
Ann. Funct. Anal. 7 (2016), no. 2, 358–370

http://dx.doi.org/10.1215/20088752-3544830

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

SCALE TRANSFORMATIONS FOR PRESENT
POSITION-DEPENDENT CONDITIONAL EXPECTATIONS
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Abstract. Let C[0, t] denote a generalized Wiener space, the space of real-
valued continuous functions on the interval [0, t], and define a random vector
Zn : C[0, t] → Rn by

Zn(x) =
(∫ t1

0

h(s) dx(s), . . . ,

∫ tn

0

h(s) dx(s)
)
,

where 0 < t1 < · · · < tn = t is a partition of [0, t] and h ∈ L2[0, t] with
h 6= 0 almost everywhere. Using a simple formula for a generalized conditional
Wiener integral on C[0, t] with the conditioning function Zn, we evaluate the
generalized analytic conditional Wiener and Feynman integrals of the cylinder
function

G(x) = f
(
(e, x)

)
φ
(
(e, x)

)
for x ∈ C[0, t], where f ∈ Lp(R)(1 ≤ p ≤ ∞), e is a unit element in L2[0, t],
and φ is the Fourier transform of a measure of bounded variation over R. We
then express the generalized analytic conditional Feynman integral of G as two
kinds of limits of nonconditional generalized Wiener integrals with a polygonal
function and cylinder functions using a change-of-scale transformation. The
choice of a complete orthonormal subset of L2[0, t] used in the transformation
is independent of e.
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1. Introduction and preliminaries

Let C0[0, t] denote the Wiener space, the space of continuous real-valued func-
tions x on [0, t] with x(0) = 0. As mentioned in [1] and [2], the Wiener measure
and Wiener measurability behave badly under change-of-scale transformation and
under translation. Various kinds of change-of-scale formulas for Wiener integrals
of bounded and unbounded functions were developed on the classical and ab-
stract Wiener spaces (see [4], [9], [13], [12], [14]). Furthermore, the author and
his coauthors [6], [11] introduced various kinds of change-of-scale formulas for
the conditional Wiener integrals of the functions defined on C0[0, t], the infinite-
dimensional Wiener space, and C[0, t], an analogue of Wiener space that is the
space of real-valued continuous paths on [0, t] (see [8]).

Let h ∈ L2[0, t] with h 6= 0 almost everywhere on [0, t]. Define a stochastic
process Z : C[0, t]× [0, t] → R by

Z(x, s) =

∫ s

0

h(u) dx(u)

for x ∈ C[0, t] and s ∈ [0, t], where the integral denotes the Paley–Wiener–
Zygmund integral, and let

Zn(x) =
(
Z(x, t1), . . . , Z(x, tn)

)
for x ∈ C[0, t], where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t]. On the
space C[0, t], the author [5] derived a simple formula for a generalized conditional
Wiener integral given the vector-valued conditioning function Zn. Using the sim-
ple formula, Yoo and the author [7] evaluated a generalized analytic conditional
Wiener integral of the function Gr having the form

Gr(x) = F (x)Ψ
(∫ t

0

v1(s) dx(s), . . . ,

∫ t

0

vr(s) dx(s)
)

for F in a Banach algebra, which corresponds to Cameron–Storvick’s Banach al-
gebra S (see [3]), and for Ψ = f + φ, which need not be bounded or continuous,
where f ∈ Lp(Rr)(1 ≤ p ≤ ∞), {v1, . . . , vr} is an orthonormal subset of L2[0, t],
and φ is the Fourier transform of a measure of bounded variation over Rr. They
then established various kinds of change-of-scale formulas for the generalized ana-
lytic conditional Wiener integral of Gr with the conditioning function Zn. Except
for the results in [9], the choices of the orthonormal bases of L2[0, t] in the existing
change-of-scale formulas depend on the orthonormal set {v1, . . . , vr} used in the
definition of a cylinder function.

In this paper, using the simple formula derived in [5], we evaluate the general-
ized analytic conditional Wiener and Feynman integrals of the cylinder function
G having the form

G(x) = f
(
(e, x)

)
φ
(
(e, x)

)
for x ∈ C[0, t], where f ∈ Lp(R)(1 ≤ p ≤ ∞) and e is a unit element in L2[0, t].
We then express the generalized analytic conditional Feynman integral of G as
two kinds of limits of nonconditional generalized Wiener integrals with a polyg-
onal function and cylinder functions using a change-of-scale transformation. The
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choice of a complete orthonormal subset of L2[0, t] used in the transformation is
independent of e. We note that the results of this paper are different from those
in [6] and [11].

2. A generalized conditional Wiener integral

Let C and C+ denote the sets of complex numbers and complex numbers with
positive real parts, respectively. Let (C[0, t],B(C[0, t]), wϕ) be the analogue of
Wiener space associated with a probability measure ϕ on the Borel class of R,
where B(C[0, t]) denotes the Borel class of C[0, t] (see [8]). For v ∈ L2[0, t] and

x ∈ C[0, t], let (v, x) =
∫ t

0
v(s) dx(s) denote the Paley–Wiener–Zygmund integral

of v according to x (see [8]). The inner product on the real Hilbert space L2[0, t]
is denoted by 〈·, ·〉.

Let F : C[0, t] → C be integrable, and letX be a random vector on C[0, t]. Then
we have the conditional expectation E[F | X] given X from a well-known proba-
bility theory (see [10, Definition 6.1.1.]). Furthermore, there exists a PX-integrable
function ψ on the value space of X such that E[F | X](x) = (ψ ◦ X)(x) for
wϕ-a.e. x ∈ C[0, t], where PX is the probability distribution of X. The function ψ
is called the conditional Wiener wϕ-integral of F given X, and it is also denoted
by E[F | X].

Let 0 = t0 < t1 < · · · < tn = t be a partition of [0, t], where n is a fixed positive
integer. Let h ∈ L2[0, t] be of bounded variation with h 6= 0 almost everywhere
on [0, t]. For j = 1, . . . , n, let

αj =
1

‖χ(tj−1,tj ]h‖
χ(tj−1,tj ]h,

and let V be the subspace of L2[0, t] generated by {α1, . . . , αn}. Let V ⊥ be the
orthogonal complement of V . Let P : L2[0, t] → V be the orthogonal projection
given by

Pv =
n∑

j=1

〈v, αj〉αj,

and let P⊥ : L2[0, t] → V ⊥ be the orthogonal projection. For x ∈ C[0, t] define
the stochastic process Z : C[0, t]× [0, t] → R by

Z(x, s) =

∫ s

0

h(u) dx(u), 0 ≤ s ≤ t,

and let Zn : C[0, t] → Rn be given by

Zn(x) =
(
Z(x, t1), . . . , Z(x, tn)

)
. (2.1)

Let b(s) =
∫ s

0
(h(u))2 du, and, for x ∈ C[0, t], define the polygonal function

[Z(x, ·)]b of Z(x, ·) by[
Z(x, ·)

]
b
(s)

=
n∑

j=1

χ(tj−1,tj ](s)
[
Z(x, tj−1) +

b(s)− b(tj−1)

b(tj)− b(tj−1)

(
Z(x, tj)− Z(x, tj−1)

)]
(2.2)
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for s ∈ [0, t]. Similarly, for ~ξ = (ξ1, . . . , ξn) ∈ Rn, the polygonal function [~ξ]b of ~ξ
is given by (2.2) replacing Z(x, tj) by ξj(j = 1, . . . , n) with ξ0 = 0. For a function
F : C[0, t] → C such that FZ(x) ≡ F (Z(x, ·)) is integrable over x, we have, by an
application of Theorem 2.9 in [5],

E[FZ | Zn](~ξ) = E
[
F
(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
(2.3)

for PZn-a.e. ~ξ ∈ Rn (for almost every ~ξ ∈ Rn), where PZn is the probability
distribution of Zn on the Borel class B(Rn) of Rn. For λ > 0, let F λ

Z(x) =

FZ(λ
− 1

2x), and let Zλ
n(x) = Zn(λ

− 1
2x) for x ∈ C[0, t], where Zn is given by (2.1).

Suppose that E[F λ
Z ] exists. By the definition of the conditional Wiener wϕ-integral

and (2.3),

E[F λ
Z | Zλ

n ](
~ξ) = E

[
F
(
λ−

1
2

(
Z(x, ·)−

[
Z(x, ·)

]
b

)
+ [~ξ]b

)]
(2.4)

for PZλ
n
-a.e. ~ξ ∈ Rn, where PZλ

n
is the probability distribution of Zλ

n on (Rn,B(Rn)).

Let IλFZ
(~ξ) be the right-hand side of (2.4). If IλFZ

(~ξ) has an analytic extension

J∗
λ(FZ)(~ξ) on C+, then it is called the conditional analytic Wiener wϕ-integral of
FZ , given Zn with the parameter λ, and is denoted by

Eanwλ [FZ | Zn](~ξ) = J∗
λ(FZ)(~ξ)

for ~ξ ∈ Rn. Moreover, if, for nonzero real q, Eanwλ [FZ | Zn](~ξ) has a limit as λ
approaches −iq through C+, then it is called the conditional analytic Feynman
wϕ-integral of FZ , given Zn with the parameter q, and is denoted by

Eanf q [FZ | Zn](~ξ) = lim
λ→−iq

Eanwλ [FZ | Zn](~ξ).

If E[F (λ−
1
2 ·)] exists for λ > 0 and it has an analytic extension J∗

λ(F ) on C+, then
we call J∗

λ(F ) the analytic Wiener wϕ-integral of F over C[0, t] with parameter
λ, and it is denoted by

Eanwλ [F ] = J∗
λ(F ).

The following lemmas are useful to prove the results in the next sections (see
[9]).

Lemma 2.1. Let a and b be positive real numbers. Then, for any real u,∫
R
exp

{
−av2 − b(v − u)2

}
dv =

( π

a+ b

) 1
2
exp

{
− ab

a+ b
u2
}
.

Lemma 2.2. Let v ∈ L2[0, t]. Then, for wϕ-a.e. x ∈ C[0, t],(
v,
[
Z(x, ·)

]
b

)
=

(
P(vh), x

)
.

Applying Theorem 3.5 in [8], we can easily prove the following theorem.

Theorem 2.3. Let {h1, h2, . . . , hn} be an orthonormal system of L2[0, t]. For
i = 1, 2, . . . , n, let Xi(x) = (hi, x) on C[0, t]. Then X1, . . . , Xn are independent
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and each Xi has the standard normal distribution. Moreover, if f : Rn → R is
Borel-measurable, then∫

C[0,t]

f
(
X1(x), . . . , Xn(x)

)
dwϕ(x)

∗
=

( 1

2π

)n
2

∫
Rn

f(u1, u2, . . . , un) exp
{
−1

2

n∑
j=1

u2j

}
d(u1, u2, . . . , un),

where
∗
= means that if either side exists, then both sides exist and they are equal.

3. Generalized analytic conditional Feynman integrals

In this section we establish the analytic conditional Wiener and Feynman in-
tegrals of cylinder functions.

Let e be in L2[0, t] with ‖e‖ = 1. For 1 ≤ p ≤ ∞, let A(p) be the space of the
cylinder functions F having the following form:

F (x) = f
(
(e, x)

)
(3.1)

for wϕ-a.e. x ∈ C[0, t], where f ∈ Lp(R). Without loss of generality, we can take

f to be Borel-measurable. Let M̂(R) be the space of all functions φ on R defined
by

φ(u) =

∫
R
exp{iuz} dρ(z), (3.2)

where ρ is a complex Borel measure of bounded variation over R.

Theorem 3.1. Let 1 ≤ p ≤ ∞. Let Zn and F ∈ A(p) be given by (2.1) and (3.1),

respectively. Then, for λ ∈ C+, E
anwλ [FZ | Zn](~ξ) exists for almost every ~ξ ∈ Rn

and it is given by

Eanwλ [FZ | Zn](~ξ)

=
[ λ

2π‖P⊥(eh)‖2
] 1

2

∫
R
f(u) exp

{
− λ

2‖P⊥(eh)‖2
(
u−

(
e, [~ξ]b

))2}
du

if P⊥(eh) 6= 0 or, equivalently, eh /∈ V . Furthermore, if p = 1 and P⊥(eh) 6= 0,

then for a nonzero real q Eanf q , [FZ | Zn](~ξ) is given by the right-hand side of the
above equality, replacing λ by −iq. If P⊥(eh) = 0 or, equivalently, eh ∈ V , then

Eanwλ [FZ | Zn](~ξ) = Eanf q [FZ | Zn](~ξ) = F
(
[~ξ]b

)
= f

((
e, [~ξ]b

))
for almost every ~ξ ∈ Rn.

Proof. For λ > 0 and almost every ~ξ ∈ Rn, we have, by Lemma 2.2 and Theo-
rem 2.3,

IλFZ
(~ξ) =

∫
C[0,t]

f
(
λ−

1
2

(
e, Z(x, ·)−

[
Z(x, ·)

]
b

)
+
(
e, [~ξ]b

))
dwϕ(x)

=

∫
C[0,t]

f
(
λ−

1
2

(
eh− P(eh), x

)
+
(
e, [~ξ]b

))
dwϕ(x)
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=

∫
C[0,t]

f
(
λ−

1
2

(
P⊥(eh), x

)
+
(
e, [~ξ]b

))
dwϕ(x)

=
[ λ

2π‖P⊥(eh)‖2
] 1

2

∫
R
f
(
u+

(
e, [~ξ]b

))
exp

{
− λ

2‖P⊥(eh)‖2
u2
}
du

if P⊥(eh) 6= 0. If P⊥(eh) = 0, then it is not difficult to show that IλFZ
(~ξ) =

f((e, [~ξ]b)). By Morera’s theorem we have the existence of Eanwλ [FZ | Zn](~ξ).

If p = 1, then the existence of Eanf q [FZ | Zn](~ξ) follows from the dominated
convergence theorem. �

By the boundedness of φ and Theorem 3.1, we have the following theorem.

Theorem 3.2. Let G(x) = F (x)φ((e, x)) for wϕ-a.e. x ∈ C[0, t], where F ∈
A(p)(1 ≤ p ≤ ∞) and φ ∈ M̂(R) are given by (3.1) and (3.2), respectively. Then,

for λ ∈ C+ and almost every ~ξ ∈ Rn,

Eanwλ [GZ | Zn](~ξ)

=
[ λ

2π‖P⊥(eh)‖2
] 1

2

∫
R
f(u)φ(u) exp

{
− λ

2‖P⊥(eh)‖2
(
u−

(
e, [~ξ]b

))2}
du

if P⊥(eh) 6= 0. Furthermore, if p = 1 and P⊥(eh) 6= 0, then for a nonzero real q,

Eanf q [GZ | Zn](~ξ) is given by the right-hand side of the above equality, replacing
λ by −iq. If P⊥(eh) = 0, then

Eanwλ [GZ | Zn](~ξ) = Eanf q [GZ | Zn](~ξ) = G
(
[~ξ]b

)
= φ

((
e, [~ξ]b

))
f
((
e, [~ξ]b

))
for almost every ~ξ ∈ Rn.

4. Change-of-scale formulas using the polygonal function

In this section we derive a change-of-scale formula for the generalized condi-
tional Wiener integrals of cylinder functions on the analogue of Wiener space
using the polygonal function as given in the previous section.

Throughout this paper, let {e1, e2, . . .} be a complete orthonormal basis of
L2[0, t]. For v ∈ L2[0, t], let

cj(v) = 〈v, ej〉 for j = 1, 2, . . . . (4.1)

For m ∈ N, λ ∈ C+, and x ∈ C[0, t], let

Km(λ, x) = exp
{1− λ

2

m∑
j=1

(ej, x)
2
}
. (4.2)

Lemma 4.1. Let m be a fixed positive integer, and let Km be given by (4.2). Let
1 ≤ p ≤ ∞ and F ∈ A(p) be given by (3.1). Suppose that {e1, . . . , em,P⊥(eh)} is

a linearly independent set. Then, for λ ∈ C+ and ~ξ ∈ Rn,

E
[
Km(λ, x)F

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2

[ λ

2πA(m,λ)

] 1
2

∫
R
exp

{
− λ

2A(m,λ)

(
u−

(
e, [~ξ]b

))2}
f(u) du, (4.3)
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where

A(m,λ) =
m∑
j=1

[
cj
(
P⊥(eh)

)]2
+ λ

[∥∥P⊥(eh)
∥∥2 −

m∑
j=1

[
cj
(
P⊥(eh)

)]2]
(4.4)

and the cj’s are given by (4.1).

Proof. For λ > 0 and ~ξ ∈ Rn, let Γ(λ,m, ~ξ) be the left-hand side of (4.3). Then

Γ(λ,m, ~ξ) =

∫
C[0,t]

Km(λ, x)F
(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)
dwϕ(x)

=

∫
C[0,t]

exp
{1− λ

2

m∑
j=1

(ej, x)
2
}
f
((
P⊥(eh), x

)
+
(
e, [~ξ]b

))
dwϕ(x)

by Lemma 2.2. Let gm+1 be the unit element in L2[0, t] obtained from {e1, . . . , em,
P⊥(eh)} using the Gram–Schmidt orthonormalization process. Then

P⊥(eh) =
m∑
j=1

cj
(
P⊥(eh)

)
ej + cm+1

(
P⊥(eh)

)
gm+1,

where cj(P⊥(eh)) is given by (4.1) for j = 1, . . . ,m and[
cm+1

(
P⊥(eh)

)]2
=

∥∥P⊥(eh)
∥∥2 −

m∑
j=1

[
cj
(
P⊥(eh)

)]2
.

By the independence of {e1, . . . , em,P⊥(eh)}, cm+1(P⊥(eh)) 6= 0. By Theorem 2.3,

Γ(λ,m, ~ξ)

=
( 1

2π

)m+1
2

∫
Rm+1

exp
{1− λ

2

m∑
j=1

u2j −
1

2

m+1∑
j=1

u2j

}
f
(m+1∑

j=1

cj
(
P⊥(eh)

)
uj

+
(
e, [~ξ]b

))
d(u1, . . . , um, um+1)

=
( 1

2π

)m+1
2

∫
Rm+1

exp
{
−λ
2

m∑
j=1

u2j −
1

2
u2m+1

}
f
(m+1∑

j=1

cj
(
P⊥(eh)

)
uj

+
(
e, [~ξ]b

))
d(u1, . . . , um, um+1).

Suppose that cj(P⊥(eh)) 6= 0 for j = 1, . . . ,m. For j = 1, . . . ,m + 1, let zj =∑j
k=1 ck(P⊥(eh))uk and z0 = 0. Then uj =

1
cj(P⊥(eh))

(zj−zj−1) for j = 1, . . . ,m+1

so that, by Lemma 2.1 and the change-of-variable theorem,

Γ(λ,m, ~ξ)

=
( 1

2π

)m+1
2 1∏m+1

j=1 cj(P⊥(eh))

∫
Rm+1

exp
{
−λ
2

m∑
j=1

(zj − zj−1)
2

[cj(P⊥(eh))]2

− (zm+1 − zm)
2

2[cm+1(P⊥(eh))]2

}
f
(
zm+1 +

(
e, [~ξ]b

))
d(z1, . . . , zm, zm+1)
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= λ−
1
2

( 1

2π

)m
2
[ 1

[
∑2

j=1[cj(P⊥(eh))]2]
∏m+1

j=3 [cj(P⊥(eh))]2

] 1
2

×
∫
Rm

exp
{
− λ

2
∑2

j=1[cj(P⊥(eh))]2
z22 −

λ

2

m∑
j=3

(zj − zj−1)
2

[cj(P⊥(eh))]2

− (zm+1 − zm)
2

2[cm+1(P⊥(eh))]2

}
f
(
zm+1 +

(
e, [~ξ]b

))
d(z2, . . . , zm, zm+1).

Applying this process repeatedly,

Γ(λ,m, ~ξ)

= λ−
m−1

2
1

2π

[ 1

[
∑m

j=1[cj(P⊥(eh))]2][cm+1(P⊥(eh))]2

] 1
2

×
∫
R2

exp
{
− λ

2
∑m

j=1[cj(P⊥(eh))]2
z2m − (zm+1 − zm)

2

2[cm+1(P⊥(eh))]2

}
× f

(
zm+1 +

(
e, [~ξ]b

))
d(zm, zm+1)

= λ−
m
2

( λ

2π

) 1
2
[ 1∑m

j=1[cj(P⊥(eh))]2 + λ[cm+1(P⊥(eh))]2

] 1
2

×
∫
R
exp

{
− λ

2(
∑m

j=1[cj(P⊥(eh))]2 + λ[cm+1(P⊥(eh))]2)
z2m+1

}
× f

(
zm+1 +

(
e, [~ξ]b

))
dzm+1

= λ−
m
2

[ λ

2πA(m,λ)

] 1
2

∫
R
exp

{
− λ

2A(m,λ)

(
z −

(
e, [~ξ]b

))2}
f(z) dz.

Since ( 1

2π

) 1
2

∫
R
exp

{
−λ
2
u2
}
du = λ−

1
2 , (4.5)

we have (4.3) for λ > 0, even if cj(P⊥(eh)) = 0 for some j ∈ {1, . . . ,m}. Each
side of (4.3) is an analytic function of λ in C+ so that, by the uniqueness of the
analytic extension, we have (4.3) for any λ ∈ C+. �

Using (4.5) and the same process as used in the proof of Lemma 4.1, we have
the following corollary.

Corollary 4.2. Let m be a fixed positive integer, and let Km be given by (4.2). Let
1 ≤ p ≤ ∞ and F ∈ A(p) be given by (3.1). Suppose that {e1, . . . , em,P⊥(eh)} is
a linearly dependent set. If P⊥(eh) 6= 0 or, equivalently, eh /∈ V , then, for λ ∈ C+

and ~ξ ∈ Rn,

E
[
Km(λ, x)F

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2

[ λ

2πA(m, 0)

] 1
2

∫
R
exp

{
− λ

2A(m, 0)

(
u−

(
e, [~ξ]b

))2}
f(u) du,
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where A is given by (4.4). Furthermore, if P⊥(eh) = 0 or, equivalently, eh ∈ V ,

then, for λ ∈ C+ and ~ξ ∈ Rn,

E
[
Km(λ, x)F

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2 F

(
[~ξ]b

)
.

We now have the following theorem by the boundedness of φ.

Theorem 4.3. Let G(x) = F (x)φ((e, x)) for wϕ-a.e. x ∈ C[0, t], where F ∈
A(p)(1 ≤ p ≤ ∞) and φ are given by (3.1) and (3.2), respectively. Let m be a
fixed positive integer, and let Km be given by (4.2). If {e1, . . . , em,P⊥(eh)} is a

linearly independent set, then, for λ ∈ C+ and ~ξ ∈ Rn,

E
[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2

[ λ

2πA(m,λ)

] 1
2

∫
R
exp

{
− λ

2A(m,λ)

(
u−

(
e, [~ξ]b

))2}
f(u)φ(u) du,

where A is given by (4.4). If {e1, . . . , em,P⊥(eh)} is a linearly dependent set and

P⊥(eh) 6= 0 or, equivalently, eh /∈ V , then, for λ ∈ C+ and ~ξ ∈ Rn,

E
[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2

[ λ

2πA(m, 0)

] 1
2

∫
R
exp

{
− λ

2A(m, 0)

(
u−

(
e, [~ξ]b

))2}
f(u)φ(u) du.

If P⊥(eh) = 0 or, equivalently, eh ∈ V , then, for λ ∈ C+ and ~ξ ∈ Rn,

E
[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= λ−

m
2 G

(
[~ξ]b

)
= λ−

m
2 φ

((
e, [~ξ]b

))
f
((
e, [~ξ]b

))
.

Theorem 4.4. Let Zn be given by (2.1), and let G be as given in Theorem 4.3.

Then, for λ ∈ C+ and almost every ~ξ ∈ Rn,

Eanwλ [GZ | Zn](~ξ)

= lim
m→∞

λ
m
2 E

[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
, (4.6)

where Km is given by (4.2). Moreover, if p = 1, q is a nonzero real number,
and {λm}∞m=1 is a sequence in C+ converging to −iq as m approaches ∞, then

Eanf q [GZ | Zn](~ξ) is given by the right-hand side of (4.6) replacing λ by λm.

Proof. Suppose that {e1, . . . , em,P⊥(eh)} is a linearly independent set for any

positive integer m. Then, for λ ∈ C+ and ~ξ ∈ Rn,

λ
m
2 E

[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
=

[ λ

2πA(m,λ)

] 1
2

∫
R
exp

{
− λ

2A(m,λ)

(
u−

(
e, [~ξ]b

))2}
f(u)φ(u) du
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by Theorem 4.3. By (4.4),

lim
m→∞

A(m,λ) = lim
m→∞

[ m∑
j=1

[
cj
(
P⊥(eh)

)]2
+ λ

[∥∥P⊥(eh)
∥∥2 −

m∑
j=1

[
cj
(
P⊥(eh)

)]2]]
=

∥∥P⊥(eh)
∥∥2

+ λ
[∥∥P⊥(eh)

∥∥2 −
∥∥P⊥(eh)

∥∥2]
=

∥∥P⊥(eh)
∥∥2

so that we have (4.6) by Theorem 3.2. If {e1, . . . , el,P⊥(eh)} is a linearly depen-
dent set for some positive integer l and P⊥(eh) 6= 0, then, for m ≥ l,

A(m,λ) = A(m, 0) = A(l, 0) =
l∑

j=1

[
cj
(
P⊥(eh)

)]2
=

∥∥P⊥(eh)
∥∥2
,

and hence

λ
m
2 E

[
Km(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
= Eanwλ [GZ | Zn](~ξ)

by Theorem 3.2 and the second equality of Theorem 4.3. Finally, if P⊥(eh) = 0,
then we have (4.6) by Theorem 3.2 and the third equality of Theorem 4.3. �

The following corollary follows immediately from the proof of Theorem 4.4.

Corollary 4.5. Let K0(λ, x) = 1 for λ ∈ C+ and x ∈ C[0, t], let G be as given in
Theorem 4.3, and let l be the smallest positive integer such that {e1, . . . , el,P⊥(eh)}
is a linearly dependent set if P⊥(eh) 6= 0. Moreover, let l = 0 if P⊥(eh) = 0.
Then, for any nonnegative integer r with r ≥ l, for λ ∈ C+ and for almost every
~ξ ∈ Rn,

Eanwλ [GZ | Zn](~ξ) = λ
r
2E

[
Kr(λ, x)G

(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
. (4.7)

Letting λ = γ−2 in (4.6) and (4.7), we have the following change-of-scale for-
mulas for the generalized conditional Wiener integral on the analogue of Wiener
space using the polygonal function.

Corollary 4.6.

(1) Under the assumptions as given in Theorem 4.4, we have, for γ > 0 and

almost every ~ξ ∈ Rn,

E
[
G
(
γZ(x, ·)

) ∣∣ γZn(x)
]
(~ξ)

= lim
m→∞

γ−mE
[
Km(γ

−2, x)G
(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
.

(2) Under the assumptions as given in Corollary 4.5, we have for any non-

negative integer r with r ≥ l, for γ > 0, and for almost every ~ξ ∈ Rn,

E
[
G
(
γZ(x, ·)

) ∣∣ γZn(x)
]
(~ξ)

= γ−rE
[
Kr(γ

−2, x)G
(
Z(x, ·)−

[
Z(x, ·)

]
b
+ [~ξ]b

)]
.
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5. Change-of-scale formulas without the polygonal function

In this section we derive change-of-scale formulas for the generalized conditional
Wiener integral of the cylinder function on the analogue of Wiener space without
the polygonal functions used in Section 4.

Theorem 5.1. Let Zn be given by (2.1), and let G be as given in Theorem 4.3.

Then, for λ ∈ C+ and almost every ~ξ ∈ Rn,

Eanwλ [GZ | Zn](~ξ) = lim
m→∞

λ
m
2 E

[
Km(λ, ·)f

(
(v, ·)

∥∥P⊥(eh)
∥∥

+
(
e, [~ξ]b

))
φ
(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))]
(5.1)

for any unit element v ∈ L2[0, t], where Km is given by (4.2). Moreover, if p = 1,
q is a nonzero real number, and {λm}∞m=1 is a sequence in C+ converging to −iq
as m approaches ∞, then Eanf q [GZ | Zn](~ξ) is given by the right-hand side of
(5.1) replacing λ by λm.

Proof. Suppose that P⊥(eh) 6= 0. For λ ∈ C+ and almost every ~ξ ∈ Rn, we have,
by Theorem 3.2 and the change-of-variable theorem,

Eanwλ [GZ | Zn](~ξ)

=
[ λ

2π‖P⊥(eh)‖2
] 1

2

∫
R
f(u)φ(u) exp

{
− λ

2‖P⊥(eh)‖2
(
u−

(
e, [~ξ]b

))2}
du

=
( λ

2π

) 1
2

∫
R
f
(
u
∥∥P⊥(eh)

∥∥+
(
e, [~ξ]b

))
φ
(
u
∥∥P⊥(eh)

∥∥+
(
e, [~ξ]b

))
× exp

{
−λ
2
u2
}
du

= Eanwλ
[
f
(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))
φ
(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))]
,

where the last equality follows from Theorem 3.1 in [6]. Applying the same method
as used in the proofs of Lemma 2.2, Theorem 2.6, and Corollary 2.7 in [9], we
have (5.1). If P⊥(eh) = 0, then we have (5.1) by (4.5) and Theorem 3.2. The
second part of the theorem immediately follows from the dominated convergence
theorem. �

Now we have the following corollaries by Corollary 4.5 and Theorem 5.1.

Corollary 5.2. Under the assumptions as given in Corollary 4.5, we have, for

any nonnegative integer r with r ≥ l, for λ ∈ C+, and for almost every ~ξ ∈ Rn,

Eanwλ [GZ | Zn](~ξ) = λ
r
2E

[
Kr(λ, ·)f

(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))
× φ

(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))]
for any unit element v ∈ L2[0, t].
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Corollary 5.3.

(1) Under the assumptions as given in Theorem 4.4, we have, for γ > 0 and

almost every ~ξ ∈ Rn,

E
[
G
(
γZ(x, ·)

) ∣∣ γZn(x)
]
(~ξ)

= lim
m→∞

γ−mE
[
Km(γ

−2, ·)f
(
(v, ·)

∥∥P⊥(eh)
∥∥

+
(
e, [~ξ]b

))
φ
(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))]
for any unit element v ∈ L2[0, t].

(2) Under the assumptions as given in Corollary 4.5, we have, for any non-

negative integer r with r ≥ l, for γ > 0, and for almost every ~ξ ∈ Rn,

E
[
G
(
γZ(x, ·)

) ∣∣ γZn(x)
]
(~ξ)

= γ−rE
[
Kr(γ

−2, ·)f
(
(v, ·)

∥∥P⊥(eh)
∥∥

+
(
e, [~ξ]b

))
φ
(
(v, ·)

∥∥P⊥(eh)
∥∥+

(
e, [~ξ]b

))]
for any unit element v ∈ L2[0, t].

Remark 5.4.

(1) While the complete orthonormal set in [6] and [11] contain e used in the
definition of the cylinder function, the complete orthonormal set {e1, e2, . . .}
in this paper does not contain e. Furthermore, the v’s in Theorem 5.1 and
Corollaries 5.2 and 5.3 are independent of both {e1, e2, . . .} and e.

(2) Letting φ = 1 or, equivalently, ρ = δ0, which is the Dirac measure con-
centrated at 0, Corollaries 4.5, 4.6, 5.2, and 5.3 and Theorems 4.4 and 5.1
still hold replacing G by F .

(3) The change-of-scale formulas in this paper still hold, even if P⊥(eh) = 0

or, equivalently, eh ∈ V . Since, for γ > 0 and almost every ~ξ ∈ Rn,

E
[
G
(
γZ(x, ·)

) ∣∣ γZn(x)
]
(~ξ) = G

(
[~ξ]b

)
= E

[
G
(
Z(x, ·)

) ∣∣ Zn(x)
]
(~ξ),

they are surplus in this case.
(4) While the conditioning function Zn does not contain the initial position

Z(x, 0) of the path Z(x, ·) because of Z(x, 0) = 0, it does contain the
position Z(x, t) at the present time t. Furthermore, if h = 1 almost every-
where, then Zn(x) = (x(t1)− x(0), . . . , x(tn)− x(0)) so that the formulas
in this paper do not extend the existing change-of-scale formulas on the
(generalized) Wiener spaces (see [6], [11]).

(5) The results of this paper are independent of a particular choice of the
probability measure ϕ.

Acknowledgments. This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by
the Ministry of Education (2013R1A1A2058991).



370 D. H. CHO

References

1. R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), no.
4, 623–627. Zbl 0057.09601. MR0065033. 359

2. R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change
of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), no. 2, 130–137. Zbl 0032.41801.
MR0019259. 359

3. R. H. Cameron and D. A. Storvick, “Some Banach algebras of analytic Feynman integrable
functionals” in Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer,
Berlin, 1980, 18–67. MR0577446. 359

4. R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend.
Circ. Mat. Palermo (2) Suppl. 17 (1987), 105–115. MR0950411. 359

5. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its appli-
cations, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795–3811. MR2386246. DOI 10.1090/
S0002-9947-08-04380-8. 359, 361

6. D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their
change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no.
2, 421–438. Zbl 1175.28010. MR2546758. DOI 10.1016/j.jmaa.2009.05.023. 359, 360, 368,
369

7. D. H. Cho and I. Yoo, Change of scale formulas for a generalized conditional Wiener inte-
gral, to appear in Bull. Korean Math. Soc. (2016). 359

8. M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Ko-
rean Math. Soc. 39 (2002), no. 5, 801–819. Zbl 1017.28007. MR1920906. DOI 10.4134/
JKMS.2002.39.5.801. 359, 360, 361

9. B. S. Kim, Relationship between the Wiener integral and the analytic Feynman integral of
cylinder function, J. Chungcheong Math. Soc. 27 (2014), no. 2, 249–260. 359, 361, 368

10. R. G. Laha and V. K. Rohatgi, Probability Theory, Wiley, New York, 1979. Zbl 0409.60001.
MR0534143. 360

11. I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, and T. S. Song, A change of scale formula for
conditional Wiener integrals on classical Wiener space, J. Korean Math. Soc. 44 (2007),
no. 4, 1025–1050. Zbl 1129.28014. MR2334543. DOI 10.4134/JKMS.2007.44.4.1025. 359,
360, 369

12. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener
spaces, II, J. Korean Math. Soc. 31 (1994), no. 1, 115–129. MR1269456. 359

13. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener
spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239–247. MR1261069. DOI 10.1155/
S0161171294000359. 359

14. I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener
integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371–389.
Zbl 1048.28010. MR2061137. DOI 10.1216/rmjm/1181069911. 359

Department of Mathematics, Kyonggi University, Suwon 16227, Republic of Ko-
rea.

E-mail address: j94385@kyonggi.ac.kr

http://www.emis.de/cgi-bin/MATH-item?0057.09601
http://www.ams.org/mathscinet-getitem?mr=0065033
http://www.emis.de/cgi-bin/MATH-item?0032.41801
http://www.ams.org/mathscinet-getitem?mr=0019259
http://www.ams.org/mathscinet-getitem?mr=0577446
http://www.ams.org/mathscinet-getitem?mr=0950411
http://www.ams.org/mathscinet-getitem?mr=2386246
http://dx.doi.org/10.1090/S0002-9947-08-04380-8
http://dx.doi.org/10.1090/S0002-9947-08-04380-8
http://www.emis.de/cgi-bin/MATH-item?1175.28010
http://www.ams.org/mathscinet-getitem?mr=2546758
http://dx.doi.org/10.1016/j.jmaa.2009.05.023
http://www.emis.de/cgi-bin/MATH-item?1017.28007
http://www.ams.org/mathscinet-getitem?mr=1920906
http://dx.doi.org/10.4134/JKMS.2002.39.5.801
http://dx.doi.org/10.4134/JKMS.2002.39.5.801
http://www.emis.de/cgi-bin/MATH-item?0409.60001
http://www.ams.org/mathscinet-getitem?mr=0534143
http://www.emis.de/cgi-bin/MATH-item?1129.28014
http://www.ams.org/mathscinet-getitem?mr=2334543
http://dx.doi.org/10.4134/JKMS.2007.44.4.1025
http://www.ams.org/mathscinet-getitem?mr=1269456
http://www.ams.org/mathscinet-getitem?mr=1261069
http://dx.doi.org/10.1155/S0161171294000359
http://dx.doi.org/10.1155/S0161171294000359
http://www.emis.de/cgi-bin/MATH-item?1048.28010
http://www.ams.org/mathscinet-getitem?mr=2061137
http://dx.doi.org/10.1216/rmjm/1181069911
mailto:j94385@kyonggi.ac.kr

	1 Introduction and preliminaries
	2 A generalized conditional Wiener integral
	3 Generalized analytic conditional Feynman integrals
	4 Change-of-scale formulas using the polygonal function
	5 Change-of-scale formulas without the polygonal function
	Acknowledgments
	References
	Author's addresses

