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MORE MIXED TSIRELSON SPACES THAT ARE NOT
ISOMORPHIC TO THEIR MODIFIED VERSIONS

DENNY H. LEUNG AND WEE-KEE TANG

ABSTRACT. The class of mixed Tsirelson spaces is an important
source of examples in the recent development of the structure
theory of Banach spaces. The related class of modified mixed
Tsirelson spaces has also been well studied. In the present pa-
per, we investigate the problem of comparing isomorphically the

mixed Tsirelson space T[(Sn,0n)ne=1] and its modified version

Tr|[(Sn,0n)n=1]. It is shown that these spaces are not isomor-
phic for a large class of parameters (6,,).

1. Introduction

In 1974, Tsirelson [19] settled a fundamental problem in the structure the-
ory of Banach spaces when he gave a surprisingly simple construction of a Ba-
nach space that does not contain any isomorphic copy of ¢y or /7, 1 <p < 0.
Figiel and Johnson [7] provided an analytic description, based on iteration,
of the norm of the dual of Tsirelson’s original space. Subsequently, other ex-
amples of spaces were constructed with norms described iteratively, notable
among them were Tzafriri’s spaces [20] and Schlumprecht’s space [18]. Gow-
ers’ and Maurey’s solution to the unconditional basic sequence problem [8]
is a variation based on the same theme. It has emerged in recent years that
far from being isolated examples, Tsirelson’s space and its variants form an
important class of Banach spaces. Argyros and Deliyanni [2] were the first
to provide a general framework for such spaces by defining the class of mixed
Tsirelson spaces. Among the earliest variants of Tsirelson’s space was its mod-
ified version introduced by Johnson [9]. Casazza and Odell [6] showed that
Tsirelson’s space is isomorphic to its modified version. This isomorphism was
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18 D. H. LEUNG AND W.-K. TANG

exploited to study the structure of the space. The modification can be ex-
tended directly to the class of mixed Tsirelson spaces, forming the class of
modified mixed Tsirelson spaces. It is thus of natural interest to determine if
a mixed Tsirelson space is isomorphic to its modified version. This question
has been considered by various authors, e.g., [3, 12], who provided answers
in what may be considered “extremal” cases. In the present paper, we show
that for a large class of parameters, a mixed Tsirelson space and its modified
version are not isomorphic.

We shall be concerned exclusively with mixed Tsirelson spaces of the form
T[(Sn,0,)5,] or T[(Sn,,0;)%_,] and their modified versions. We now recall
the definitions of these spaces and the various notions involved. Denote by
N the set of natural numbers. For any infinite subset M of N, let [M] and
[M]<°° be the set of all infinite and finite subsets of M, respectively. These
are subspaces of the power set of N, which is identified with 2Y and endowed
with the topology of pointwise convergence. If I and J are nonempty finite
subsets of N, we write I < J to mean max/ < min.J. We also allow that
) <I and I <@. For a singleton {n}, {n} < J is abbreviated to n < J.
The general Schreier families S,, o < wiy, were introduced by Alspach and
Argyros [1]. We shall restrict ourselves to finite parameters. Let Sy consist of
all singleton subsets of N together with the empty set. Inductively, if n € N,
let S,, consist of all sets of the form Ule G;, where G, € S,_1, G1 < --- <Gy,
and k <minG;. The Schreier families are hereditary: G € S,, whenever G C
F and F € S,,; spreading: for all strictly increasing sequences (mi)f’:1 and
(n)k_,, (n)k, €S, if (mi)k, €S, and m; < n; for all 4; and compact as
subspaces of [N]<*°. A sequence (E;)¥_, in [N]<* is said to be S,,-admissible
if By <. < Ey and {minE;}f | €S,,. It is S,-allowable if the E;’s are
pairwise disjoint, and {min E;}¥_, € S,,.

Denote by cqp the space of all finitely supported real sequences, whose unit
vector basis will be denoted by (ey). For a finite subset E of N and x € ¢,
let Ex be the coordinate-wise product of x with the characteristic function

of E. The sup norm and the /!-norm on cgg are denoted by || - ||, and || - |1,
respectively. Given a null sequence (6,,)22 ; in (0, 1), define sequences of norms
Il - [|m and || - lm on coo as follows. Let ||z]lo = [|=]lo = ||=¢, and

(1) ]l +1 =ma><{||$mvsup%supZIIEiwllm}a

i=1

where the last sup is taken over all S,-admissible sequences (E;)i_;. The
norm [|z||m is defined as in (1) except that the last sup is taken over all
Sp-allowable sequences (E;)7_;. Since these norms are all dominated by the
¢t-norm, ||z|| = limy, ||z, and ||| = limy, |||, exist and are norms on cqp.
The mized Tsirelson space T[(Sp,0n,)52 ] and the modified mized Tsirelson
space Tpr[(Sn,0,)52 ] are the completions of c¢gg with respect to the norms

n=
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|1 and ||- ||, respectively. From equation (1), we can deduce that these norms
satisfy the implicit equations

(2) |x||=max{||x|CO,supensupZnEm}
n

i=1

and

3) | = maX{llwlcO,suMn sup Y IIIEiwII}
n i=1

where the innermost suprema are taken over all S,,-admissible, respectively,
Sp-allowable sequences (E;)7_;. The mixed Tsirelson space T[(Sy,,0;)% ;]
and modified mixed Tsirelson space Tas[(Sn,,0;)%_,] are defined similarly.
When considering the spaces T[(Sy, 0,)52 1] and Tar[(Sn,0n)22 ], we may
assume without loss of generality that (6,,) is nonincreasing and that 6,4, >

0m0y,. Such sequences are said to be regular. It is known that [17] lim on"

sup 971/ " for a regular sequence (6,,). Let 6 =lim,, 9711/ " and ¢, =0, /0". The
main result of the paper is the following theorem.

THEOREM 1. If0<c=infp, <supp, =d <1, then T[(S,0,)22 ] is not
isomorphic to Tar[(Sn,0n)5%4].

For standard Banach space terminology and notation, we refer to [15]. Two
Banach spaces X and Y are said to be isomorphic if they are linearly home-
omorphic. A linear homeomorphism from X into Y is called an embedding.
We say that X embeds into Y if such an embedding exists. X and Y are to-
tally incomparable if no infinite dimensional subspace of one embeds into the
other. A sequence (z,) in X is said to dominate a sequence (y,) in Y if there
is a finite constant K such that || > anyn| < K> anzys]| for all (a,) € coo-
Two sequences are equivalent if they dominate each other.

2. Brief survey of known results

The aim of the present paper is to compare isomorphically the spaces
T[(Sn,0,)2 1] and Tas[(Sn,0,)% ;] (and also the spaces T[(S,,,0:)% ] and
Tar[(Sn,»0:)%_1]). Let us recall some known results in this direction. Casazza
and Odell [6] showed that the Tsirelson space T'[S1,6)] is isomorphic to the
modified Tsirelson space Tys[S1,6], with no specific isomorphism constant
given in their proof. In [5], Bellenot proved that they are §~!-isomorphic.
Recently, Manoussakis [12] showed that the spaces T[S, 0] and T[Sy, 0] are

3-isomorphic for all n € N and all § € (0,1). He also stated without proof in
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[11, Section 4] that T[(S,,,0;)%_,] is isomorphic to Tas[(Sn,,0:)F_;]. A proof
of a nominally more general fact will be given below.

Argyros et al. showed that if (6,) is regular and lim, 91/ " =1, then
T[(Sn,0,)5%1] contains copies of £°°(n)’s uniformly and hereditarily [3, The-
orem 1.6]. As a result, they were able to conclude that T'[(S,,0,)22 ] and
Tr[(Sn,0,)52 ] are totally incomparable.

In [13], the authors introduced the condition

m-+n

(1) lim lim sup > 0.
m n n
Condition (1) is weaker than the condition lim,, 9./™ = 1. More precisely, if
lim,, Gl/n =1, then
0
lim lim sup mAn g,

Indeed, if there exist § <1, m € N and N € N such that 9”(;“” < 4 for all

n> N, then Oppqn < 60y for all k € N. Thus, e,ggfjv < 5m+N9km+N_

Taking k — oo, we have lim, 9,1/n < 6™ < 1. It can be shown that the
converse is false even for regular sequences.

If (0,,) satisfies (1), it follows from [14, Proposition 9] that there exists € > 0
such that for all V € [N] and all k € N, there exists a sequence of pairwise
disjoint vectors (y;)5_; C span{ey: k € V} such that | 2?21 yill <2+1/¢
and |ly;|| > 1 for all j. In other words, £>°(n)’s uniformly disjointly embeds
into the subspace of T[(Sy,0,)%2 ] generated by (er)rev. In particular, the
norms || - || and || - || are not equivalent on span{ey : k € V'}. This together
with the proposition below imply that T[(Sy,0,)52,] is not isomorphic to
T [(Sn,0n)nzy -

PROPOSITION 2. If T[(Sy,0n)22 ] embeds into Tar[(Sn, 0n)02,], then there
exists V € [N] such that || - || is equivalent to || - || on the subspace span{ey :
keV}.

Proof. Let J: T[(Sn,01)521] — Tar[(Sns0n)22,] be an embedding. Then
(Jek) is a weakly null sequence. By the Bessaga—Pelczynski selection principle
(see, e.g., [15, Proposition 1.a.12]), there is a subsequence (Jeg;) of (Jex)
such that (Jey;) is equivalent to a seminormalized block sequence (u;) in
Tar[(Sn,0,)521]. Let mj =minsuppu;. By taking a subsequence if necessary,
we may assume that

max{k;,m;} <min{k;i1,m;j41}.

As a result, the sequences (e,,,) and (eg;) are equivalent in T[(Sy,0n)5%].
On the other hand, in Th[(Sn,0n)521], (ém,) is dominated by (u;), which is
equivalent to (J ekj). Hence, there exist finite constants A and A such that
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for all (a;) € coo,
[Sen <A See]
< /\’HZajemj
S

Thus, || - || is equivalent to || - || on the subspace span{(e,,,)}. O

3. Essentially finitely generated spaces

The fact that T[(S,,,0;)% ;] is isomorphic to Ths[(Sn,,0:)5_,] was stated
by Manoussakis in [11]. We present a nominally more general result here. Let
us note that Lopez—Abad and Manoussakis [10] has undertaken a thorough
study of mixed Tsirelson spaces generated by finitely many terms.

We shall compute the norm of an element in T[(S,,0,)22,], respectively,
Tr[(Sn,0,)52 ], with the help of norming trees. This is derived from the
implicit description of the norms given in equations (2) and (3) and have been
used in [5, 14, 16]. An ((S,))-admissible tree (respectively, allowable tree) is
a finite collection of elements (E™), 0 <m <r, 1 <i<k(m), in [N]<>° with
the following properties.

(i) k(0)=1,
(ii) every E™*! is a subset of some B,
(iit) for each j and m, the collection {E*!: EM+! C E'} is Sy-admissible
(Sp-allowable) for some n.

The set EY is called the root of the tree. The elements E™ are called
nodes of the tree. Given a node EI™, h(E™)=m is called the height of the
node E™. The height of a tree 7 is defined by H(7T) =max{h(F): E€T}.
It E* C EY" and n > m, we say that E}' is a descendant of EJ" and EJ" is
an ancestor of E!'. If in the above notation, n =m + 1, then E} is said to
be an immediate successor of E", and E7" the immediate predecessor of EJ'.
Nodes with no descendants are called terminal nodes or leaves of the tree. We
denote the set of all leaves of a tree 7 by £(7). Nodes that attain maximal
height are called base nodes.

Assign tags to the individual nodes inductively as follows. Let t(EY) =1.
If ¢(E™) has been defined and the collection (E]’-"H) of all immediate suc-
cessors of EI™ forms an Si-admissible (Si-allowable) collection, then define
t(Ej’-"H) = 0,t(E) for all immediate successors EJmH of E™. If x € ¢op and
7 is an admissible (allowable) tree, let Ta = > ¢(E)||Ex||., where the sum is
taken over all leaves in 7. It follows from the implicit description of the norm
in T[(Sn,0n)22,] (respectively, Tar[(Sn,0n)22,]) that ||z|| = max Tz (respec-
tively, ||z|| = max 7 z), with the maximum taken over the set of all admissible

m

(respectively, allowable) trees. Given a node E € 7 with tag t(E) =[],", 0n,,



22 D. H. LEUNG AND W.-K. TANG

define o7 (E) =", n;. When there is no confusion, we write o(E) instead
of or (E).

To simplify notation, we shall henceforth denote the spaces T[(S,,0,)52,]
and Thar[(Sn,0,)52 1] by X and Xy, respectively. The norms on these spaces
will be denoted by || - || and || - || x,,, respectively.

For a fixed N € N, an Sy-admissible (-allowable) tree is a tree satisfying
conditions (i)—(ii) above and
(iii") For each j and m, the collection {E™ ™! : Em*! C B} is Sy-admissible

(-allowable).

It is well known that an S,,-admissible collection of S,-admissible sets is
Sm+n-admissible. The corresponding fact for the “allowable” case comes from
[3] (see also [12, Lemma 2.1]).

LEMMA 3. Given an (S,)%2 ;1 -admissible (-allowable) tree T of finite height,
there exists an Sy-admissible (-allowable) tree T' with the same root such that
L(T)=L(T"), and o7 (E) = o7/ (E) for all E € L(T).

Proof. The proof is by induction on the height H(7) of 7. If H(7T) =0,
then there is nothing to prove. Assume the statement holds if H(7) < N for
some N. Let 7 be an (S,,)52 ; -admissible (-allowable) tree with H(7) = N +1.
Let &1 be the collection of all nodes of 7 at height 1. There exists ng such
that & is S,,-admissible (-allowable). It is easy to see that there is an S;-
admissible (-allowable) tree 77 having the same root as 7 and of height ng
such that £(77) = &; and that every F € & is a leaf of 77 at height ng. If
Ecé&, then Tg={F €T : FCFE}isan (5,)5-admissible (-allowable) tree
with H(7g) < N. By the inductive hypothesis, for each FE € &;, there exists
an Si-admissible (-allowable) tree T4 with root E such that £L(7g) = L(7})
and o, (F') = o7, (F) for all F' € L(Tg).

Consider 7" = Ty UUgcg, 7. Then 7' is an S;-admissible (-allowable) tree
with the same root as 7. If F € L(7), then F' C E for some E € &; (since the
root cannot be a leaf in this case because H(7)> N +1>1). Now o7 (F) =
o7, (F) +ng and F € L(Tg). Hence, F' € L(T) and o7/ (F) = o7, (F) +ng =
o1 (F) + no = o7 (F). Conversely, if F'e€ L(T'), then F € L(7},) for some
Ec&. Thus, F € L(Tg), and hence F € L(T). O

LEMMA 4. Let T be an (S,)52-admissible (-allowable) tree. If € is a
collection of pairwise disjoint nodes of T such that o(E) < m for all E € £,
then & is Sy, -admissible (allowable).

Proof. The proof is by induction on m. The case m =0 is clear. Now
suppose the lemma holds for all &k <m, m > 1. If the root of 7 belongs
to &, then it is the only node in £ and the lemma clearly holds. Otherwise,
let k£ € N be such that the nodes G < --- < G4 in 7 with height 1 is S-
admissible (-allowable). Since each E € & is either equal to or is a descendant
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of some G;, m > o(E) > o(G;) =k. If m=k, then £ C {G4,...,G,}, and
thus is S,,-admissible (-allowable). If k¥ < m, then for each i, the subtree
7; with root G; is an admissible (-allowable) tree such that oz, (E) <m —k
for all E € £€N7;. By induction, E € EN7T; is S;,—k-admissible (-allowable).
Therefore, £ is an Sg-admissible (-allowable) collection of S,,_-admissible
(-allowable) sets, and hence an S,,,-admissible (-allowable) set. O

Given k € N, let [k] denote the least integer greater than or equal to k.

LEMMA 5. Let T be an Si-admissible (-allowable) tree. For any N € N,
there exists an Sy -admissible (-allowable) tree T' with the same Toot such that
L(T)=L(T") and o7/ (E) = NJor(E)/N] for all E € L(T).

Proof. Note that the statement holds if H(7) < N by Lemma 4. Now
suppose that the statement holds if H(7) < kN for some k € N. Let 7
be an Sj-admissible (-allowable) tree with H(7) < (k4 1)N. Denote by 7o
the tree consisting of all nodes in 7 with height < N. For each E € 7T at
height N, H(7g) < kN, where 7g consists of all nodes F' in 7 such that
F C E. By induction, for each F € 7 at height N, there exists an Sy-
admissible (-allowable) tree 7} with root E such that £(7g) = £(7}) and
o7, (F) = Nfog, (F)/N] for all F'€ L(Tg). At the same time, there exists an
Sn-admissible (-allowable) tree 7 with the same root as 7y such that £(7]) =
L(Ty) and ogy(F) = Nog,(F)/NT] for all F € L(Ty). Let T' =175 U U7},
where the second union is taken over all nodes E € T at height N. Then 7’
is an Sy-admissible (-allowable) tree with the same root as 7.

If E€ L£(T)and h(F) < N, then E € L(7) = L(7) and has no descendants
in 7'. Hence, E € L(T'). Moreover, or/(E) = o7;(E) = N[og,(E)/N]| =
Nlor(E)/N]. If E€ L(T) and h(E) > N, then E C F for some F € T at
height N. Hence, E € L(Tp) = L(7}) CL(T’) and

OT/(E> =N+ o1}, (E) =N+ N[OTF(E)/N~|
- N{Wl — N[oz(E)/N].

Conversely, suppose that E € £(7'). Then either E € L£(7]) = L(7p) with
h(E) < N (taken in 7Tp) or else E € £(T}) for some F € T at height N. Thus,
E € L(Tr). In either case, E € L(T). O

Combining Lemmas 3 and 5, we obtain:

PROPOSITION 6. Let T be an (S,)22, -admissible (-allowable) tree T and
let N € N. Then there exists an Sy-admissible (-allowable) tree T' with
the same root such that L(T) = L(T') and o7/ (E) = N[or(E)/N] for all
EeL(T).

PROPOSITION 7. Let (0,,)22, be a regular sequence. Suppose that there
erists N € N such that 9]1\,/N =6 =sup 971/”, then the spaces X, Xp, Y, and Yy
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are pairwise isomorphic via the formal identity, where Y and Yy; denote the
spaces T[S1,0] and Ty[Sq,0], respectively.

Proof. It is known that Y and Y3, are isomorphic via the formal identity
[5, 6, 12]. We shall show that X, is isomorphic to Yy, via the formal identity.
The proof that X is isomorphic to Y via the formal identity is similar. Let x
be a finitely supported vector. There exists an (S,,)22;-allowable tree 7 such

that
I2llxy = Y HE)EZ,-
EeL(T)

By Proposition 6, there exists an Si-allowable tree 7’ with the same root such
that £(7)=L(7') and o7/ (E) = N[or(E)/N] forall E€ L(T). f E € L(T)
and t(E) = 0,, ---0,,, then
HE) < O™ ...0m = gmttng = gor(B)  g=Ngor (B)
Therefore,
lzlxu = Y HE)|Ez|q
Eel(T)
<N Y 0P Ex| ey <07V |@llyy,-
EeL(T")
Conversely, choose an S;-allowable tree 7" such that
Izlva = D HUE)Ezc,.
Eecc(T")

Since T" is also (S, )52 ;-allowable, there exists an Sy-allowable tree 7" such
that £(7") = L(T"") and or» (E) = N|og(E)/N] for all E € L(T"). Hence,
t(E) — 9()7//(E) S 9—N+07—///(E) . Thus,

— 1"’ E N

lellvy <67 >0 67" N | Balle, < lallx,,-
EeL(T")

The final inequality holds since 7" is also (S,,)52 ;-allowable and the tag of
EinT"is HfVT"'(E)/N. O

4. Main construction

The main aim of the present paper is to show that the spaces X and X,
are not isomorphic for a large class of regular sequences (6,). In view of
Proposition 2, it suffices to show that the norms || - || and || - | x,, are not
equivalent on span{ey : k € V'} for any V € [N]. Our strategy is to construct,
for any V' € [N], vectors x € span{ey, : k € V'} where the ratio ||z x,, /|||l can
be made arbitrarily large. The basic units of the construction are the re-
peated averages due to Argyros, Mercourakis, and Tsarpalias [4]. These are
then layered together, where each layer consists of repeated averages whose
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complexities go through a cycle. This variation within a layer is the main
feature that distinguishes the present construction from related previous con-
structions that are used in, e.g., [3, 14]. The reason for layered construction
of vectors is to dictate that the norming trees that approximately norm the
given vector must structurally resemble the vector itself. In the presence of
a condition such as (T), one may exploit the large ratio between 6,,,, and
0,0, to ensure that different layers behave differently. In the absence of such
a condition, one must find a way to “lock in” the behavior of the norming tree
on the given vector. Our idea is to make the vector cycle through different
complexities within each layer so that the norming tree is forced to follow
these ups and downs.

If x,y € span{(eg)}, we define = < y, respectively, x C y, to mean supp z <
suppy and suppz C suppy, respectively. We shall also say that £ C z if
E € [N]<* and E Csuppz. An Sp-repeated average is a vector ey for some
k €N. For any p € N, an S,-repeated average is a vector of the form % Zle T,
where z; < --- <z are repeated S,_;-repeated averages and k = minsupp z;.
Observe that any S,-repeated average « is a convex combination of {ey : k €
suppz} such that ||z]|o < (minsuppz)~! and suppz € S,.

Let (6,)22,; be a given regular decreasing sequence that satisfies the fol-
lowing;:

. . Omtn
(=) lim,, 6,, =0, where J,, = limsup,, =5**.

(1) There exists F : N— R with limnHOSF(n) =0 such that for all R,t €N
and any arithmetic progression (s;)%; in N,

0 )
max —1L < F(R)Y 2t
1<i<R 0, — 0,

; P ;

Recall from Section 2 that X and X,; are known to be nonisomorphic if
condition () holds. The condition (f) is imposed to make the construction
work. As we shall see, it is general enough to include many interesting cases.

From here on fix N € N and V € [N] arbitrarily. Choose sequences (px)~_,
and (Lg)Y_, in N, Ly > 2, that satisfy the following conditions:

) " .
(A) ’””9# < 2511\[2 ?il Op,p; f 0<M <N —2 and n>py (the vacuous

product ngl 0L,p, is taken to be 1),
(B) parss > Lipi if 0< M < N —2,
(C) F(Lars1) < i IL Orp, i 0< M < N —2.

Note that condition (A) may be realized because of (—) and condition (C)
by way of (). Given k€ N and 1 < M < N, define rp;(k) to be the integer

in {1,2,..., L} such that Lys|(k —rar(k)). We can construct sequences of

vectors x°,x!,...,x" with the following properties.

0

(o) x" is a subsequence of (ex)rev -
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(8) Say xM = (zM) and m; = minsuppa}’. Then there is a sequence (1" )

of integer intervals such that I,?/Hl ML U I = N and each

k+1 >
M+1 e xM+1

vector Ty, is of the form

2 =
Z a;y’,

M+1
_]Elk

where 0, .| (k)parsa Z]GIM+1 ajem; is an S, (k)p,,-Tepeated average.

Moreover, the sequence (a;)%2, is decreasing.

Jj=1
Each ka *1 is made up of components of diverse complexities. In order to

estimate its || - |- and | - || x,,- norms, we decompose x;' " into components of

pure forms in the following manner. The coefficients (a;) are as given in (/3).

NOTATION. Given 1 <r; <L;, 1< M <N —1, write

M M
o)t (rar) = Z a;z;".
jEI]ICVI+1
ryv(§)=rm
For 1 <s < M, define
LML M
k + (TS,...,T]V[): Z ajacj (T‘S,...,T‘M,:[).
jerM+t
ra(J) =rm
If 1<s< M, it is clear that xM+1 ZxM+1(rs,...,rM), where the sum is
taken over all possible values of Tsyeooy M-

Given a sequence u = (up,us,...) of linearly independent vectors, write
[y]u = (ax) if y= Zakuk~ For instance, ||[$]1<;M+1]xjw o = Eje[é”*l a; =

T_l To compute ||[zp' T ., [ler,1< s < M, calculate the £'-norms
mr1(R)paga” e 1

of each of the pure forms [x;" ™" (75,...,7a)]xs—1 and sum over all r,...,rp;.

The following simple lemma is useful for our computations. A subset I of
N is said to be L-skipped if |i — j| > L whenever i and j are distinct elements
of I.

LEMMA 8. If (a;) is a nonnegative decreasing sequence defined on an in-
terval J in N and I is an L-skipped set, then

Zai < %Zari—supai.

iel
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Moreover, if there exists r such that [={i€ J:i=r mod L}, then
1
I Zai —supa; < Zai.
iel
PrOPOSITION 9. If1<s< M < N and k €N, then

ﬁ(L;1 ey gl e el ﬁ(L;l )
s 0 rris (B)parsn | B T
Proof. The proof is by induction on M. When M = s,
lzp (s ran) -1 [l
=l M“(TM)]xM e

M+1 «M—1

JEI
rv(J)=rm

Z ajH[mj ]folHZl 97“_MPM Z aj-

jery+t jerM+t
ryv (J)=rm ryv (J)=rm

yat

Note that {j € IM*': rpr(§) = rar} is an Ly-skipped subset of the integer
interval [ ,iVI 1Tt follows from Lemma 8 that

Z Z a; +supa;

jel,iwfl €IM+1

ram(3)=rm

<(Ly +kHe !

a1 (k)par41”

Therefore, || [z T (rar)]xm—1 )0 <67 01 (Ly +k71).

= "rymt1(k)prvr TMPM

Suppose that the proposition holds for M — 1. Then

||[33],€M‘”'1(1"S7 vy ) ]xs—1 |

= Z ajle} (re,... o rar—1) o1l
jerM+t
rv (§)=rm
S gl (s i)l [l
jerM+t

ra(3)=rnm
M-1 a
-1 -1 -1 J
e D S
1=s jeIé\Pr1

ra(3)=rm

by the inductive hypothesis
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S

—1
-1 —1 — —
= 97‘1'1% <Ll +k ) 97‘MPM Z a;

jerM+t

<.
I
w

ruv (J)=rm

M—
H mpLL S hy. rMpm< Z a]—l-supaJ)

eIJVI+1
by Lemma 8
M-—1
< H N O S (Laf +k71)

TMPM a1 (R)parsa

M
= TM+1(7€ PM+1 H (L5 Lk )

The other inequality is proved similarly.

From this point onward, we shall only consider those k’s that satisfy

N
2 —1
(4) k> 42N H Loy,

i=1

It follows from the choice of k that for all 1 <s< M <N,

M M
(5) [T@ +e <2
Indeed, since L; ' + k=1 < (1+ 5 )L; " for all 4, we have
M 1\ M
—1 — -1
E(Li +ETh) < (1+ —42N> [[L

M M
<eVPI[Lit<2]]Lit
=8 i=s

Likewise, for all 1 <s< M < N,

(6) ﬁ(L—l E1) s ﬁL—l
1=8 t 5i:s n
COROLLARY 10. If 1<s< M < N and k satisfies (4), then
TN [ Y Wy
2~

1 1 —
07‘1171 L

0TM+1(’€)PM+1 HZ s
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COROLLARY 11. If k satisfies (4) and 1 < M < N, then

i e < 2H9L i
Proof. If M =1, then

lebller = llzbso e = 6k < 072

If M > 2, according to Corollary 10,

[l T S [ CCTPppY G vaey) Wy [

T15esTM—1

M-—1
1 E —1 —1
= 29 (K)pn H ariPiL’i
T1yeTM—1 =1

M

29[111[?1% H 0 1171 = 2H0L iPi’

We shall employ the same decomposition technique to estimate ||z || x,,
To simplify notation, let p(ras,...,ra) = ZiAiMpiTi if M <M.

PROPOSITION 12. If k satisfies (4), then
0 N-1
N 1
2k x5 = 9 Z 917(7“1 »»»»» TN-1 TN(k))HrN(k)pN H O, LP»

T15--,"N—1 =1

Proof. We first decompose x2 into a sum of pure forms, i.e

ka: Z J,‘}’gv(’l“l,...,’l“]v_l).

Now given 71,...,7N—1, SUPPZL (1, -, TN-1) € Sp(ry,...rx_1,rx (k). Hence,
2 (1 rN D Xar = O v e TR (P15 1)
0 N-1
p(r1,..,rN—1,7Nn(K)) p—1 g1 L7 1
2 rn(k)pNn TiPs
i=1

by Corollary 11. Since k > ]_[Z 1 'L by (4), S € 81 whenever S C N satisfies
kE<min S and |S| < Hi:l ;- In particular,

{suppal (r1,...,ry_1): 1<r;<L;, 1<i<N—1}

29
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is Sy-allowable. Thus,

||x{ev||XM 291 Z ||$II€V(’I‘1,...,TN_1)HXM
T1yeens TN_1
01
= 2 Z Op(rs,vecirn 1 (1) k‘)pN H enpz

as required. O

The following estimate is easily obtainable from Proposition 12.

COROLLARY 13. If0< M < N —1 and k satisfies (4), then

N—-1
01
(7) kaN”XM > 7 Z 9]0(7“M+1 ----- TN-1 TN(k))erN(k)pN H 9 LpL

TMA41,-TN—1 i=M+1

Proof. By Proposition 12 and the regularity of (6,,),

N-1
0
N 1
”xk HXM 2 9 Z GP(TLW’TN k))omv(k)p}v H 0. lpl
T1yeeny TN—1 =1
9 N-1
1 1
2 D) Z ep(rz,mmv k))enplar,\,(/ﬁ)pN H grlpl
T1yeeny TN—1 =1
9 N-1
1 —1 1 _
= ? Z ep("‘2a"'7TN(k))97‘N(k)pN H arzsz
T2,.00 TN—-1 =2
Repeat the argument M times to obtain the required result. O

The main bulk of the calculations occur in estimating the X-norm of x,iv .
The next lemma is the mechanism behind one of the crucial estimates (Propo-
sition 16). If z € coo and p > 0, let [|z([s, =supges, |[Ex| -

LEMMA 14. Let p,g >0, and P = (my,) € [N] be given. Assume that G1 <
Go < --- is a sequence in [P]<°° such that Zm,zeG,¢ anem, 5 an Sy-repeated
average for all i and that there exists Q = (my, ) € [P] so that for each k, there
is a vector zy satisfying:

(1) sSupp zg g [mnkamnk+l);

(2) llzller <1,

(3) 2oy 24lls, <6 for all j €N,
Set y; = ZmnkeGi an,, 25 Then

() | 22;1 Yills,,, <6 forall j €N,
(i) yills,sq_r <6/m if ¢>1, where m =minG;.
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Proof. We first establish (i). The proof is by induction on ¢. The case
q =0 is trivial. Assume the result holds for some ¢, we shall prove it for
g+1. If Gy <Gg <--- is a sequence in [P]<* such that ) _, anem, is
an Sg41-repeated average for all 4, then each of these S, 1-repeated averages
can be written as #m ZteHi > bnem,,, where my,;y = minG; = |H;|,
F, <Fy ift<t and Zm"eFt bnemn is an Sg-repeated average for all ¢t. Let

yi = ZmnkeGi Gn, 2. Then y; = n(l) ZteH vy, where vy = Zmnk EF, bny, 2k
Given a set J € Sppqt1, write J=j_; i, J1 <+ < Js, J; € Spig, s <min J.

Note that by induction, ||J;(3 ;¢ g, vi)|ler <6 for all I and . Hence, ||yl <
—6_ Let ip be the smallest number such that J Nsuppz, # @ for some

M (i)

my, € H;,. For any 7,

mnp€F}

7 i0+2
J(zyz) Sl S Wl
i=1 1 =10 I 1=ip+3
<3+Z >
1=10+3 n(z
<3+ Z 12 since m. >2m
>~ — n(i+1) = n(i) s
— M (i043) (i+1) (1)
12
—3y—
Mp(ig+3)

But since min J < my(io41), 8/Mn(io+3) < 1/4. Therefore,

(50)

To prove (ii), note that an Sj-repeated average >, .
ten as m~(ug + -+ + uy,), where uy < --- < u,, are S;_j-repeated aver-
ages. If uj =37  pbpem,, then y; = m™'(wi + -+ + wpy,), where w; =
Zmnk cF, b, 2. By (i), if J € Spyq—1, then || J (w1 +--- 4+ wp,)||er <6. Hence,
[yiller < 6/m. O

12
3+ — =6.
<3+ 1

01

Gn€m, May be writ-

Assume that 0 < M < M 4+ s < N and that rq,...,ry_1 are given. For

notational convenience, let 3" ™ (rasy1,. ., Parss—1) = sz+s if s = 1. Taking
m; = minsupp xM define

M
Up +S(7”M+1, ce ,’/‘]y[.;,_s_l) = Z bjemj
if 2 (a1, T s—1) = ijxj-‘/[. (The vector is also labeled as u,' ™ if

s=1.)
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PROPOSITION 15. Let ry =7y (k). Then
N

6 _
HUIJVV(TMJA"'"rN*l)”Sp(rMJrl ----- rN)—1 < E H 97“12101
i=M+1

Proof. We shall apply Lemma 14 repeatedly to show that
M+s

6
(®) IT O™ s s DSy s <5
1=M+1
if rars(t) =7ar4s and
M+s
H 07’71)7 Zuf TM+17 TM+S—1)||5;,(7~M+1 ,,,,, 7~M+S)§6
1=M+4+1

for any sum over a finite set of t’s satisfying rys45(t) = rar4s. Suppose that

s=1. Set p=0and g=7p41pp+1- Let P = (m,), where m,, = minsupp 2

and @ = UrM+1(t):rM+1{m” caMC xéwﬂ}. If rare1(t) = raryr, let Gy =

suppuMH. Also, let z; = ey, if my, € Q. Note that if ra1(t) = rarg1,
J
0TM+1P1%+IU£W+1 is an S;-repeated average. By Lemma 14,
6 6
||‘9TM+1PM+1U1]£V[+1| Sy 1 1> <-
M+1PM+1 minG; ~ t
if r t)y=r and ||>°60 uMHY| <6 for any sum over
M+1\t) = TM+1 TMA41PM+1 Srpriipagr = y

a finite set of ¢’s such that ra;11(¢) =rpry1-
Inductively, suppose that the claim is true for some s < N — M. Set

P=p(rm+1s--s"Mm+s) and ¢ =7rarysp1pmysi1- Let P = (my), where m,, =
min supp xM“ and
M+
Q= U {mn s 2y Calt™ e (n) = rarss )

TM4s+1(E)=TMmpst1

If rasyse1(t) = Targss1, set Gy = {m, : a5 C oMt Also let z; =

M .
Hi:—;\_Js—}-l Orip +5(7’M+1, s TMts—1) if my; € Q. Now
M+s
12jller = H Or,p, - u rj\L/H_S(TMJrlv oy TM4s—1)
i=M+1 0
M+s
= H 0, Tipi nJ (TM+1a .. '7TM+S*1)]XM||€1 <1
1=M+1

by Corollary 10. (Note the fact that L; > 2.) By the inductive hypoth-
esis, ||sz||5p(7\M+1 YYYYY rae <6 for any sum over a finite set of j’s satis-

fying rarys(n;) = ra4s. Finally, observe that if rarysi1(t) = ra4s41 and
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M+s+1 __ M+s .
Uy = Zmnth Cntty, %, then Opy 0 4 ipryoiy Zmnth Cném, 1S an Sg-

repeated average. Thus, it follows from Lemma 14 that

M+s+1

M+s+1
H 07’ipi§ Uy (TM+17""TNI+S)
i=M+1

<6

SP(TM+1 ««««« TMA4s+1)

for any sum over a finite set of ¢’s such that rpr4s41(t) =7rar45+1 and

M+s+1

M+s+1
H Hn'piut (TM+17"'7TM+S)
i=M+1

<

SR

SP(TM+1 vvvvv TM+4s+1)

if "ar4s4+1(t) =7ar4s41. This completes the induction. The proposition fol-
lows by taking M +s=N and t =k in (8). O

Let 7 be an admissible tree and suppose that 0 < M < N — 2. Say
that a collection of nodes &€ in T is subordinated to x™ if they are pair-
wise disjoint and for each E € &, there exists j such that F C xé\/[ . Note
that in this case, for every E € &, there exist unique rp;41,...,7y—1 such
that E C 2l (rpr41,...,75—-1). Recall the assumption (4) on k. Note that if
M CapY, then j >k, and hence j also satisfies (4) in place of k.

PROPOSITION 16. If € is a collection of nodes in an admissible tree that
is subordinated to x™ and that o(E) < p(rars1,-..,rn(k)) for all E € € with
ECay (rymst,--.,rN—1), then

1
t | g—
Ecé&

Proof. Let E(rpr41,...,7n—1) be the set of all nodes in € such that F C
2y (Pam41s---,7n—1). We have

> HE) | Exd (rarsrs - rn—1)|

EGS(TM+1,...,TN_1)
<> bl < sup )l Y by
jea Jjea jea
where (b;) = [#Y (ramr41,---,7N—1)]xm and G consists of all j’s such that there
exists F € E(rar41,...,7N—1) with E C a:jw Then

{minsuppxéw : j€G\ {minG}}

is a spreading of a subset of {minF : F € £}. By Lemma 4, ({Eé‘/[)jec\{ming}
i8 Sp(rargr,....rn (k))—1-admissible. Thus,

Z bj < ||uév(7‘M+1a"'7TN—1)HSP(TM+1 ..... ry(k)—1"
j€G\{min G}
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It follows from Proposition 15 that
Zb <— H 9r1p1—|—supb < H Hlpl.
JjEG i=M-+1 1 M+1

Hence, using Corollary 11,

Z t(E)HEwIZCV(TM+1u"‘7TN71)H

EGS(TM+1,...,TN_1)

<sup||x ||51 H Grlpl

=M1
< 2H0L pz k H zpw
1=M-+1
N
14 1
< ? He Lip;-
i=1
Summing over all possible rjys41,...,7Ny_1, We obtain
14 1
Z ( )HE‘Tk ||< HLGL;DL—3N2
Ec& i=1
by (4). O

Next, consider a set of nodes £ in 7 that is subordinated to x™ and that
o(E) ZP(T’M+1 +1,7000,. .. ,TN(k'))

for all E € & with E C 2l (rary1,...,7nv—1). In analogy to the above, for
given ryr41,...,7N—1, let E'(rar41,...,7n—1) be the set of all nodes in &’
such that E C Y (rare1,. .., 7n-1)-

PROPOSITION 17. > o/ t(E) | Bz | < samz |2 [ x40 -

Proof. We have

Z t(E)|Bxy (rars1y - rn—1)]

Ec& (rmy1,-TN-1)
< 0p(TM+1+17...,TN(k)) Z a]”'l:Jw”

jeG’

< QP(TM+1+1, (k) sup ||£L'] Hfl Z aj,
jEG’
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where (a;) =[x (rapr41,- ., 7N—1)]xm and G’ consists of all j’s such that there
exists B € &' (rype1,-..,rn—1) with E C xé‘/f But

Z aj < ”[xIIcV(TM+17 s aerl)]xM ”fl

jea’

<297_N(k:)p H 0.5, L;7" by Corollary 10.
i=M+1

Applying Corollary 11 to the above, we have

(9) > HE) | Bay (raren, - rn—1)|

Ec&' (rmy1,"N-1)

M N—1
< 49P(T’M+1+1 ----- T’N(k))GTN(k)pN H@pr H 9 7.p7.
=1 1=M+1
Recall the lower estimate for |22 || x,, given by (7) in Corollary 13. For fixed
TM+1,---,"N—1, the ratio of (9) with the (rar41,...,7n—1)-indexed term in
(7) is

8 01’(7M+1+1 LN (k)
S 9_ 9 H L;p;

p(rvtas-orn (k) 52

8 6‘PM+1+P(TM+17 ;v (K))
91 9 H Lip;

p(ra+1ye-rn(K) 1
M

8 0
91 24]1\72 HaLLPz HOL Di by condition (A)

1
3NZ

Hence,

1
> UE) B2y | < gl [ =
3N
Eecg’

In the next two results, let (d;) = [z} ]xm+1. Recall the convention that
oy (Pvgas. ., rn—1) =z if M =N —2.

LEMMA 18. Suppose that 0 < M < N —2. Given ray2,...,"N—1, Write

K={j: $§VI+1 - xiV(TM_A'_Q, cesTN—1)
If J is an Ly41-skipped set, then
_ _ 3 _
(10) Z dj < (LM1+1 +k 1) Z dj < §LM1+1 Z dj.

JEINK jeK jEK
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Proof. The second inequality follows from the choice of &k since k > 2L 1
by (4). Recall the notation from (/) expressing

M+2 _ Z M1
l’i = (IJZL']' .

]’EIAI+2

For each 7 such that xfw“ - xf& let J,=JnN IiMH. Then J; is an Lpsy1-
skipped subset of the integer interval IiM +2 By Lemma 8,

S di<Lyty Y di+ sup d;

jed; jerM+2 jEIiMJrz
i
—1
_LM+1 § : dJ—i_dmmIM+2
jerM+z
k2

Now JNK =, Ji» where K’ = {i: 2} C 2l (rags2,...,7n—1)}. Thus,

DDRUESSTRD DD DIV DY NITE

JjeEJINK ieK,jEIf\/I+2 €K’
71 .
=Ly E d; + E dminIiM“'
jeEK €K’

If [N ]xari2 = (b;), then for all j € IM*? we can express d; = b;a;, where
0 -repeated average, with m; =

min supp x?/[ 1 In particular,

M+2()prr42

ryv+2(8)PM+2 Zje[f”*z @j€m; 18 an S,

1 -1
0 aj, <i " <k

:k719TM+2(i)P]\/1+2 Z aj

jerM+?

ram42(8)Pat2

for all jo € IM™2. Thus,

— 1. .—1 .
Ainin M2 = bit, M+2 < bk § aj
jeri
;
-1 Z _ -1 Z .
S k biaj =k dj.
jerM+2 jerM+2

Therefore,

Dol SETIY N di=kTN Y dy

/ , ; ’ o MA42 ]
ieK €K jeI JEK
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Hence,

S odi=(Lyfy +E7)D dj O

jeJNK jeEK

We say that an admissible tree 7 is subordinated to x™ if its set of base
nodes is subordinated to x™ and any leaf that is not at the base is a sin-
gleton. Given an admissible tree that is subordinated to x| let £” be the
collection of all base nodes E in 7 such that p(rary1,...,7n(k)) <o(E) <

p(ravs1 + 1,..0,rn (k) if B Cal (raysa,...,rn—1). It follows from condi-
tion (B) that for F € £”, o(F) uniquely determines rpsy1,...,7y—1 such that
EC ka(rMH, ...,*N—1). Let D denote the set of all D’s that are immediate

predecessors of some E € £”. We say that D effectively intersects :céw'l for

some j if there exists E' € £” such that E C supp xMH ND. Let D be the sub-
collection of all D € D such that D effectively 1ntersects at least two xM +og,
For each D € D, let J(D) = {j : D effectively intersects xju'*'l}, then J( ) is
an Ljsy1-skipped set. Indeed, if D € D and F4, Es are successors of D in £”
such that E; C suppxj”'“ ND,i=1,2, and j; < ja, then o(E;) = o(E>), and
hence 7a741(j1) = ra+1(j2). Thus, jo —j1 > Ly Let J=Upep J(D). If
the elements of D are arranged in order, then the union of .J (D) taken over
every other D € D is an Lps41-skipped set. Hence, J is the union of at most
two Ljpsy1-skipped sets.

PRrROPOSITION 19.

1
> Z BBl < 33z 128 xar-

DGDE
ECD

Proof. Let (d;) be as in Lemma 18 and g(j) = p(rar41,- .., rn(k)) 1fwM+1 c
N (ravs1,---,7N—1). Then

2 2 BB D bl e

DeD geg”’ DeDjeJ (D)
ECD
M+1 _ M _p-1
But 2" = Zeelj.‘/’“ agry,” with Y ay = 0 s (iypars, - HeDCE,
(11) Z Z ”Exk | < bup”“ s Z Z 69(3 J 7"M+1(J)PM+1
DeD geg”’ DeDjeJ(D
ECD

< 2sup ”‘rf ”41 ZQQ(J)d ar’M+1(J);DM+1’
JjE€J
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since each j belongs to at most two J(D). Fix rarye,...,rn—1 and let K be
as in Lemma 18. Since J is the union of at most two Ljs41-skipped sets,

0.,
—1 9(j)
Z eg(j)djarNI+1(j)pM+1 sup Z d;

JETNK JEK 07‘M+1(J)PM+1 jeJNK
3 Og(;
< sup 569) Z d; by (10).
LM+1 jEK arM+1(J);DM+1 JjeEK
However,
sup eg(j) < sup 9TM+1(j)PM+1+P(TM+27--~7TN(k))
G€K Orar iy (parsr — 1<5<Lari Orrsir G)paria
07‘M+1PM+1 +p(rargz,...,rn (k)
< F(Lm+1) Z 0

T
rAr41 M+1PM+1

by condition (f). Therefore,

3F(La+1) Op(raria,ern (k)
Z eg(J)dJ 7“M+1(J)PM+1 < Z Z dj'

L 0
jeEJNK M+1 rAr+1 TMA+1PM+1 jEK

Note that

Zdj:H[m{fV(TMJ,_Q, ey PN—1) ]+ || <29T (k)p H 0 l;L_

JjEK i=M+2
by Corollary 10. Summing over all rp;42,...,7Ny_1, We have
(12) 29 J 7M+1(])PM+1

jed

< 6F(LM+1) Z HP(TN[+17...,TN,17’I‘N(]€)) '9,1

L 0 ~(K)pN
M+1 M4y N1 TM+1PM+1

X H Glpl

1=M+2
=6F(Lar+1) Z 010(7“M+17---,7"N—177"N(k))e'r:\}(k)pz\r

TM+15+TN—1
1 —
x H 0.5, Lt
i=M+1

Comparing (11) and (12) with (7) in Corollary 13, we see that
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t(B)|| Exll < 2407 F(Lassa) o 1 x S%P\lxéwllel

DE@EG&'”
ECD
<A48F(Lpr41)0 .- H9 ka |
by Corollary 117
1
< 3WHxi:V”XM
by condition (C). -

DEFINITION 20. Given N,p € N define

N N
0,=0,(N)= maX{HG&. S N,Zﬁi :p},
i=1 i=1

For any N € N and V € [N], choose integer sequences (py)~_, and (Lg)N_,,

and sequences of vectors x°,x',...,x" as above.

THEOREM 21. There exists a finitely supported vector x € span{ey, : k € V'}
such that

(13) Il < (; +407" sup w>||z|XM.
1, "N=1 Ip(ry,...,rn(k))

Proof. Consider an admissible tree 7 that is subordinated to x™, 0 <
M <N —2. Let & and & be the set of all base nodes such that o(F) <
p(rar+1,---,rn(k)), respectively, o(E) > p(rapry1 + 1,...,rx(k)) if E C
oM (rarg, ..., mN—1). Also, define £”,D and D as in the discussion preceding
Proposition 19. Finally, let £ be the set of all leaves of 7 not at the base.
By Proposition 19,

Yo BB =) D BB

Eecg” DeD geg”
ECD
= 3N2 ka HXI\/I + Z Z |Exk ”
DeD\D geg”’
ECD

If DeD\D, D effectively intersects at most one J:MH Set D'=Dn

suppar:M‘”'1 (D’ =10 if no such j exists). Then

Yo UB)E | = ) (BB < t(D)|D'eyY].

geg’ peg”
ECD ECD’
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Now let 77 be a tree obtained from 7 by taking all D € D\D, all E € £” and
all their ancestors, with each D € D\D modified into D’ as described above.
Then 7’ is an admissible tree that is subordinated to xM*! and H(7') <
H(T). (Note that every node in £ is a singleton.) By Propositions 16 and
17 and the above,

1 1
N N
> BB < gy + glef e+ (X + 3 Juelead]

EeL(T) EcE&” Eeg&
< Nzllxk lxa + D DD [+ > HE)| B
DeD\D Eeg
NQII:rk lxa + Y HE)E].
EGL(T')

Now let 7 be an admissible tree all of whose leaves are singletons. Let 77 be
the subtree of 7 consisting of leaves E in 7 with h(E) < N and their ancestors.
Then 77 is subordinated to x° and H(7;) < N — 1. By the above argument,
there is an admissible tree 7; subordinated to x! with H(7{) < N —2 so that

Yo UB)BE< Y t(E)HExiVIHNQIIzk [ X2

EeL(Th) EeL(T{)

_1)

Repeating the argument, we reach an admissible tree ’Tl(N subordinated to

xN=1 with H(TN ") =0 such that

Y BB Y UEB)|Ex H+ Hw s

EcL(Ty) EGE('TI(Nil))

Since H(Tl(Nfl)) =0 and Tl(NA) is subordinated to xV 1, Tl(Nfl) consists
of a single node E such that E C x%_l for some jo. Recall that =¥ =
ZjeI,Q’ ajzjy_l, where 0 <0, (x)pya; < k™' for all j € I}V, Hence,

N—
Yo BB | < ajollafy e

BeL(T{N V)

<260, o kT H 67}, by Corollary 11
1
< el by (4)
Therefore,
1
(14) > UB)|Eay|| < NllkaHxM
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Let 73 be the subtree of 7 consisting of leaves E in 7 with h(E) > N and
their ancestors. Since every leaf in 75 is a singleton, the set of all leaves is
subordinated to x°. Let G be the collection of all leaves E of 75 such that
o(E) <p(ri,...,rn(k)) if ECal (r1,...,75(k)). Then

1
Z HE)| Bz || € 775 N2 by Proposition 16.
Ecg

Hence,
S BB < g+ 3 6B B,
EeL(Th) Eeg

where G’ consists of all leaves of 75 that are not in G. If E € G’ and E C
Y (r1,...,7n-1), then o(E) > p(r1,...,rn(k)) and h(E) > N. Thus, t(E) =

‘ 10, with j > N and Zj i = p(ri,...,rn(k)). Choose (€)Y, so that
1<€’<€ for1<i< N, 1<l <t=3%7_ ﬁandz:Z 1l—p(r1, (k).
Since (0,) is regular, t(E) = HZ 10 < H o, - 0 < Hi:l Op <
Op(ry,...rn(k))- Lherefore, using the estimates from Corollary 10 and Propo-
sition 12, we have

(15) Y BBy

EeLl(T2)

St z S BB

CTN—1 Ecg’
ECa} (r1,...,rN=1)

T1--s"N—1

1 Op(r1,.eern ()
< +407  sup PPN N2 || x,, -
(3N2 1y TN—1 Yp(ry,...,rn(k)) b M

Combining (14) and (15) and maximizing over all admissible trees gives
| = max T

2 9 T1yeee,T
<(B+aop wp QO g

riyeorn—1 Op(ry,.rn (k)

REMARK. Note that the term ||z2 || x,, enters the arguments leading up to
the proof of Theorem 21 only via the lower estimate established in Proposi-
tion 12. Therefore, if we define

0
N 1 E
0 = 92 Op(ry,eorn—1,mn () TN(’C PN H b r L

T15.-T"N -1



42 D. H. LEUNG AND W.-K. TANG

then we actually obtain the inequality

2 O, .
H-'L';CVH < (N —‘1-49{1 sup M)¢;@V

T 0TN=1 Yp(r1,...,rN (K))

5. Proof of main theorem and examples

In this section, we give a proof for Theorem 1. Recall that we define
0 =lim 0,1/ " =sup 0,1/ " for a regular sequence (6,,) and let ¢, = 6,,/6™. It was
mentioned in the discussion at the beginning of Section 2 that X and X, are
not isomorphic if # =1. If # <1 and ¢px =1 for some N, then X and X,
are isomorphic by Proposition 7. We shall presently show that X and X,
are not isomorphic under some mild conditions on (¢,). For the remainder
of the section, assume that 6 < 1.

PROPOSITION 22. Ifinfp, =c¢>0. Then (0,) satisfies (—1) and (I).
Proof. Indeed,

am n m-+n 1
tn _ Pmingm o Zgm for all m,n € N.
Or, on c

Thus, (—7) holds. Also,

0 R
Y Tkt N Pttt > eyt

i=1 Os, iz Psi
On the other hand,
0, s, t
max —iTt — max Met < 9—
1<i<R 0, 1<i<R (g, c
Thus, (1) holds with F(R) = 5. O

Proof of Theorem 1. Let ¢ >0 and V € [N] be given. Choose N € N such
that 2 —1—49171% < e. Obtain from Theorem 21 a vector z € span{ey : k € V'}
that satisfies (13). Let p € N, if (¢;)X, is a sequence of positive integers such
that Ziil £; = p, then

N N
[16e =07 ][ we. <07a”
i=1 i=1

and
Op = pp0? > ch?.
Thus,
dN
p
sup — < —.
» Op c
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It follows from (13) that

2 a7 ay
el < { 7 + 461 lzllxa <ellzllxa-
Hence, according to Proposition 2, X and Xj; are not isomorphic. O

In the next two examples, we show that neither inf ¢,, > 0 nor sup g, <1
is a necessary condition for X and X, to be nonisomorphic.

ExampLE 23. If 6 <1 and ¢, = then X and X, are not isomorphic.

_1
n+1’
Proof. 1t suffices to show that (6,) satisfies (=f), (i) and limysup,
%pf\’) =0. Note that
Omtn n+1 m

0, m+n+1

Hence,

em n
0, = limsup 0+ =0"—0

as m — oo. Thus, (—f) holds.
To see that (6,,) satisfies (I), let 51 < s2 <--- < sg be an arithmetic pro-

ression in N. Note that s — —tL_ is a concave increasing function for s > 0.
s+t+1

Let g(s) be the linear function interpolating (si, Ssjj}_l) and (sg, s;ﬁ_ﬁ_l)
Then
R R R
s;+1
— T >t i
X
R
= 0" la(s1) + g(sr)]

since (g(s;))%, is an arithmetic progression

R R 0,
> t-" — s+t
2 05 max{g(sn) glsn)} = 5 max, ==

Hence, (1) holds with F(R) = 2.
Finally, if If (£;)}, is a sequence of positive integers such that Zl = p,

then at least one /; is > £. Without loss of generality, assume that ¢; >
Then
1 N
<.
6+17"p+1
Hence,
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Thus,
Op(N)
sup < —
» 9p 2N 1
It follows from Proposition 2 and Theorem 21 that X and X,; are not iso-
morphic. O

EXAMPLE 24. There exists a regular sequence (6,) with 0 <8 < 1 and
lim, ¢, =1 such that X and Xj; are not isomorphic.

Proof. Let 0 <6y <8 <1 be given. Choose sequences (g,) and (K,) in N
such that
PIMAN+1 < 92+S(M1N)

~ 24N?

and
1 < 1 g3+s(M.N)
Karong1 — 144N271

if 0 <M <N, where s(M,N) =M Kyyqnsi it 0< M < N and
s(0,N) =0. Then choose a sequence (¢,) such that ¢; = %1, (¢n) increases
to 1, Ynt1 < % and limy apé\éN)N) =0.

Define 6,, = ¢,0™. Then (0,) is a regular sequence such that lim@}/ "=

V"9 = 9. Since infg, = @1 >0, (=) and (f) hold with F(R) = Iz

lim @y
according to Proposition 22.
= (qNJFk)IkV:l a‘nd

Given N € N, we claim that the sequences (py)n_;
(Lp)N_, = (Kn1k)_, satisfy conditions (A), (B), and (C). Indeed,
911M+1+n — gpan Porti+n < PPM+1 < QIN+M+1 1 9s(M N)
(. ©n I 01 — 24N271

By regularity, 6,, > 67. Hence,

M
M Lip; s(M,
HoLipi 2 ‘9121=1 = 01(M )
=1
if M > 0. Thus,
M

0PM+1+71 1
< 0L,p,-
0, — 24N2 1;[1 Lips

Therefore, condition (A) is satisfied if M > 0. If M =0, then s(M,N)=0
and the vacuous product Hf‘il 0r,p, =1 and the result is clear.

To see that condition (B) is satisfied, we note that by the choice of (gy,),
qM+N+1 = 2 + s(M,N), which is equivalent to saying that pa41 > 2 +
Zibil Lipi if M > 0.
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If M >0,
1 1 1 3+s(M,N)
F(Lyaq) = _ < :
(Lare1) @iLyvyr  iKMyng1 ~ 07 144N271
< D gm0 17y
= 144N2 71 = 144N? 1L Lips-

Therefore, condition (C) is also satisfied. Finally, we consider the ratio

Op(r1,eyrn (k)
Op(rs,.irn (k)

If (¢;)N, is a sequence in N such that va:l i =p(ri,...,rn(k)), then

N N
e 1 )
i=1 =1

LN (k) N
< N DN

since () is increasing and 0 < ¢, < 1. Now

p(ri,...,rn(k)) =rip1 + - +ryv_ipv—1 +ra(k)pn
N

< Lipi+--+ Lnpy =Y Knyigni = s(N, N).
i=1

Thus,

N
HQ&- < QP(Tl""’TN(k))LPé\éN,N)
i=1
_ Pl
Pp(r1,...,rn (k)

< ONN NPT Op(rreeeirn ()

Op(ry,..orn (k)

Hence,
..... k _
sup 917(7“1 rn (k) S@Q{N7N)(p1 1
TN =1 Yp(ry,...,rnv (K))
Since (¢n) is chosen such that limy @ﬁN Ny =0, we see that

@ T T
lim sup Zp(ryrn (B) =0.

N oryorn—t Oprn e rn (k)

45

Arguing as in the proof of Theorem 1, we may conclude that X and X,; are

not isomorphic.

O
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