, b3, 0, b5, bs, 0, 0, 0, O,
where bsbs — bsbs = 0, b5 — bg + bgbs = 0.

We have shown that any S; with just two points on ¥ is one of spaces 36 to
42. We have still to show that 41 and 42 differ other than by a choice of
coordinate system. In either space any plane on 0,0, could be taken for
P,P,P; , and it is necessary to show that no such choice could turn one into the
other.

We examine further the space

k1, nym,mn, 0,1, m,0,0.

For any point P the B’s are

By = km + n,
By = =0’ + 7,
By = —In,

By = mn,

Bs = Im.

The three-space R in X determined by P is
Imx, — mnz, — Inas + (F — 0Py + (km + nhas = 0.

If we suppose a set x; , 22, T3, X4 , 25 given, the above relation defines a quadric
surface in S;. Every point P, excepting P; and P; , determines a three-space
in X; on the other hand, every point 4 in X, without exception, determines a
quadric @ in S;. If A is in the space R determined by P, then P is on the
quadric @ determined by A. The points of S; which are on ¥ do not deter-
mine R’s, but these points are on every @ determined by a point of X. These
relations do not depend on any particular choice of the coordinate system.
A change of coordinate system changes the B’s but does not change the four-
parameter system of quadrics in S; .

Now S; has two points, P; and P;, on V. Each of these points is the
image of a line in X. The points of a line in X determine the quadrics of a
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pencil in S;. Consequently, the set of quadries in S; determined by the
points of X contains two pencils uniquely defined by the relation of S; to V.
The pencil determined by py is lmz; — mnx, = 0; the pencil determined by P;
is lnzs — (' — n°)xzs = 0. Every quadric of the first pencil consists of a pair
of planes one of which is m = 0; likewise, every quadric of the second pencil
is a pair of planes also, since x3 + 47 is irreducible.

For S; of type 42 the corresponding system of quadrics is

Imxy — mnxs + n'xs + Pay + (km — In)azs = 0.
The special pencils are
lmx; — mnx, = 0, given by P; ;
n’zs + Uxs = 0, given by Ps.

The latter pencil contains the two quadrics * = 0 and n* = 0, each consisting
of two coincident planes. Thus by no change of coordinate system can 41 be
changed into 42.

(viil) Three-spaces with one point on V.

43. %,1,0,0,n,m, 1, k + rm, m, 0, 2°+ re — 1 irreducible.
44. k,1,0,n,m,n,l k, 0, 0.

45. k,l,n,0,n,m, 1k, 0,0.

46.kl0 —n, n,m, 1, k, 0, 0.

47. k,1,n,0,0,m,1, k,n, 0

48. lc—l—n I,m,0,0,rn, 1k n0, 2°-+ a*— ¢ irreducible.
49. k, 1, n,0,0,m,l + m, k, n,O0.

50. k,1,0, —n,n,m,l + m,k,0,O0.

51. k,l,m, —n,n, 0,1k 0, m.

52. k,l,n,n, —n,2n,l Lk 0,m.

Space 43 is tangent to V at P, which is on V; none of the others has this
property. Spaces 44 and 45 contain one plane each tangent to V at O, the
point of S; on V; in 45 this tangent plane is a Z-plane; in 44 it is not. Spaces
46, 47, 48 intersect the space tangent to ¥ at O in a line; 46 contains two
r-planes; 47 and 48 each contains only one; in 47 the 7-plane passes through
0;in 48 it does not. The space tangent to V at O intersects none of the other
spaces anywhere except at O; space 49 contains a single r-plane; space 50 con-
tains two. Spaces 51 and 52 contain no 7-planes; space 51 contains three
special lines which will be described later; space 52 contains only one special
line.

In examining the three-spaces with one point O on V we shall make what
use we can of the point O and the space tangent to V at O.

There is one obvious S; lying in the space tangent to ¥ at 0. Any plane
in it not on O is a 7-plane with no point on V, and hence is
k, 1,0,0, 0, m I, E + rm, m, 0; it is in the space tangent to V at
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0,0,0,0,1,0,0,0,0,0. The space determined by the plane and the point
is 43; it may be readily verified that there is no other point on V.

There is no S; with just one point on V which is the space tangent to V
at a point not in S;. Such an S; would contain P;P.P; above and the point
O = P,for which a; = as = a0 = 0, and

10 — Qo = 0, a1y — Q27 = 0, AsA10 — AgQy9 = 0.

The point k, I, m, n whose coordinates satisfy £ + ain =l + am = m + agn =
0 is also a point of V. This point is different from O unless a; = as = a7 = 0.
If they are zero, thenl = m 4+ ayn = k + rm + agn = 0ison V and is differ-
ent from O unless as = a3 = 0 also. The only nonzero coordinate of P, is
thus seen to be a5, and the space is 43.

We consider next S;’s which contain O and a plane tangent to V at O.
This plane is &, 1, 0, 0, m, 0, I, k, 0, 0. It contains no =-line except the lines
through O. P; and P, can be selected arbitrarily in the plane except that
PP, does not pass through P;. S; will contain the point P, =
a1, @, 03, 0a:,0,06,0,0, a9, a10. Not all of a3, as, ayp are zero. We con-
sider first those Sy’s for which as % 0. Tj can be applied to make aj = 0;
T, can be applied to make as = a7, as = 0; and then T can be applied to
make a; = a5 = 0. We then have

P,=0,0,r101000,0.

The point &, I, m, n = 0,7, 1, 7 is on V. Hence S; has more than one point
on Vunlessr = 0. Ifr =0, S;is44. The r-planesin S; are bik — ban = 0,
each in the space tangent to V at by, by, 0, 0, b5, 0, b7, 0, by, 0 which must
be on V; they constitute a pencil on PyP; .

Those S3’s which contain P,P,P; above and a P, which has a, = 0 give
nothing new. The interchange of P, and P, interchanges a; and a, in Py,
and hence it changes S; into one we have just considered unless a; = a, = 0,
and in that case S; has at least two points on V.

In any other S; with just one point on ¥ and a 7-plane tangent to V at O,
the r-plane must be a Z-plane. Any other plane on O contains a Z-line neces-
sarily tangent to V at O. If such other plane is a 7-plane, it can be taken to be

k,1,0,0,0,m,1k,0,0.

The line P,P; is the tangent line; P, is any point in the plane not on P1P;.
P, can be selected in the =-plane PP3P,. R, is then R; which is 2; = 0.
Therefore P, = a;, a2, a3, 0, a5, as, 0, a3, 0, 0. Since P is in the space
tangent to V at P; , a; = 0; also, P, can be moved along the line PP, to make
as = 0 and along the line P3P, to make as = 0. Hence S; contains the point
Pi=a,0,a;,0,a5,0,0,0,0,0. Ifa; 0, T:can be applied to change it
to zero. Then S; is 45. It contains the 7-planes bik — b 4+ byn = 0,
each in the space tangent to V at b, 0, 0, 0, b5, bs, 0, 0, 0, 0.

Any other S; which contains a Z-plane on O can contain no 7-plane on O
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except that one. Hence any other plane on O is not a 7-plane but contains a
line tangent to V at O; it is k, I, m, 0, 0, O, I, k, 0, 0. The tangent line is
l = 0; it contains P; and is in the Z-plane. If P, is selected in the Z-plane,
then B, = R;,and Pshasa: = ar = ay = a0 = 0. Since P3P, is tangent to
V, as = 0. It is easy to verify that S; contains a second point on V: viz.,
k=m=14 a;n = 0,if a; £ 0, or another point on P,P; if a; = 0.

For all other Sy’s with just one point on V the space tangent to V at O can
intersect S; in at most a line. We consider now the possibility that S; con-
tains a line tangent to V at O and contains a 7-plane on that line. The
7-plane can be taken to be k, 1,0, 0,0, m, I, k, 0, 0. If S; contains any other
Z-line, the Z-line does not cut P,P;, for then S; would contain a Z-plane.
Since P, is arbitrary in PP;P;, we may assume the Z-line is P,P, where
P,=ay,0,0,04,0,0,0,0, a9,0. If a = 0, the line P,P, contains a
point of V. Since a4 # 0, T» can be applied to remove a; and ay, and then
T, to remove a; . S; is 46; it contains only the two 7-planes k = 0 and n = 0.

We now consider an S; with a line tangent to V at O, with a 7-plane on
that tangent line, but with no Z-line except the tangent line. The r-plane is
k,1,0,0,0,m,1,k 0,0. The line tangent to Vat O = P;isl = 0. S; con-
tains the point Py = a;, a2, @3, 44, 05,0,0,0, a9, a10. Not all of a3, a4, a0
are zero, for otherwise S; would be 43.

(a) Suppose as % 0. T can be used to remove ayo ; T can be used to make
a; = ay = 0; T can be used to remove a, ; T can be used to remove a; .
Ss iS 46.

(b) Suppose as = 0, a0 # 0. T, will make a; = 0, and T, will make a; =
as=0. Then P:=0,0,0,0,05,0,0,0, a0, ap. If ag # 0, the line P;P}
contains two points of V. If ay = 0, S; is readily seen to contain a pencil of
r-planes and to be 44.

(¢) Suppose a4 = ay = 0. Then Py, = a1, a2, a3, 0, 05, 0, 0, 0, a9, O.
ay # 0, for otherwise PP, would be a Z-line. Ti can be selected to make
ai = as, as = ar. Hence S; contains Ps = 0,0, a5, 0, a5, 0,0, 0, a, O.
Then T; with @ = 0 can be selected to make as = 0. S;is 47; it contains only
one 7-plane.

We have so far determined all the S;’s with one point O on V which contain
a line tangent to V at O and a 7-plane on the tangent line. Any other S; with
a line tangent to V at O will contain the plane

k,1,m,0,0,0,1 k0,0

which is not a 7-plane, but which contains the tangent line l = 0. S; contains
the point Py = a1, 02,0, a4, a5, 0,0,0, 0, a10. We now apply transforma-
tion Ts, which leaves P, P., and P; unchanged.

(a) If @y 5% 0, T will remove a; and a0 . In this casem = 0 isa r-plane
not on O; such an S; is different from any we have obtained previously.

M If a9 = 0, a5 # 0, Ty will remove a; and as. P; =
0,a,0 a1, 0a,0,0,0, 0, ayp.
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(¢) If as = a9 = 0, then Py = a;, a2, 0, a4, 0, a5, 0,0, 0, azo. Here the
plane I = 0 is tangent to V at P;. Hence, we need consider cases (a) and (b)
only.

Case (a). T; will remove a2, and T; will remove as. Then, P, =
,0,0,0,0,a5,0,0, a ,0. The unit point in X can be chosen to make
a = ay, if a; # 0, but as cannot at the same time be made equal to ay unless
o =alay. Ifa,=as= a ,orif ¢ = 0, S; has a second point on V. If
as = 0, S; contains the =-line P,P,. Hence, S; is

k+mn,1,m,0,0,r,1, k n 0, 2°+4 2°— ¢ irreducible.

This is 48; it contains the 7-plane m = 0. The irreducibility of 2° + z* —
is required for there to be no second point on V.

Case (b). an # 0, for otherwise P.P; would be a Z-line. If a, 0, T,
would make a;p = 0. Hence, a: = 0. The unit point can be chosen to give
P, one of the forms

(1) 0, 1’ 0’ O’ 1’ 0, O? 0’ O) 17 (2) 07 17 0? O’ 0, O’ ‘0) O’ O’ 1"
® 9,0,0,0,1,0,0,0,0,1,

depending on the zeros of a; and a5 . In cases (1) and (2), S; has two points
on V; in case (3), the plane [ = 0 is a 7-plane on the tangent line, and S;
is 47.

The remaining S;’s with one point on ¥ will contain no line tangent to V
at 0. Such an S; contains the plane k, 1,0, 0,0, m, [ + m, k, 0, 0 and a point
P,=a1,0:,0a3,0:,05,0,0,0, a9, ar0. Not all of a3, a4, and ay are zero,
for otherwise S; would lie in the space tangent to V at 0, 0,0, 0, 1,0, 0, 0, 0, 0.

(a) Suppose as = app = 0. If a9 = 0, the line PP, is a =-line, and since
P, is on the Z-line I + m = n = 0, S; contains a Z-plane not on P; and hence
contains another point of V. Since ay % 0, Ty with a2 — @ = 0 removes
ay ; Ty will remove a; ; and T will remove a; . The unit point can be chosen
so that P, = 0,0,1,0,0,0,0,0, 1, 0. S;is space 49; it contains a single
r-plane and has no line tangent to V.

(b) Suppose as # 0. If not both a, and a; are zero, we may suppose a; =
0. Tu can be used to make a;p = 0; T will remove a, ; and T; will remove
a;. Hence, Py =0, 0:,0a3,0as,05,0,0,0,0,0. S;contains two r-planes:
n=0andk =0. Ifa; # a,, S; contains no line tangent to V, and hence is
different from 46. We may apply T to remove a; , and then choose the unit
point so that P, = 0, r,0, —1,1,0,0,0,0,0. If r = 0, S; is 50 which is
different from any S; previously obtained. If r» s 0 and S; has no point
except P; on V, it contains two 7-planes on P;, and an interchange of the
r-planes will put S; into 50. We shall not carry out this change, but will
point out the relations that must be considered in doing it.

The space k, 1, 0, —n, n, m, I + m, k, 0, O contains two 7-planes: &k = 0
andn = 0. Thelinel + m = n = 0 is the Z-line in one of them; the line
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P,P, is the Z-line in the other. The line P,P; is special, the intersection of
the two r-planes. The two Z-lines in the r-planes determine two special
points on the line P.P; , their intersections with P,P;. The point P, is there-
fore uniquely determined as the intersection of the line in both r-planes with
the =-line in one of them. Every point of a Z-line determines another point
of it, the point conjugate to it with respect to its “imaginary” intersections
with V. P, and P, are conjugate points of the Z-line in &k = 0;
P, and (0, 1, —1, 0) are conjugate points of the Z-line in n = 0, the second
point being the intersection of the Z-line with P,P;. Thus the coordinate
system in S; is determined as soon as we decide in which of the 7-planes to
take P;. In the case above with r £ 0, a change of coordinates required by
selecting P; in the plane &k = 0 puts S; into 50.

Any 8; with one point O on V, other than those so far obtained, will have
no 7-plane. Any plane on O will be one or the other of types 14 and 15 of the
list of planes. We shall show first that S; always contains a plane of type 15.

Suppose S; contains a plane of type 14: k, I, m, —m, 0,0, I, k, 0, 0. Then
S; contains the point Py = 0,0, 0, a4, a5, as, a7, @z, @y, Q. Any point
in S; is

k, I, m, —m 4+ asm, asn, aen, Il + am, k 4+ asn, am, aon.
The points of intersection of S; with the space tangent to V at P; satisfy
asn = k + (as + ag)n = 1 4 (as + ar)n = 0. Sz has no line tangent to V at
P; and hence a5 ¢ 0. Then a and b in T can be selected to make a1 = as ,
as = ar , and consequently S; contains P;P.P; and

P,=0,00, as, 05, 06,0,0, as, a0 .
For a point P in S; we have
By = k¥ — agn + agmn,
B,

agkn — I — agmn + asasn’,
B; = aywkn — Im — agmn + asaen’,
B, = apln — km + adkn — agmn,
Bs = kl + (asa10 — asae)n’.

Using the relation Bsx; — Byxe + Bsrs — Boxs + Byxs = 0, a point in X deter-
mines a quadric @ in S;. The point P;, being on V, determines a line p; in
X ; the points of p; determine the quadries of a special pencil in S;. The line
. /1,0,0,0,0
Ps15%0,0,0,1, —1°

kl 4 (asa0 — asa)n’ = 0, K + akn — I' — asln + asam® = 0.

The first of these two quadrics intersects each of the planesk = 0 and ! = 0
in a line through P;. Hence, both planes are of type 15.

The corresponding pencil of quadrics is determined by
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We have thus shown that S; contains the plane
k,1,0,0,0,0,1, &, 0, m.

S; contains the point P, = 0, 0, a3, a1, a5, a6, a7, as, Gy, 0. Not both a3
and ay are zero, for then S; would contain a 7-plane; a5 # 0, for otherwise the
line PsP, would be tangent to V at P;. T can be used to make a1 = as and
as = a7. Hence we may assume Py = 0,0, as, a4, a5, 05,0,0,ay,0. This
is as far as we can go in reducing P, without changing the plane P1P,P;. We
shall now find a special line in S; and making use of it determine a canonical
form.

We examine the special pencil of quadrics in S; determined by the line p;
in X. For a point P in S; we have

B, = k! — agn + a3a5n2,

By = agkn — ' + awasn’,

B; = km — agln + asaen’,
B: = Im + akn — asagn’,
Bs = kl + asmn — asagn’.

The line p; is {g’ g’ (())’ é’ (1) . The quadrics of the pencil are

K 4 aoNen — NP — agln + as(as + a4)\)n2 = 0.

These quadrics are all cones with vertex at P;. The condition that the quad-
ric given by A be a pair of planes is that

A) @\’ + 3.5\’ + 3aza\ — a3 = 0

have a root in GF(p). We shall show that this root exists.

So far we have not used to the full the fact that S; intersects V only at P; .
The conditions that P be on V are that B; = 0,7 = 1, --- , 5. From each
of the pairs B, = B, = 0 and B; = B, = 0 it follows that a/’ + asl* —
asagkn — asaeln = 0. Hence if we solve B, = 0 for k in terms of [ and n, use
that value of k in B, = 0, and solve B, = 0 for m, we will have a set of values
of k, I, m, n which satisfy the first four equations. The equation obtained from
Bl =0 iS

(B) I — 2aasl’n’ — asasln® + (aiaﬁ + azasas)n’ = 0.

This is also the condition that k, I, m, n satisfy Bs = 0. The condition that
S; intersect V only at P; is that (B) have no solution in GF(p). Thus (B)
must be either an irreducible quartic, or else the product of two irreducible
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quadratics. In either case the resolvent cubic
(C) & + 200t — 4(dlar + asas08)t — (alal + asaaias + asas) = 0

of (B) has a root in GF(p)."

There exists a transformation ¢ = (a\ + b)/(cA + d), a, b, ¢, d in GF(p),
which changes (C) into (A).”® Hence if (B) has no root in GF(p), (A) has
a root in GF(p).

The pencil of cones in S; determined by the line p; therefore contains one
member which consists of a pair of planes. The line of vertices of this quadric
is the special line we sought. We take P; on this line of vertices. Any plane
on P1P; which is not a plane of the quadric determined by the root of (A) in
question is cut by the pencil of cones determined by p; in a pencil of conics
one of which is the line P;P; counted twice. Hence, any such plane is of the
type of 15 of the list of planes and may therefore be taken to be P,PyP; above.
The cone B, = 0 intersects the plane n = 0 in the parabola I* = 0 which is
the line P1P; counted twice. The cone By = 0 intersects the plane I = 0 in
the conic agkn + aasn’ = 0; since this is the parabola n* = 0, it follows that
ay = 0. With this choice of coordinate system the equation (B) above be-
comes (I — aasn®)* = 0. Since (B) has no linear factor in GF(p), it follows
that a.as is not a square. Moreover, the quadric B, = 0 is I’ — aam’ = 0
and consists of two “‘imaginary”’ planes; the only points on it are the vertices.
Any plane on P.P; will therefore serve for PP,P; above, but when the plane
is chosen, the locations of P;, P., and P, are determined.

The cones of the special pencil determined by p; are

K — agdn + N + as(as — a\)n’ = 0.
The matrix of the conic intersection of the cone with PiP:P, is
1 0 0
0 A 3as
0 3as as(as — a)

Setting the determinant of this matrix equal to zero and solving for A we ob-
tain the N’s which give quadrics consisting of one or two planes. The rank
of the matrix is at least two unless a; = as = 0, in which case the plane k = 0
is a 7-plane. Therefore a; and ag are not both zero. One of the degenerate

17 For the irreducible quartic this comes under a theorem by L. E. Dickson, Criteria
for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc., vol. 13 (1906),
p.-7. The quartic which is the product of two irreducible quadratics defines a GF(p?) in
which the quartic is completely reducible and reducible to quadratic factors in three
ways corresponding to the three roots of the resolvent cubic. The roots of the cubic
are in GF(p?), and hence at least one of them is in GF(p).

18 This is done most easily by transforming both (A) and (C) to the form x? 4 ax + 8 =
0 which can be made the same for both.
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cones is given by A = « ; the others are given by N’s which satisfy
a4a5)\2 - asa5)\ + 20/% = 0.

The discriminant of this quadratic, asaf — asasas , cannot be zero since it is
the sum of two squares not both zero.”” Hence, the quadratic has two distinct
roots, both or neither in GF(p). There are two new S;’s corresponding to
these two possibilities.

We consider first the case where the special pencil of cones contains three
degenerate members. Two of them must each consist of a pair of imaginary
planes, for otherwise S; would have points on V besides P;. We may take
P; to be on the line of vertices of the second degenerate cone. Then the cone
k* — agn + asasn’ = 0 cuts the plane k = 0 in a parabola, and hence ag = 0.
A choice of the unit point puts S; in the form 51.

When the special pencil of cones contains only one degenerate member, the
one given by A = o, the number asai — asasas must be a not-square, and
hence neither a; nor as is zero. A proper selection of the unit point will put
P, into one of ‘

O’ 0) 1; 17 —1) 7, 0: 0’ 07 07 07 0’ 1’ "'11 17 r, 07 O, 0, 0)

depending on whether a05 is not or is a square; in either case 1 + #* is not a
square. There are (p + 1)/2 possibilities for r, and hence there are p 4 1
possibilities for P, . We recall that the plane PiP,P; is arbitrary on the line
P,P;. There are p + 1 planes in S; on P.P;. For a given S;, the plane
P1P,P; can be selected” to give P, any one of the p + 1 forms listed above.
Hence 52 is a canonical form for Ss .

6. Three-spaces with no point on V

53. k,l,m,0,m,n, 1l k-4 nn,O.
54. k,1,0,2n, m 4+ 3n,n, I, k, 0, m.

Space 53 contains the 7-plane m = 0 and the Z-line P, P; ; space 54 contains
no 7-plane and no Z-line.

We shall prove first that an S; with no point on V contains a v-plane and a
3-line, or it contains neither. In an S; with no point on V every plane is of
one of the types 7, 8, 9 of the list of planes. If S; contains more than one
r-plane, the intersection of two of them is a =-line; hence the theorem is true,
or else S; contains not more than one 7-plane. Likewise, if S; contains more
than one Z-line, it contains a 7-plane. To prove this, let k, [, m,0,m, 0, [, k, 0,0

19 Again we note that the details are being carried out for p such that —1 is not a
square.

20 The simplest way to verify this is to take S; with r arbitrary, change the plane
P,P:P; from n =0to!l — an = 0, and change the coordinate system so that
Py, P, , P;, Piare in proper form. It will then appear that for no a except a = o is
the form of P, left unchanged.
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be a plane on one =-line. For this canonical form P, can be any point in the
plane not on the Z-line PyP;. Hence if S; contains a second Z-line, it may be
taken to pass through P,. P, may be selected on the second Z=-line, and
hence Py = a;,02,0,04,05,0,07,0,a9,0. Ifay = 0,thenk = 0 is a 7-plane.
If @y # 0, transformation 7' can be used to remove a,. Then m + agm =
0 is a 7-plane. Hence, S; contains not more than one 7-plane and not more
than one =-line, or else it contains both a 7-plane and a =-line.

We now show that if S; contains a Z-line it contains a 7-plane. S; contains
a plane which is not a 7-plane and is not on the Z-line; it may be taken to be
k,1,0,0,m, 0,1, k, 0, m. This plane contains the uniquely defined conic C:
m® — 2kl = 0. The Z-line intersects this plane (a) on C, (b) outside C, or
(c) inside C.

(a) The Z-line passes through P;. Then P, on the Z-line is

a1,(12,a3,0, ar,,ae,O,ag,0,0.

Then ! 4+ a:n = 0 is a 7-plane.

(b) The =-line passes through P;. Pshasa; = a; = a3 = a4 = 0, and
m + agn = 0 is a 7-plane.

(¢) The =-line passes through 1, 1,0, 0, 0, 0, 1, 1, 0, 0, which is inside C.
Then Py = a;, 02,03, —as, G5, Gg, &1 —0g, ds , G2 —qs , a3 . This is exactly
the situation that was discussed in determining the space 36; it was shown
there that &k + I 4+ (a; + az)n = 01is a 7-plane. Hence, if S; has no point on
¥V and contains a Z-line, it contains a r-plane.

Now assume that S; contains a 7-plane. S; contains the
plane k, [, 0, 0, m, 0, I, k, 0, m. The r-plane intersects this plane in a line
which is (a) a secant of C, (b) a tangent to C, or (c) a line through P; not
intersecting C.

(a) Let the 7-plane contain P;P,, and select P; on it. Then P, =
a1, 02,0,0,05,06,0a7,03,0a ,0. Thelinek + ayn = I 4 am = 0isa Z-line.

(b) Let the 7-plane contain P;P; and select P, on it.

Py=a,,0,03,0,05,0a,07,0as,0,ap.

The Z-line is I + am = m 4+ an = 0.

(¢) Let the 7-plane contain P; and 1, —1, 0, 0, 0, 0, —1, 1, 0, 0. The
r-plane is in the space tangent to ¥ at 0,0,0,0,0,1, —1, —1,1,0. It con-
tains P, = 0,0, a3, —as, a5, G, Gr, @3, G, 0, as + ar + as + a9 = 0.
For any point P in the 7-plane

By = k' + (as + as)kn + azmn + asasn’,
B = agkn — k' + askn — azmn — asasn’,
B; = km + askn — (asas + asan)n’,

By = —km — askn — (asas + asao)n’,

Bs = m® + asmn — k' + aikn — askn + (a:as — asao)n’.
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The three-space in X determined by P is Bsx; — By, + Bsxs — Byxy + Byrs = 0.
For any k, m,n, B;+ B: = 0and B; + B, = 0. If k, m, n are selected so
that B; = 0 and B; = By, then the three-space will be 2; + x4 + x5 = 0,
which is the three-space determined by 1,1, 0,0, 0,0, 1, 1,0, 0. The solu-
tionis k = as + ar, m = 2a;, n = 2. This completes the proof that if S;
with no point on V contains a 7-plane, it contains a =-line. Also it completes
the proof of the theorem in italics above.

We now determine a canonical form for S; which has a 7-plane and a Z-line
but has no point on V. Any plane on the =-line is k, I, m, 0, m, 0, [, k, 0, 0,
where P; is the intersection of the 7-plane and the Z-line and P. is also
in the s-plane. The r-plane is in the space tangent to V at
0,0,0,0,1,0,0, 0,0, 0. If P,is in the 7-plane, then a; = a4 = a; = 0.
Since P; and P, are in the 7-plane also, we may take

P4=0,0,0,0,(15,(15,(17,0,3,(19,0.

The condition that S; have no point on V is that the polynomial f(x) =
agt® — ar® + asz — as be irreducible. Every suitable S; determines such
an irreducible cubic, and every irreducible cubic determines a suitable S; .
We note that as 0, and hence T can be used to remove as .

By changing the unit point we may transform f(z) as it is transformed by
xz = dz’; by interchanging P; and P, we may transform f(z) as it is trans-
formed by x = 1/2’; by means of T3, which leaves P; unchanged, we may
transform f(x) as it is transformed by x = 2’ + a. Therefore any S; with
a Z-line but no point on V is space 53.

The three-space

k,1,0,2n,m + 3n,n,1l, k,0,m

has no point on ¥ and has no Z-line. To prove this directly is rather diffi-
cult. The following proof is instructive. For a point P of S; we have

B, = k' — In,

B, = —0I + 2mn — nz,
B; = km + 2n°,

By = Im + 2kn,

Bs = m* + kl + 3mn.

The condition that there be a point on V is that there exist k, I, m, n which
make the B’s zero. If we solve B; = 0 for [ in terms of ¥ and n, B; = 0
for m in terms of £ and n, and use these values in By = 0, we obtain the rela-
tion k°* + kn' 4 4n° = 0. The polynomial f(z) = z°* + x + 4 isirreducible.”

21 We are dealing with p = 7. For the next several pages we shall be more closely
tied to p = 7 than we have been heretofore. At the end we shall divest the argument

of dependence on p = 7, but it seems desirable to separate the difficulties of the problem
from the difficulties that arise from different properties of different primes.
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Hence S; has no point on V. If f(x) were reducible, S; might still have no
point on V, but then f(x) would be the product of an irreducible quadratic
and an irreducible cubic. We have seen irreducible cubics before in this
discussion, in connection with r-planes with no point on V. If f(z) were
factorable but had no linear factor in GF(p), it is clear that S; would be space
53. For if X, S, V, and S; were immersed in spaces X, S, V, and S; over
GF(p®), then S; would have three points on V. When f(x) is irreducible,
then 3; has ng points on V, and hence S; has no r-plane.

We propose to show that any S; which has no point on ¥V and no =-line, or,
which is the same thing, any S; whose quintic polynomial f(z) is irreducible,
can be put in the form 54. We cannot distinguish among the points of S;,
among the lines, or among the planes; we cannot distinguish among the points
of a line, but we can distinguish among the points of a plane by means of the
absolute conic C. In seeking something similar to C which may aid in char-
acterizing S; we shall examine some complicated relations between S; and X.

For this S; the equation Bsx; — Baxs + Bsx; — Baxs + Bixs = 0 is

(m® + Kkl + 3mn)a; — (Im + 2kn)x, + (km + 2n°)zs
+ (& =2mn + 0z + (K — In)zs = 0.

When %, I, m, n are given, this is the three-space R in X determined by P;
when an arbitrary point A = x;, 22, 23, %4, @5 in X is given, it is a quadric
surface Q@ in S;. The points of Q are the points of S; whose three-spaces R
in X contain A. No two R’s given by different P’s are the same, since S;
contains no =-line. The B’s are linearly independent polynomials in k, I,
m, n. There is thus determined a four-parameter system W of quadrics in
Ss. Some of the quadrics of W are degenerate, and thereby a distinction can
be made among the points of X. The locus of points in X which give cones
in S; is

rs  Ax 4, 6,
4, 14 3z, 35

J: = 0.
4x; 32 Ty 5xy — 4

6x; 3x5 Ox1 — X4 223 + 24

J is a manifold of dimension three and order four in X. A point on J deter-
mines a cone in S;, and the cone has a vertex. It is easy to see that no cone
of the set W has more than one vertex, and to see that every point of Ss is the
vertex of one and only one cone of the set W.

We prove the first statement by showing that if W contains a quadric with
a line of vertices, S; contains a =-line. Let W contain a quadric @ with a line
of vertices. Any plane in S;, in particular a plane on the line of vertices of
Q, may be taken to be k, [, 0, 0, m, 0, [, k, 0, m. S; contains the point P, =
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0,0,a3, as, a5, as, a7, as, ay, 0. The B’s for a point P in S; are
B = 1 + askn — agn + azmn + a3a5n2,
By = ajhn — I — ain + amn + aasn’,
Bs = km — agln + (aas — asan)n’,
B, = Im + aden + (aa5 — azae)n’,
By = m’ + kl + aien + asln + asmn + (a:as — agas)n’.

The matrix of any quadric of the set W has for the first three columns
x5 4z, 43
[ 4y x4 3wy
[ 4z, 32, z
4ar 1 — QT2 — Gy Ta+ as x5)  4(as 71— a3 Ta+ a1 T4 — as T5)  4(as T1 — s X4+ a3 75)

Now the line of vertices of @ in the plane n = 0 has one of three positions:
(1) it is tangent to C and may be taken to be P1Ps ; (2) it intersects C in two
points and may be taken to be P,P; ; or (3) it passes through P; and does not
intersect C; it may be taken to be {(1): 0?11 ’ (? ’ 0. In case (1) the quadric is

)
given by the point 2, , x2, s, 24, 25 = 0,0, 0, 1, 0. Its equation is B, = 0,
and since it consists of two planes we have as = ay = 0. If this is so, the line
14 am = 0,m = 0is a =-line. Cases (2) and (3) would require z; = --- =
25 = 0. Hence W contains no quadric with more than one vertex.

That an arbitrary point P = k, I, m, n of S; be the vertex of some cone of the
set W requires that it be possible to select x;, - - -, 25 so that k, I, m, n are
the constants of dependence of the columns of the matrix of which three col-
umns are given just above. This gives four linear equations in the z’s with
coefficients linear in k, I, m, and n. Properly signed four-rowed determinants
of the matrix of coefficients constitute a solution for the 2’s, if they are not all
zeros. There is at least one solution for every k, I, m, n; there would be more
than one if the rank of the matrix of coefficients were less than four. There
is not more than one solution, as we shall now prove. Let P be any point in
S; . Any plane on P can be taken to be k, [, 0, 0, m, 0, [, k, 0, m. P may be
(1) on the conic C, P = P; = 1,0,0,0; (2) outside C, P = P;; (3) inside
C, P =1,1,0,0. If any one of these sets of k, I, m, n is used for constants
of dependence of the three columns above, a set of four independent equations
in the 2’s is obtained. Hence, in every case the solution is unique.

Let P, and P, be arbitrary points on the line lin S; , and let the three-spaces
in X determined by them be R; and R, respectively. R;and R, intersect in a
plane ¢. Every point in ¢ determines a quadric in S; which passes through
both P; and P;. There is thus determined in W a net of quadrics on P; and
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P, . The line I determines a point M on V, the point such that MP,P;, is
tangent to V at M. M is the image on V of a line m in ¢. Every point on
I determines a three-space in X which contains m, and consequently the
quadric in S; determined by a point of m has the line [ for a ruling. Thus the
points P; and P, determine a net of quadrics in S;, and in that net is a pencil
of quadrics each of which has [ for a ruling. If A is a point of m, the quadric
Q has [ for a ruling and hence is a ruled quadric; it is a cone if A ison J.

Now let us consider two lines I; and I, in S;. They determine two lines
my and me in X. If m; and m, intersect in a point A, the quadric @ determined
by A has both I, and I, for rulings. If m; and m. do not intersect, there will
be no quadric of the set W which has both I; and I, for rulings. If m, and m,
intersect, the quadric Q will not be degenerate if I; and I, do not intersect. If
m; and m, intersect and I; and I, intersect also, @ will be a cone if A is on J;
otherwise it will be nondegenerate, and I; and I, will belong to different reguli
on Q.

To study further the relations of lines and quadrics of S; to lines and planes
of X, we consider the six-spaces tangent to V along a ruling of V. For this
purpose we may take the points of a ruling and the tangent spaces to be

M0=1,0,0,0,0,0,0,0,0,0, T, : $g=.’159=x10=0,
M. =0,10000000,0, To: =21 =20 =0,

—>\£L'6+x3=0
Ty:

M, =1,10,0,0,0,0,0,0,0,
—Mer 2 =0, x10=0.

The six-spaces T\ are all in the eight-space Ss: 10 = 0; the intersection of two
of them is the four-space Sy :2s = 2y = 23 = 2y = & = 0. Any point in
Ss on the hyperquadric Qr: xezy — x5 = 0, 210 = 0 is in some T . Any point
in two TW’sisin S;. Any line in S, contains a point on V.

Now let S; be a three-space in S with no point on ¥V and no Z-line. Either
S; lies wholly in Ss or intersects it in a plane. The points of @ lie in the
hyperquadric in S determined by asai0 — @sas + azas = 0, and hence its inter-
section with S; is one of the quadrics of the set W. The intersection of S;
and Ss therefore cannot be a plane. S; can have no more than one point in
Ss, since S; has no point on V. @y intersects S; in a quadric Q. If one T
intersects @ in a line, then every T) intersects it in a line. If two lines in
distinet 7T\’s intersect, the intersection is in S; and hence is on each of the
rulings of @, and Q is a cone. If @ has no point in S;, then the rulings of
cut out by the T%\’s do not intersect, and @ is not degenerate.

Now let us consider the cone @, in S; with vertex at an arbitrary point P; .
The rulings of @, are in the tangent spaces at points of a ruling of V, and these
points on V represent the lines of a pencil in X. Thus a point P; in S; deter-
mines a plane o in X. Every point in ¢ determines a quadric on P, in S; ; the
vertex A; of the pencil determines @ , and A; is on J. Any other point A, in
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o determines a quadric in S; which has a ruling in common with @, . All the
quadrics of the set W which contain a particular ruling of @; have been shown
to belong to a pencil and hence are given by a particular line in ¢ on 4, .
Consequently all the quadrics of the set W that intersect @, in a ruling belong
to the net determined by the points of o.

Let A, be a second point on the intersection of ¢ and J. Then A, determines
a cone @, in S; ; let the vertex of @, be P.. The cone Q. determines a plane
o’ in X. The line P,P; is a ruling of both @; and Q. ; it determines the line
A;A: in X, and hence 44 is in both ¢ and ¢’. We shall show that the two
planes coincide. Consider a plane p on PP, and not tangent to @; or Q..
This plane cuts out rulings l; and l» , not P1P; , on @, and Q. respectively; let
the intersection of ; and I be P. P, P;, and P; determine the three-spaces
R, R;, and R, in X. The intersection of R and R; is the plane whose points
give all the quadrics of the set W which pass through P and P;. It con-
tains the line AA;, which is a line of ¢ corresponding to the ruling PP; of
@1, and, since P is on @, the point 4,. The plane of intersection of R and
R; is therefore ¢ which is not dependent on the choice of p and hence not de-
pendent on R. From this it follows that ¢ and ¢’ are the same, and that o is
the intersection of R; and R, .

The plane ¢ was determined as the plane of the pencil of lines in X deter-
mined by the rulings of the cone @; ; o has been shown to have the same relation
to Qs . There are thus determined two pencils of lines in ¢ with vertices at 4,
and A, respectively. The plane p in S; on P; and P, contains a ruling of @,
and a ruling of Q;, and hence determines lines in ¢ on 4; and A, respectively.
The pencil of planes on P; and P, thus sets up a projectivity between the two
pencils of lines in ¢. The line 4145, which is in both pencils, is not self-corre-
sponding in the projectivity unless the cones @; and @; have a common tan-
gent plane. Corresponding lines of the two projective pencils in ¢ intersect
in a conic if @; and Q. do not have a common tangent plane; otherwise they
intersect in a line.

Let the intersection of two corresponding lines of the pencils on 4, and 4,
be A. A determines a quadric @ in S;. @ has each of the lines [; and I, in
p as a ruling; these rulings intersect, and therefore.@ is a cone with vertex at
P. Hence, if @, and @, do not have a common tangent plane, the points of «
which are on J are points of a conic, and the corresponding cones in S; have
vertices on the cubic curve of intersection of @, and Q.. The quadrics de-
termined by the points of & all contain this cubic curve.

Any line in ¢ is imaged in S; on a point of V which is such that the space
tangent to V there intersects S; in a line. If A’ is any point of such a line and
Q' is the corresponding quadric, the rulings of @' in common with @, and Q.
respectively belong to the same regulus of @', the rulings of this regulus de-
termine the lines in ¢ on A’, and one of those lines is the one in question.

If the projective pencils of lines on 4; and 4. in ¢ were perspective, then o
would contain a line each of whose points would determine a cone in S;, and



704 H. R. BRAHANA

the vertices of the cones would lie on a line ! not P;P;. Then the cone @,
would contain the plane Pyl. This is not possible since W contains no quadric
with a plane on it.

Also, there is no cone Q; of the set W whose plane ¢ contains no second
point of J. Let A be a point of ¢; then A determines a quadric @ with a
ruling in common with @;. Let p be a plane in S; on the common ruling of
Q: and Q, and let p cut @, in a second ruling, which intersects @ at a point P.
Through P there is a ruling of @ of the regulus to which the common ruling of
Q: and @ belongs. The two rulings, one of @; and one of @, determine two
lines on A; and A respectively. The intersection of these two lines de-
termines a quadric with two rulings of the same regulus which intersect; this
quadric is therefore a cone, and it is distinet from @, .

Hence, we have shown

If o is a plane in X determined by a cone of the set W, it intersects J in a conic
which is not degenerate.

If Q, and Q; are two cones of the set W and if they have a common ruling, they
determine in Sz a net of quadrics each of which has one and only one ruling in
common with each other; the cones of the net are p + 1 in number and have vertices
on the cubic curve of intersection of @, and Q. .

We have also shown the following theorem about J:

Every point of J determines a unique plane in X which intersects J in a non-
degenerate conic.

These planes are the double tangent planes of J. Each of them contains
p + 1 points of J, and no two have a point of J in common. Their num-
ber is thus shown to be p* 4 1. Since two planes of X intersect in at least
one point, two double tangent planes of J intersect in a point A which is not
on J, and the quadric @ determined by A is a nondegenerate quadric with
rulings. The second set of rulings on @ determines a plane ¢ in X which con-
tains A. Incidentally, we cannot distinguish one point of J from another.

We note that the points of S; lie on p*>.+ 1 cubic curves each of which is the
intersection of a net of quadrics of the set W, and no two of the cubics in-
tersect.

We note also that not every point of X is on a double tangent plane. A
point not on such a plane determines a quadric @ which has no rulings. Such
a point is 0,0, 0, 1, 1; @ is E —In+ 0 — 2mn + n® = 0. Q contains the
point k, I, m, n = 0, 0, 1, 0; the plane tangent to @ at that point is n = 0.
Points of intersection of the plane and Q satisfy k* 4+ I = 0, and hence the
only point is the point of tangency.

Every cone of the set W has on it a single one K of the cubic curves. Every
nondegenerate ruled quadric of the set W has on it two of the cubic curves,
K and K’. Tt is clear that if @ is a cone with the vertex P determined by the
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point 4 in X, each ruling of @ intersects K in P and one other point, excepting
the ruling determined by the tangent to the conic intersection of J and the
double tangent plane in which A lies. This ruling is the line tangent to K
at the point P. If Q is a nondegenerate quadric determined by a point A out-
side the conic of intersection C of ¢ and J, then a line of the pencil in ¢ on A
intersects C' in one, two, or no points; thus the rulings of @ of the set cor-
responding to lines on 4 in ¢ meet K in one, two, or no points. If A is inside
C, then each of these rulings meets K in two or no points. The same situation
holds with respect to the other set of rulings of @ and the cubic K. The
situation is different, however, with respect to the rulings of @ determined by
the pencil of lines on 4 in o and the points of the cubic K. The curve K’
is on @, it has p + 1 points, and no two points of K’ are on the same ruling of
the set determined by the lines in 0. Hence there is one point of K’ on each
of these rulings.

We now investigate the space 54 in the light of these relations.” The
vertices of the frame of reference in the space 54 lie on the quadric @, : Im +
2kn = 0, which is given by the point 4, = 0, 1, 0, 0, 0 in X ; the edges P,P,
and P3P, are rulings of one regulus on @, , and PP; and P,P, are rulings of the
other. The planes in X determined by these reguli are respectively o2 =
AsA3As and oy = A14:24,. The plane o, intersects J in the conic C, : x5 +
3xsxs = 0; Az and As are on C: , and A, is the pole with respect to C; of the line
joining them. The plane o intersects J in the conic C; : i + 43 + 3x.24 = 0;
A4is on C; ; the tangent to C; at A, passes through 4,. A4, is on the polar of
A, with respect to C; ; the other intersection of this polar with C,is 1, 0, 0, 2, 0.

The vertices of the cones in S; determined by the points of C; lie on the
cubic curve K, through P, and P;, the vertices of the cones determined re-
spectively by As and 4s. The vertices of the cones in S; determined by the
points of C; lie on the cubic K; through P; ; K, intersects the line P3P, at
0,0, 1, 2. This point determines the space 23 = 0 in X.

Let us designate the point 0, 0, 1, 2 by Pj.

P:=10,0,0,4,0,20,0,0, 1.

It is on the line joining the two points of V: 0, 0, 0, 4, 0, 0, 0, 0, 0, 1 and
0,0,0,0,0,2,0,0,0,0. These points represent respectively the lines

1,0,0,2,0 0,1,0,0,0. .
{0’ 0,004 and 0.0 0 20 in X. The points 1,0,0,2,0and 0,0, 0, 1,0
are the points of C; to which tangents to C; can be drawn from A4.. 4,4,

determines the ruling PoPs of Q.. The line {1’ 0,0,2,0

0.1,0.0,0 determines the ruling

of the same set which passes through P; .

22 It is to be noted that in the above argument there is no dependence on p being 7.
We used that assumption when we exhibited the quadrie with norulings, but that fact is
not important for our purposes and as will be seen later can be proved easily without any
assumption about p.
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We note that the relations described so far are completely determined by the
choice of A, . For any A, planes o; and o, are uniquely determined, as well as
conics C; and C: , and the polars of A, with respect to C;andC,. A, must be
outside both C; and C;. The ruling P.P, is determined by P, and the point
P by the tangent to C; through A, .

We may look upon A. as being determined by the quadric Im + 2kn = 0
of the set W. Any nondegenerate ruled quadric of W in any S; which has no
point on V and no Z-line determines a point A in X, two planes o; and o2,
containing conics C; and C; and intersecting in A. If A is outside both C;
and C;, then the polars of A with respect to C; and C. respectively intersect
C; and C; in two points each. Each of these four points, on C; and C., de-
termines a cone with vertex on . If P is the vertex of one of these cones,
the two rulings of @ through P determine two lines in X, both through 4,
one in ¢; and one in gz . There are thus distinguished four lines on 4 in each
of the planes ¢; and s.. Now, for the space k, [, 0, 2n, m + 3n, n, [, k, 0, m
and the quadric Im + 2kn = 0 given by 4, above, these two sets of four lines
reduce in one plane to two and in the other to three. The vertices of the
cones determined by 1, 0,0, 2,0 and 0, 0, 0, 1, 0 lie on the rulings determined
by A2A; and 4,45, and the vertices of the cones determined by A; and A5 lie
on rulings of @ determined by 4,44 and A4, , the latter having no point on
Cy:ai + 4x5 + 3w, = 0.

The configuration in X just described characterizes

k,1,0,2n, m + 3n,n, 1, k, 0, m

in the sense that any S; , with no point on V and no 2-line, whose set W con-
tains a quadric @ which provides the above configuration, is conjugate to
k, 1,0, 2n, m + 3n, n, 1, k, 0, m under a collineation of X. A proof will be
given by showing how to select a coordinate system in X so that S; takes the
given form; this will be done by going backwards from the configuration
through the steps by which it was determined. We shall use primed letters
P1, Q;, A1, ete. until we can see that the accents may be dropped and the
letters have the same significance as above.
Denote by o2’ the plane in which the four lines combine into two, and by
’ the other. Denote by A the intersection of oy and oo; denote by C
the intersection of J with o/. Denote by As and A; the intersection of C;
and the polar of A with respect to Cs , with As the one whose cone in S; has
vertex P on the ruling of Q; determined by the line on A; in ¢, which does not
intersect C; . Denote by As the pomt of C7 which gives in Ss the cone with
vertex on the ruhng of Q; given by A3A; ) and denote by A1 the intersection
of the polar of 4, with the third line in ¢/, which is not tangent to Cy. De-
note by Py’ the vertex of the cone determined by A:, and by Pj; the vertex of
the cone determined by As .
The plane PiP;P; is completely determined by the conﬁguratlon The
plane is of type 9 of the list of planes, and we shall now show that Pi,P;, P;
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will serve as Py, P», P; of that canonical form. The points P; and Pj are
on the cubic curve K; determined by the vertices of the cones given by points
of Cs. The cubic K lies on the cone with vertex at P;. PiP; is a ruling of
Q> determined by the line A;A;, which is tangent to Cs. Hence, PiP; is
tangent to K, at P; , and hence P1P;P3 is tangent to the cone with vertex at
P; and therefore intersects the cone in a single line. The absolute conic of the
plane PiP;P; is therefore tangent to the line P;P; at P;. The cone with
vertex at Pj is also tangent to the plane PiP;P; , which we proceed to show.
The cone with vertex at P;, given by Az, has its vertex on the cubic K .
K1 has one point besides P; on each of the rulings of the cone with vertex at
P; except the ruling P1P; which is determined by the tangent to Ci at Ay .
Every point of K1 is on Q. The points common to Q; and P1PyP; are the
points of P1P; and PiP;. We have just noted that P1P; has no second point
on Ki ; PiP; is a ruling of Q; determined by a line in ¢y’ and has no point
except P on Ki. Hence, the plane PiP;P; is tangent to the cone with
vertex at Py, and the absolute conic in it is tangent to PiP; at P;. Pjis
therefore the pole of P1P; with respect to the absolute conic, and P; and P;
are on the conic. The vertices of the frame of reference in X can be selected,
and in only one way when Py , P, , P; are given, so that PiP;Ps is in canonical
form. Then for this S; the Ai’s have the coordinates of the A/s for the
space 54.

The points P; , P; , P; are now Py , P, Ps with the proper coordinates. To
complete the canonical form it is necessary to determine the coordinates of
P,. P,is determined as the intersection of two rulings of @,. One ruling is
determined by A;A4., and the other by A245. The corresponding points on
V are

A14;—1,0,0,0,0,0,0,0,0,0, A:d;—0,0,0,0,0,0,1,0,0,0.

The respective spaces tangent to V are as = @y = a0 = 0 and a2 = a3 = as = 0.
Hence, Py = 0,,0,0, a4, as, as, ar, 0, 0, 0. There are further conditions
that the a’s must satisfy. So far we have required of C; only that it pass
through A; and A; and that 4. and 4345 be pole and polar with respect to it;
also it has been required of C; only that it pass through A, and that 4, and
A;A4 be pole and polar.

Any point of S; is

k + am,l, 0, an, m + agn, agn, | + am, k, 0, m.

For this point
’Bl = k2 + alkn - asln,

By = =1 — ain + agmn + aasn’,
B; = km + aymn + a4asn2,

B, = lm + adkn,

Bs = m* + kl + askn + asmn.
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If we take the point of intersection of C; and 4,44 to be 1, 0, 0, 2, 0, this
requires @', the quadric determined by it, to be a cone. The result is that
as + 2a, = 0. a4 cannot be zero since S; contains no 7-plane. Hence, we
may take as = 2 and a5 = 3. If we take 1, 1, 0, 3, 0 to be on C;, this will
give a = 0. The cone with vertex at P, is tangent to P3P, at P; ; this re-
quires ¢; = 0. It requires one more point to fix C; ; let it be 0, 1, 1, 0, 2;
then as = 1. Hence, the point P,is 0, 0,0, 2, 3, 1, 0, 0, 0, 0, and the space
S; is space 54.

This configuration in X which has just been shown to characterize the space
54 can be described by elements in S;. We give a representation of the

Po= 0010 0013 0016 0012 0015 0011 0014 0.00,1 = P
3 21 15| 17 16 18

1,06,0 1,1,6,4 12,6, 1,3,6,5 1,462 1566 16,63 0,1,04

37 41 l 12 36 20
1,050 1,151 1252 1,353 14,64 15556 1,656 01,01
X [} X

23 | 6 40 49 33
|
1,0,4,0 1’1534'5 1,243 1,341 1,446 1544 1642 0,105
50 ‘ 43 14 5 47 8 38
1,030 1,1,32 1,234 1336 1431 1533 1635 01,02
le) X X
24 32 46 \ 22 7

1,020 1,1,2,6 12256 1,3,24 1423 15
34 35 4 1 10

2,2 1621 0,106
39 31

1,0,1,0 1,1,1,3 l,?;-,\‘.,ﬁ 1,3,,2 1,415 1,511 1,6,1,4 0,1,0,3
O

42 9 45 48 13 19 44

Pu=1000 11,00 1200 1300 1400 1500 1600 o,ko,o =P,
i 25] 26| 27| 28| 29} 30] |
Diagram 1

quadric @z : Im + 2kn = 0 in Diagram 1. This is a diagram of points and
lines on Q;. The horizontal lines are the rulings of @, determined by the
pencil of lines on 4, in g, ; the vertical lines are rulings of the other set and are
determined by the pencil on A; in o;. The cubic K, passes through the
points marked with a cross (X); the cubic K; passes through the points
marked with a circle (O). Each horizontal line contains one circle, and may
contain two, one, or no crosses. The line P,P, contains no circle and so is
determined by a line in o; which does not intersect C; ; it is not a ruling of any
cone with vertex on K;. The two vertical lines each containing just one
circle are determined by the two tangents to C; from A, ; likewise the two
horizontal lines each containing one cross are determined by the two tangents
to C; from A, . The horizontal line through P, , since it has no other cross on
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it, is determined by the tangent to C. at the point which determines the cone
with vertex at P, ; it is the ruling of the cone which is tangent to K, at P .
This line contains P, which is on K;. The vertical line through P; has no
other circle on it; it is a ruling of @, and of the cone with vertex at P; ; it is
tangent to K; at P;. P; is on this line. The horizontal line through P,
contains no other cross; it is a ruling of the cone with vertex at P; and hence is
tangent to K, at P;. Whenever for a given S; the set W contains a quadric
on which the two cubic curves have the above relations, then the configura-
tion in X of the preceding pages exists, and the S; is conjugate to 54 under a
collineation of X.

In the diagram above each point of Q. is given by its coordinates k, I, m, n,
and each, excepting the points of K; and K,, has a number written under-
neath it. Each of these numbers 3, 4, - - - , 50 is the number of the cubic on
which the point lies. The numbers were assigned arbitrarily to the cubics;
they are included here for future reference.

We have seen that every nondegenerate ruled quadric of the set W has on it
two cubics. No other cubic can have more than one point on @, since two
points P, and Ps would determine two three-spaces R, and Rs in X, and their
plane of intersection would determine a third set of rulings of . The number
of points of Q is (p + 1)*; there are p + 1 points on each of K; and K, ; there
remain p° — 1 points of Q, which is the number of cubics besides K; and K, .
Thus the diagram accounts for all the cubics in S; .

We have given two equivalent, and closely related, ways of characterizing
the space 54 in geometric terms which are independent of any coordinate
system. An attempt to apply these criteria to an arbitrary S; with no point
on V and no Z-line leads to a long series of computations. The goal is to show
that any such S; is the one we have been studying, and hence that any S; whose
quintic polynomial f(x) is irreducible is conjugate to 54. The application of
this last criterion, namely, the irreducibility of f(z), is relatively a simple
matter; the application of the former is likely to require months of work.
Although it will be possible to show that the necessary condition, the ir-
reducibility of f(x), is sufficient to ensure that S; is 54, the determination of the
transformation which puts one such S; into another will require essentially
determination of the above configuration in X.

It is clear that one is dealing with pairs of cubics when one undertakes to de-
termine the configuration in X for a given S;. The number of pairs of cubics
is large; one finds immediately that not every pair is a canonical pair, and then
right away that not every cubic can be one of a canonical pair. A closer look
at individual cubics is therefore indicated. So far one cubic is like another.
When we consider planes which osculate the cubics, then differences appear.

Each point P of S; is on one and only one cubic K. The cubic has an
osculating plane at P. The osculating plane is tangent to the cone @ with
vertex at P along the ruling of Q which is tangent to K, the ruling which con-
tains no other point of K. For example, the plane P,P,P; osculates the cubic
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K, at Py (page 707). The osculating plane p, like every other plane in S;,
contains an absolute conic C determined by the relation of p to V. The
equation Bsr; — Byrs + Bsxs — Bary + Byxs = 0 is used to determine both
the conic C' and the set W of quadrics, and hence also the cubics. The points of
X which give conics in p which consist of a single line counted twice must give
cones in S;, since the conic in p is the intersection of p with the quadric.
The only degenerate parabolas in p, determined by points in X, are the
tangents to C. A plane which passes through two points P; and P; of a cubic
K, unless it is tangent to one of the cones with vertices at P; and P, , meets K
in a third point, viz., the intersection of the two rulings aside from P,P, in
which it meets the eones. If p is tangent to the cone with vertex at Pp,
along the ruling P1P;, then it is tangent to K at P,. Hence,

Any plane in Ss 1s tangent to those cubics which pass through the points of the
absolute conic C and to no others; the points of tangency are the points of C.

If p is the plane which osculates the cubic K at the point P, then p is tangent
to p other cubics. Some of these cubics may osculate p. The number of
cubics which osculate a given plane is a projective invariant. If the p 41
planes which osculate a given cubic are examined, a set of numbers is obtained
which enables us to distinguish among the cubics.

We shall say that a cubic is of type a1, a2, a5, a4 if the osculating plane at
each of a; points osculates 7 cubics. (We are dealing here, of course, with
space 54.) a; + a2 + a3 + as = p + 1 = 8. The distribution of the cubics
into types is given by the following table:

Type Names of cubics
2,3,2,1 1, 14, 19, 26, 39
2,1,4,1 2, 16, 27, 35, 37
2,5,0,1 6, 28, 34, 45, 46
4,3,0,1 10, 18, 23, 36, 50
2,4,2,0 3,7,8, 13,33
3,2,3,0 4, 5, 31, 32, 42
3,4,1,0 9,11, 12, 24, 43; 17, 22, 40, 48, 49
5,2,1,0 15, 20, 21, 30, 38; 25, 29, 41, 44, 47.

This table records only a small selection of the information about S; that must
be sought out. There is not enough here to distinguish between two sets of
five cubics of each of the last two types; there is enough information to enable
us to go on to the determination of canonical pairs of cubics.

Each of the twenty cubics of the first four types in the above list has an
osculating plane which osculates four cubics. There are therefore five planes
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in S; each of which osculates four cubics. The planes and the cubics which
they osculate are

k+3l+2m+4n =0, 1,2, 46, 50,
k + 51 + 2m =0, 6, 18, 26, 35,
k+504+5m+ n=0, 14, 23, 27, 28,
k+ 31+ 6m + 6n = 0, 10, 16, 19, 34,
k+ 20+ 3m + 6n =0, 36, 37, 39, 45.

From this list and the preceding table one reads immediately that if there are
any canonical pairs besides 1, 2, they are 26, 35; 14, 27; 19, 16; and 39, 37.
If two cubics are a canonical pair, they must be of types 2, 3,2, 1and 2, 1,4, 1,
and they must have a common osculating plane which osculates four cubics.

A proof that each of the given pairs is a canonical pair could be given by
finding the quadric on which the two cubics lie and then noting that we have
the configuration which characterizes im + 2kn = 0. We shall do this for one
pair and then exhibit the collineation which transforms the pair in question
into 1, 2; the collineation is of period five, hence there are five canonical
pairs, which could only be these.

The four points 1, 4, 1, 1; 1, 6,0, 3; 1, 3, 2, 3; 1, 3, 2, 6, two on each of
cubics 16 and 19, determine four three-spaces in X which intersect in 4 =
1,5,1,4,2. The quadric Q; of the set W determined by Asis

2k* + kL + km + 4kn + 41 + 2lm + 5ln + m’ + 2mn + 6n’ = 0.
It is represented in Diagram 2. The points of cubic 19 are marked with

| I | | I { | |
Py = 1,320,3 13,26 1534 0146 1LLL1 1,250 1042 1465 =P
-~

1,2!5,3 0.1,1,0 1,4,0,3
|
1,1,1,3 1,2,4,1 1,6,20 0,135 1,434
O X X
1,0,4,3 1,614 1,426
O
1,533  1,5,0,2 1,5,6,4  1,5,1,0 0,0,1,5
l X X D
1,4,6,3 0,0,1,4 145,6 1,4,2.1 1,4,4,2
X >|( D I
0,1,4,0 1,3,1,0 1,4,5,0
| |
P{=1323 0165 1506 16,64 1052 11,40 1235 14,1 =DP;

—0

T 1 T T T

Diagrawm 2
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circles, those of cubic 16 with crosses. The horizontal and vertical lines are
rulings of Q;. This diagram has the same arrangement of vertices of cones
and rulings of Q; tangent to cubics 19 and 16 as characterized the quadric
Q::lm + 2kn = 0 and cubics 1 and 2. Hence if P;, P;, P are given the
coordinates of P, , P, , P;in the earlier diagram, S; will appear in the form 54.
Thus cubies 19 and 16 are shown to be a canonical pair.

The transformation which puts X into itself, S; into itself, and cubics 19
and 16 into cubics 1 and 2 respectively is

1 2 3 6 6

6 0 2 6 3

T=1{3 15 4 2

4 1 0 6 2

32 5 3 2

The induced transformation in S; is

2 5 5 2 45 6 6 4 3
2 305 0 2 5 3 4 2
0 2 3 6 4 6 5 4 6 4
336 5 416 041
7= 6 36 35146 30
6 6 50 5 1 4 5 41
53 0332143 3
6 1 25 2 20 2 3 3
3040225 20 2
|5 6 1 2 5 5 5 5 4 6_

It may be verified that points of S; are transformed as follows:
1,8,2,3)T =(1,3,0,6,4,3,3,1,0,2)T = 1,0,0,0,0,0,0, 1, 0,0,
(1,4,1, )T = (1,4,0,2,4,1,4,1,0,1)T = 0,1,0,0,0,0,1,0,0,0,
(1,6,0,3)T = (1,6,0,6,2,3,6,1,0,00T =0,0,0,0,1,0,0,0,0, 1,
(1,4,6,5T = (1,4,0,3,0,5,4,1,0,6)T =0,0,0,2,3,1,0,0,0, 0.

This verifies that T transforms S; into itself by putting P; into P;, ¢ =
1, 2, 3, 4. Moreover, noting that in X the points 4, (= 1,0, 0, 0, 0), 4,7,
A,T?, A,T?, A,T* are linearly independent, and that A,T® = A, , we have the
result that T is of period 5.

That the collineation group of X contains a transformation of period 5 that
puts S; into itself was to be expected. Ss; determines the irreducible poly-
nomial congruence f(x) = 0 for the value of k/n which would make B, = - --
= By = 0, and determine a point of V. If X, V, 8, and S; were immersed in
spaces X, V, §, and S; over GF(p°), then the congruence would remain un-
changed but would be completely solvable. The Galois group of GF(p’)
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relative to GF(p) is of order 5. This group interchanges the points of inter-
section of V and S; cyclically; it puts X into itself, X into itself, S5 into itself.
It is not identity in S;, for then it would be identity in S;. Since the only
possible canonical pairs of cubics are the five given above, the Galois group
must interchange them.

The collineation of order 5 just described exists for any p, but the fact that
the collineation and its powers are the only collineations of X which put S;
into itself depends on our knowledge of the particular space with p = 7.
We note that we cannot expect to find any simple short procedure to determine
a transformation of X into itself which puts an arbitrary S; with an irreducible
f(z) into the particular one we have been studying. If it can be done at all,
it can be done in only five ways, and doing it requires essentially the finding
of a canonical pair of cubics.

We proceed to examine an arbitrary S; which has no point on V and no
Z-line. In 8; we select an arbitrary point P; and take for P,P.P; the plane
which osculates the cubic through P;. A coordinate system can be selected
so that the plane is k, 1, 0, 0, m, 0, I, k, 0, m. S; contains

P,=0,0,0a3,0as, 05,0, 0r, 05, Gy, 0.
For any point P in S; the B’s are
B, = k' 4 askn — adn + agmn + asasn’,
By = agkn — I — azdn + agmn + asasn’,
Bs = km — agln — (as0r — asae)n’,
By = lm + aden — (as00 — asas)n’,
Bs

The cone of the set W with vertex at P;is agBs — a4Bs = 0. Now transforma-
tion T'i; changes P, PyP; into itself leaving P; fixed, and in it ¢ can be chosen to
make a; = 0 if @y ¥ 0. This transformation moves P, along the conic C in
P,P,P; , so we may assume a4 = 0 if ay 5% 0. If a, = 0, the cone with vertex
at P, is By = Im — aagn’ = 0, which intersects P;P:P; in the two lines
l=0andm = 0. But since the plane osculates the cubic through P, , it must
be tangent to the cone, and hence the choice of P; and the plane brings with it
the result that ay in P, is zero. Since ay = 0, it follows that a4 = 0, for other-
wise B, = 0 and B; = 0 would be two cones with vertices at P;. Since
ay = 0 and as # 0, Ty7 can be selected to reduce ay to zero.

We now solve B; = 0 for m in terms of k, I, n; we use this value of m in
B; = 0 to solve for [ in terms of k¥ and n; we use this value of [ to get m in
terms of k£ and n; and we use the values of [ and m in one of B = 0, B, = 0,
B; = 0. We obtain the equation

K+ ak'n + 8K’ + vk’ + dkn' + en® = 0,

Il

m® + asmn + kl + adn + asln — (asae — aras)n’.
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where
2
a = 2as, B = 2asa5 + as, v = 2a305as + 4030405 ,

2 2 3 2 3 2 3 2
8 = azas + 403040608 + 304 — Q40505 , & = 030408 + G406 — 03040506 .

The polynomial f(z) = 2° + az* + B* + ya® + 6z + ¢ is irreducible. The
possible Si’s are those such that the a’s of P, will give o, 8,7, 8, ¢ of an f(x)
which is irreducible.

We note that multiplication of the coordinates of P, by t 0 in GF(p)
changes f(x) = 0 to the equation whose roots are ¢ times those of f(z) = 0.
This would allow us to restrict attention to P,’s with an arbitrary nonzero
coordinate equal to 1, or to one f(z) of the set obtained from one by multiply-
ing its roots by ¢ £ 0. Making use of a change of the unit point in X we can
do both of these things. The change of coordinates in X carried out by the
diagonal matrix with 1, d, 1/d, d*, 1/d" down the main diagonal does not
change the coordinates of Py , P, , P; but does change f(z) = 0 to the equation
whose roots are d times its roots.

We may therefore look for possible Sy’s by separating them into classes:
(1) those with a; = 0, and (2) those with a; = 1.

(1) If a3 = 0, theny = O and 8 — 22" = 0. By taking account of the fact
that changing the unit point in X and changing the coordinates of P, by
multiplication by ¢ £ 0 do not change S;, it will be found that there are 14
distinet Sy’s for which a; = 0.

(2) When a3 £ 0, it may be made 1, and at the same time & may be made
1 if it is not zero, or if @ = 0, 8 may be made 1 if it is a square, or a particular
not-square if it is not a square. If a; = 1, o determines as ; then 8 determines
as , and y determines a,a6. With as, a5, and asae determined, § and ¢ give
two linear congruences to determine a, and as. These determine a4 and as
uniquely when they are independent, and when they are not, the value of
a,as determines a4 and ag. There are 66 Sy’s so obtained.”

The final step in the solution of the problem is now simple. In any three-
space in S; which has no point on V and no Z-line, an arbitrary point P; may
be selected and then a coordinate system in X so that

pP,=100000010,0,

the osculating plane of the cubie through P, ,is k, [, 0,0, m, 0, I, k, 0, m, and
Py=0,0,as, 04,05, 06,0, 03, 8 ,0. There are 80 sets of a3, - - - , ag such
that f(x) is irreducible and no two of the f(z)’s can be obtained one from the

23 These results are obtained by examining a list of irreducible quintic polynomials;
actually only 560 of the total 3360 need be considered. The list would require a lot of
space; the preparation of a list to check the above statements is a long process. In
Irreducible quintic congruences, Thesis, University of Illinois, Urbana, 1952, Dr. C. B.
Hanneken gives a straightforward method of determining them. His contribution is a
direct and relatively simple way to find one of each set of conjugate quintics under the
linear fractional group in GF(p).
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other by replacing x with fz. These 80 possibilities may all be realized by
proper choice of P; in space 54. The group of collineations of X which
transform space 54 into itself distributes the 400 points into 80 sets of con-
jugates. Two Py’s selected from two different sets give different f(x)’s since
f(z) determines P, uniquely.

7. Removal of dependence on the value of p

Some of the argument of the preceding pages depended on p being 7, but
most of it did not. The final result is independent of the value of p, and we
now divest the argument of dependence on p.

In the treatment of lines, planes, and the first 53 (4 4) three-spaces any
dependence on p = 7 comes from the selection of particular polynomials hav-
ing certain required properties, generally an irreducible quadratic, or cubic, or
quartic. The existence of such polynomials does not depend on p. We con-
fine our attention to space 54, i.e., to S; with no point on V and no =-line.
The locus J in X exists, the four-parameter set W of quadrics in S; exists, no
quadric in the set W has more than one vertex, and no two cones in the set
W have the same vertex. S; contains p° + 1 nonintersecting rational cubiec
curves. The Galois group T of GF(p°) relative to GF(p) transforms X into
X, Vinto V, and S; into S;. Though the final result is the same for all p,
there are different geometric situations for different types of the prime.

When p = 5¢ + 1, both p 4+ 1 and p* + 1 are congruent to 2, mod 5.
Hence, T must transform two cubics, K; and K, , each into itself, and on each
of the invariant cubics it leaves two points fixed. Let the fixed points in
Ss be P; and P, on K, and P, and P; on K,. T must then leave fixed the
four points, on J, in X, which give cones with vertices at these points, and also
T must leave fixed the point A, in X, not on J, which gives the nondegenerate
ruled quadric @ on which K; and K, lie. Having these special elements in
X and 8;, it is comparatively easy by the methods that have been used to
show that a coordinate system can be selected so that S; is

k,1,0,n, m,rn, 1, k, 0, m,

where 7 is not a fifth power, mod p, but is otherwise arbitrary.

The situation is quite different from the case where p = 7 and there are no
invariant cubics, no fixed cones, no fixed nondegenerate ruled quadric. When
p = 5t + 1, the point A, is the intersection of the fixed planes o; and o3 de-
termined by the cubics K; and K.. In each of the planes ¢; and o2 the four
lines on A; which determine the rulings of @ through the vertices of the four
fixed cones reduce to two. The point A, is outside both conics C; and C, in
the planes o; and o2 .

When p = 5¢ — 1, then p + 1 is divisible by 5, p* + 1 is congruent to 2,
mod 5. Hence, in this case there are two fixed cubics, but the cubics have no
fixed points. The fixed cubics determine the planes o; and o2 in X and a
fixed quadric @ of the set W. The intersection A, of planes ¢; and o is inside
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both conics C; and C; in the fixed planes. The polars of A, with respect to
conics Cy and C; are fixed, under T', and they determine two fixed lines in S; .

When p = 5t & 2, then there is no cubic in S; left fixed by T, and hence
there are no fixed points. The number of quadrics in W is congruent to 1,
mod 5, and hence there is a fixed quadric @'. Neither @' nor the point 4’
in X which determines it came forward to help in characterizing space 54 for
p = 7. @ isnondegenerate and has no rulings; the number of points on @’ is
p’ + 1, one on each cubic.

Our first step in identifying the space 54, with p = 7, was to show that an S;
containing a quadric in the set W on which the two cubics were properly
related to each other could be put in the canonical form in which 54 appears.
When p = 5t + 1, the group T picks out a quadric with two cubies on it and
gives all the necessary information to determine a canonical form. With
p = 7 we started with a configuration we could not be sure was in every S;,
but in this case there is no uncertainty.

Let A, be the point in X which determines the nondegenerate ruled quadric
Q left fixed by T'.* On A, are fixed planes ¢; and o, containing fixed conics
Cyand Cy. On C, are fixed points A; and As which determine in S; fixed
cones with vertices at P, and P; respectively; P, and P; are points of the
cubic K;. On C, are fixed points A; and A; which determine cones with
vertices at P, and P; on Ko .

The lines P;P; and P3P, are rulings of @, they are rulings of the cones with
vertices on K; at P, and P, and they are the lines tangent to K; at P, and
P;. Similarly, lines P,P; and P,P, are rulings of @, they are rulings of the
cones with vertices at P; and P, on K., and they are tangents to K, at P,
and P, .

The plane P,P.P; osculates K, at Py, since the plane is tangent to K, at
P; and has no other point on K, ; it is tangent to K; at P,. The cone with
vertex at P; is tangent to P,P.P; along P.P;. Hence, the points P;, Py, P;
have the proper relations so that the plane takes the form

k,1,0,0,m, 0,1 k, 0, m.

It is necessary only to determine coordinates of P, , which is located by rulings
of Q through P; and P;. We still have at our disposal the coordinates of one
point on C; and of one point on C». These can be selected so that P, =
0,0,0,1,0, a6, 0,0, 0, 0, where f(z) = 2* + ai is irreducible, i.e., where as
is not a fifth power. A change of the unit point will change f(z) into 2° +
d’a} , which says that without changing the choice of P; the constant term in
f(x) can be made to take any value in one coset of the nonzero numbers in
GF(p) with respect to the subgroup of fifth powers. The points Py, P»,

24 In the earlier argument we used primed letters, 4/, @', P’, etc. to denote points, etec.
until we found that accents could be dropped and the letters have their usual meanings.
As soon as things are named, it will be seen that thev are named properly, so we dispense
with accents here.



METABELIAN GROUPS WITH FIVE GENERATORS 717

P;, P, enter indistinguishably, i.e., any one of them can be taken for P; in the
above determination of coordinates of P,. By changing P; the constant
term in f(x) may be made any number in GF(p) which is not a fifth power.
Therefore, when p = 5t + 1 and S; has no point on V and no Z-line, a co-
ordinate system can be selected so that S; is k, I, 0, n, m, rn, I, k, 0, m, where r 1s
an arbitrary number not a fifth power in GF(p).

In the foregoing consideration of S; for p = 5¢ 4 1, attention was directed
to the value of p at only two places: (1) p + 1 and p* + 1 were both con-
gruent to 2, mod 5, which ensured two cubics fixed under T' and two fixed
points on each cubic; and (2) p — 1 = 0, mod 5, which permits the existence
of the polynomial z° + @i, irreducible in GF(p). For other primes we do
not have the convenient P; , Py, P;, P, to work with, and neither can we get
the simple canonical form.

We can retain the argument and get a canonical form in the following
manner. Forp = 5t — 1, p* = 1, mod 5, sothatp +1and(p) + 1 are
both congruent to 2, mod 5. For p = 5t &= 2, p* + 1 and (p*)’ + 1 are both
congruent to 2, mod 5. Thus, if we immerse X, S, and S; in spaces X, 5,
and S; over GF(p ) and GF(p*) respectively in the two cases, we recover the
two fixed cubics and the two fixed points on each; f(z) is still irreducible in
the extended fields. The argument goes unchanged to give a canonical form
for S; , but now ag is a number in GF(p®) or GF(p").

A canonical form for S; determines a canonical form for S, and vice versa.
For p’s not of the form 5¢ + 1 we can not use the elements fixed under T' so
directly to get a canonical form that will be useful for the groups. However,
knowing that one S; which gives an irreducible quintic is related to V in the
same way as any other, we may take any such S; for the canonical form.

To determine that two Sy’s are conjugate under a collineation of X, it is
necessary only to see that the polynomials f(z) for both are irreducible. To
determine the collineation is a direct and reasonably simple problem when

= Bt 4 1; it is not so simple when p = 5¢ &= 2. Even at this late stage,
when the essentials of the problem and its solution are quite clear, the char-
acterization of Sz by means of the geometric configuration we did use or by any
other looks fortuitous. If we incline to think that now the somewhat tenta-
tive method used for p = 7 can be replaced by the direct method used for

= 5t 4+ 1, we are given pause when we recognize that the work must be
arrled out in spaces over GF(p™).
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