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Abstract. In this paper, we prove that, for any positive definite matrices
A,B, and real numbers ν, µ, p with −1 ≤ p < 1 and 0 < ν ≤ µ < 1, we have

ν

µ
(A∇µB −A]p,µB) ≤ A∇νB −A]p,νB ≤ 1− ν

1− µ
(A∇µB −A]p,µB),

where ∇ν and ]p,ν stand for weighted arithmetic and power mean, respectively.
In the special cases when p = 0, 1, this inequality can be considered as a gener-
alization of harmonic-arithmetic and geometric-arithmetic means inequalities
and their reverses.

Applying this inequality, some inequalities for the Heinz mean and determi-
nant inequalities related to weighted power means are obtained.

1. Introduction

Let B(H) be the algebra of bounded linear operators on a Hilbert space H, and
let B(H)+ stand for the strictly positive operators. A binary operation (A,B) 7→
AσB, from B+(H) × B+(H) to B+(H), is called a connection if the following
conditions are satisfied:

• A ≤ C and B ≤ D imply AσB ≤ CσD,
• An ↓ A and Bn ↓ B imply AnσBn ↓ AσB in the strong operator topology,
• T ∗(AσB)T ≤ (T ∗AT )σ(T ∗BT ) for every operator T .
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An operator mean is a connection with normalized condition IσI = I. An
easy calculation shows that if T is an invertible operator, then T ∗(AσB)T =
(T ∗AT )σ(T ∗BT ).

For ν ∈ [0, 1] and p ∈ [−1, 1], we can define the weighted power mean

A]p,νB = A
1
2

(
(1− ν)I + ν(A− 1

2BA− 1
2 )p

) 1
pA

1
2

corresponding to the operator monotone function f(t) = [(1− ν)+ νtp]
1
p . For the

case p = 0, we take the limit as p → 0 and

A]0,νB = A]νB = A
1
2 (A− 1

2BA− 1
2 )νA

1
2 ,

which is known as the weighted geometric mean. (Note that A]1,νB = (1− ν)A+
νB and A]−1,νB = ((1 − ν)A−1 + νB−1)−1 are called weighted arithmetic and
harmonic means and are denoted by ∇ν and !ν in the literature.) It can be easily
seen that A]p,νB ≤ A]q,νB if and only if p ≤ q. In addition, an easy calculation
shows that A]p,νB = B]p,1−νA.

Another important mean which interpolates arithmetic and geometric means
is the Heinz mean:

Hν(A,B) =
A]νB +B]νA

2
=

A]νB + A]1−νB

2
.

(For more details on operator means, see [8].)
Throughout this paper, we identify the matrix algebra Mn(C) of all n × n

matrices with entries in the complex field C with the space of B(Cn), and by
positive definite matrices we mean the strictly positive operators on B(Cn).

In [4] and [5], Kittaneh and Manasrah found an improvement of arithmetic-
geometric mean inequality and its reverse, and obtained the following results:

max{ν, 1− ν}(
√
a−

√
b)2 ≥ (1− ν)a+ νb− a1−νbν

≥ min{ν, 1− ν}(
√
a−

√
b)2,

where a and b are positive real numbers and ν ∈ [0, 1]. On the other hand, in [4],
they obtained the following result:

Hν(a, b) + min{ν, 1− ν}(
√
a−

√
b)2 ≤ a+ b

2
.

Further, they obtained a matrix version of these inequalities; that is, if B,C ∈
Mn(C) such that B is positive definite and C is invertible, then, for 0 ≤ ν ≤ 1,

2min{ν, 1− ν}
(
A∇B − C∗(C∗−1

BC−1)1/2C
)

≤ A∇νB − C∗(C∗−1

BC−1)νC,
(1.1)

and

2max{ν, 1− ν}
(
A∇B − C∗(C∗−1

BC−1)1/2C
)

≥ A∇νB − C∗(C∗−1

BC−1)νC,
(1.2)

where A = C∗C (see [5]).
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Recently, Alzer, da Fonseca, and Kovac̆ec in [1] compared the difference of
weighted arithmetic and geometric means with respect to two different weights.
They showed that, for positive definite matrices A,B ∈ Mn(C),

v

τ
(A∇τB − A]τB) ≤ A∇vB − A]vB ≤ 1− v

1− τ
(A∇τB − A]τB), (1.3)

where 0 < v ≤ τ < 1, and they obtained generalizations of some results about
the Young inequality and its reverse in [2], [4], and [5] as consequences.

One should note that

C∗(C∗−1

BC−1)νC = C∗(I]νC
∗−1

BC−1)C = C∗C]νB = A]νB.

Thus, we can consider the inequality (1.3) as a generalization of inequalities
(1.1) and (1.2). In addition, some mathematicians investigated the difference of
weighted arithmetic and harmonic means, and proved some similar results which
can be found in [6], [7], and [9]. In this article, we present a version of (1.3) for
the difference of weighted arithmetic and power means, namely,

ν

µ
(A∇µB − A]p,µB) ≤ A∇νB − A]p,νB ≤ 1− ν

1− µ
(A∇µB − A]p,µB)

for any positive definite matrices A,B, and real numbers ν, µ, p with −1 ≤ p < 1
and 0 < ν ≤ µ < 1.

These results are proved in [1] and [7] for two special cases of the geometric
mean and the harmonic mean. Also, similar inequalities for the Heinz mean and
some trace inequalities are obtained.

2. Numerical inequalities

To prove our main inequality, we need the following lemma.

Lemma 2.1. Let t be a real number and let y > −1. Then

(1 + y)t(ty − 1) + 1 ≥ 0

for t ∈ R \ [−1, 0]. If 0 < t < 1, then the inequality yields its converse.

Proof. Let t be a fixed number, and let g(y) = (1 + y)t(ty − 1). Then g′(y) =
t(1 + y)t−1(ty − 1) + t(1 + y)t = t(t + 1)y(1 + y)t−1. If t ∈ R \ [−1, 0], then
t(t + 1)(1 + y)t−1 > 0. It follows that g attains its minimum at y = 0; hence,
g(y) ≥ −1 for all y > −1. If 0 < t < 1, then we have t(t + 1)(1 + y)t−1 < 0.
Therefore, g attains its maximum at y = 0 so that g(y) ≤ −1. �

Note that in the numerical case, we can define weighted power mean ]p,ν for
each real number p.

Lemma 2.2. Let p ∈ R, let p 6= 1, and let 0 < ν ≤ µ < 1. Then for all positive
real number x > 0, we have

ν

µ
≤ 1∇νx− 1]p,νx

1∇µx− 1]p,µx
≤ 1− ν

1− µ
. (2.1)
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Proof. First let p 6= 0. Put

F (ν) =
1]p,νx− 1∇νx

ν
=

(1− ν + νxp)1/p − 1 + ν − νx

ν
.

Then

∂

∂ν
F =

1

ν

[
1/p(−1 + xp)(1− ν + νxp)1/p−1 − (−1 + x)

]
− 1

ν2

[
(1− ν + νxp)1/p − (1− ν + νx)

]
=

1

ν2

[
(1− ν + νxp)1/p−1

[(ν
p
(xp − 1)− 1 + ν − νxp

)]
+ 1

]
=

1

ν2

[
(1 + y)1/p−1

[(
y
(1
p
− 1

)
− 1

)]
+ 1

]
,

where y = νxp − ν. Using Lemma 2.1, if p < 1, then we get ∂
∂ν
F ≥ 0, and so

F is increasing. Therefore, F (ν) ≤ F (µ). Since F is negative, the first inequality
follows. Similarly, for p > 1, since ∂

∂ν
F ≤ 0 and F is a positive function, the

inequality follows.
For the second inequality, we use the fact that 1]p,νx = x(1]p,1−νx

−1). Now
applying the first inequality for 1− ν and 1− µ, the result follows.

To prove the result for p = 0, let p → 0 and use the continuity of ]p,ν . �

If we consider x = b
a
in (2.1) and we multiply both the numerator and denom-

inator of the fraction by b, then we get the following result.

Theorem 2.3. Let p ∈ R, let p 6= 1, and let 0 < ν ≤ µ < 1. Then for all positive
real numbers a, b,

ν

µ
≤ a∇νb− a]p,νb

a∇µb− a]p,µb
≤ 1− ν

1− µ
.

We can state a version of this theorem for the Heinz mean.

Corollary 2.4. Let 0 < ν ≤ µ < 1. Then for all positive real numbers a, b,

ν

µ
≤ a∇b−Hν(a, b)

a∇b−Hµ(a, b)
≤ 1− ν

1− µ
.

Proof. Applying Theorem 2.3, for ν ≤ µ, we have

ν

µ
(a∇µb− a]µb) ≤ a∇νb− a]νb ≤

1− ν

1− µ
(a∇µb− a]µb).

In addition, due to 1− µ ≤ 1− ν, we have

1− µ

1− ν
≤ a∇1−µb− a]1−µb

a∇1−νb− a]1−νb
≤ µ

ν
,

and therefore

ν

µ
(a∇1−µb− a]1−µb) ≤ a∇1−νb− a]1−νb ≤

1− ν

1− µ
(a∇1−µb− a]1−µb).



352 M. KHOSRAVI

Therefore,

ν

µ

(
(a∇µb+ a∇1−µb)− (a]µb+ a]1−µb)

)
≤ (a∇νb+ a∇1−νb)− (a]νb+ a]1−νb)

≤ 1− ν

1− µ

(
(a∇µb+ a∇1−µb)− (a]µb+ a]1−µb)

)
.

Thus,

ν

µ

(
a∇b−Hµ(a, b)

)
≤ a∇b−Hν(a, b) ≤

1− ν

1− µ

(
a∇b−Hµ(a, b)

)
. �

Using Theorem 2.3 and Lemma 2.5, we can find lower and upper bounds for
the difference of weighted arithmetic and power means.

Lemma 2.5. (see [1]) Let 0 < ν < 1, and let f : [a, b] → R be twice differentiable
with −∞ < m ≤ f ′′(x) ≤ M < +∞ for all x ∈ (a, b). Then

ν(1− ν)

2
(b− a)2m ≤ νf(a) + (1− ν)f(b)− f

(
νa+ (1− ν)b

)
≤ ν(1− ν)

2
(b− a)2M.

Theorem 2.6. Let 0 < ν < 1, and let 0 < a < b. Then

ν(1− ν)

2
× 1

p

(1
p
− 1

)
a
(( b

a

)p

− 1
)2

≤ a∇νb− a]p,νb (2.2)

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)
b
(
1−

(a
b

)p)2

(2.3)

for 0 6= p < 1
2
or p > 1. If 1

2
≤ p ≤ 1, then

ν(1− ν)

2
× 1

p

(1
p
− 1

)
b
(
1−

(a
b

)p)2

≤ a∇νb− a]p,νb (2.4)

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)
a
(( b

a

)p

− 1
)2

.

(2.5)

In addition,

ν(1− ν)

2
a ln2

( b
a

)
≤ a∇νb− a]νb ≤

ν(1− ν)

2
b ln2

(a
b

)
. (2.6)

Proof. Let f(t) = t1/p. Then f ′′(t) = 1
p
(1
p
− 1)t

1
p
−2. Assume that 1

2
≤ p ≤ 1.

Applying Lemma 2.5 on [ap, bp], we have

ν(1− ν)

2
× 1

p

(1
p
− 1

)
b
(
1−

(a
b

)p)2

≤ b∇νa− b]p,νa

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)
a
(( b

a

)p

− 1
)2

.
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Replacing ν with 1− ν and employing the fact that b]α,νa = a]α,1−νb, we get the
result. If p /∈ [1

2
, 1] and p > 0, then, as in the previous part, apply Lemma 2.5 on

[ap, bp] and replace ν with 1 − ν. Also, for p < 0, use the interval [bp, ap] to get
the desired result. Finally, for p = 0, use the above inequalities where p tends to
zero. �

In a similar way, we can apply (2.6) for ν and 1 − ν to find a bound for the
Heinz mean.

Corollary 2.7. For 0 < ν < 1 and positive numbers a, b, we have

ν(1− ν)

2
a ln2

( b
a

)
≤ a∇b−Hν(a, b) ≤

ν(1− ν)

2
b ln2

(a
b

)
. (2.7)

3. Matrix inequalities

Based on the numerical inequalities in the preceding section and the spectral
theorem, we obtain the matrix versions of these inequalities. Since ]p,ν defines an
operator means only if −1 ≤ p ≤ 1, in this section, we focus on the case |p| ≤ 1.

Lemma 3.1. Let Q ∈ Mn(C) be positive definite, and let ν, µ, and p be real
numbers with −1 ≤ p < 1 and 0 < ν ≤ µ < 1. Then

ν

µ
(I∇µQ− I]p,µQ) ≤ I∇νQ− I]p,νQ ≤ 1− ν

1− µ
(I∇µQ− I]p,µQ). (3.1)

Proof. By the spectral theorem, the positive definite matrix Q can be written as
Q = U∗DU for some unitary matrix U and diagonal matrix D = diag(λ1, . . . , λn),
where λi > 0 are the eigenvalues of Q. Since I]p,νD = diag(1]p,νλ1, . . . , 1]p,νλn),
applying (2.1) for x = λi, i = 1, . . . , n, we have

ν

µ
(I∇µD − I]p,µD) ≤ I∇νD − I]p,νD ≤ 1− ν

1− µ
(I∇µD − I]p,µD).

Now, by multiplying the inequalities by U from the left and by U∗ from the right,
the result follows. �

Theorem 3.2. Let A,B ∈ Mn(C) be positive definite, and let ν, µ, and p be real
numbers with −1 ≤ p < 1 and 0 < ν ≤ µ < 1. Then

ν

µ
(A∇µB − A]p,µB) ≤ A∇νB − A]p,νB ≤ 1− ν

1− µ
(A∇µB − A]p,µB). (3.2)

Proof. Put Q = A− 1
2BA− 1

2 in (3.1) and multiply the inequalities by A
1
2 from both

the left and right to get the result. �

A similar argument as in Corollary 2.4 leads to the following result for the
Heinz mean.

Corollary 3.3. Let A,B ∈ Mn(C) be positive definite, and let ν and µ be real
numbers with 0 < ν ≤ µ < 1. Then

ν

µ

(
A∇B −Hµ(A,B)

)
≤ A∇B −Hν(A,B) ≤ 1− ν

1− µ

(
A∇B −Hµ(A,B)

)
. (3.3)
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Theorem 3.4. Let A,B ∈ Mn(C) be positive definite matrices such that 0 ≤
mI ≤ A ≤ B ≤ MI and −1 ≤ p ≤ 1. Then, for 0 < ν < 1,

(i) if 0 6= p ≤ 1
2
, then

A∇νB − A]p,νB ≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)(
1−

(m

M

)p)2

B;

(ii) if 1
2
≤ p ≤ 1, then

A∇νB − A]p,νB ≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)((M
m

)p

− 1
)2

A;

(iii) in addition,

A∇νB − A]νB ≤ ν(1− ν)

2
ln2

(M
m

)
B.

Proof. (i) Let 0 6= p ≤ 1
2
. Using (2.2), for 1 ≤ t = b

a
≤ M

m
, we have

1∇νt− 1]p,νt ≤
ν(1− ν)

2
× 1

p

(1
p
− 1

)
t(1− t−p)2

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)
t max
1≤t≤M

m

(1− t−p)2

=
ν(1− ν)

2
× 1

p

(1
p
− 1

)(
1−

(m

M

)p)2

t.

Thus, for the positive definite matrix A− 1
2BA− 1

2 with I ≤ A− 1
2BA− 1

2 ≤ M
m
I, it

can be deduced that

I∇νA
− 1

2BA− 1
2 − I]p,νA

− 1
2BA− 1

2

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)(
1−

(m

M

)p)2

A− 1
2BA− 1

2 .

Hence,

A∇νB − A]p,νB ≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)(
1−

(m

M

)p)2

B.

(ii) Similarly, let t = b
a
. Then, by inequality (2.4), we get

1∇νt− 1]p,νt ≤
ν(1− ν)

2
× 1

p

(1
p
− 1

)
(tp − 1)2

≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)
t max
1≤t≤M

m

(tp − 1)2

=
ν(1− ν)

2
× 1

p

(1
p
− 1

)((M
m

)p

− 1
)2

.

Thus, for the positive definite matrix A− 1
2BA− 1

2 , it can be deduced that

I∇νA
− 1

2BA− 1
2 − I]p,νA

− 1
2BA− 1

2 ≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)((M
m

)p

− 1
)2

.
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Hence,

A∇νB − A]p,νB ≤ ν(1− ν)

2
× 1

p

(1
p
− 1

)((M
m

)p

− 1
)2

A.

(iii) Using inequality (2.6) and following similar arguments as above, the result
follows. �

Corollary 3.5. Let A,B ∈ Mn(C) be positive definite matrices such that 0 ≤
mI ≤ A ≤ B ≤ MI and 0 < ν < 1. Then

A∇B −Hν(A,B) ≤ ν(1− ν)

2
ln2

(M
m

)
B.

Remark 3.6. Note that for positive definite matrices A,B, with A ≤ B, we have
0 < λn(A)I ≤ A ≤ B ≤ λ1(B)I, where λn(A) and λ1(B) stand for the minimum
of eigenvalues of A and the maximum of eigenvalues of B, respectively; that is,

in the preceding theorem, M
m

= λ1(B)
λn(A)

.

Remark 3.7. Note that one can obtain similar inequalities for strictly positive op-
erators on Hilbert spaces using the following monotonicity property for operator
functions: If X is a self-adjoint operator with the spectrum sp(X), then

f(t) ≥ g(t), t ∈ sp(X) =⇒ f(X) ≥ g(X).

For more details about this property, see [8].

4. Determinant inequality

In this section, we state a version of inequality (3.2) for the determinant of the
matrices.

Lemma 4.1 (Minkowski’s product inequality; [3, p. 560]). Let a = [ai],
b = [bi], i = 1, 2, . . . , n, such that ai and bi are positive real numbers. Then( n∏

i=1

ai

) 1
n
+
( n∏
i=1

bi

) 1
n ≤

( n∏
i=1

(ai + bi)
) 1

n
.

The following lemma can be obtained by an easy calculation.

Lemma 4.2. Let a and b be positive real numbers. If α ≥ 1, then

aα + bα ≤ (a+ b)α.

Corollary 4.3. Let a = [ai], b = [bi], i = 1, 2, . . . , n, such that ai and bi are
positive real numbers. Then, for α ≥ 1,( n∏

i=1

ai

)α
n
+
( n∏
i=1

bi

)α
n ≤

( n∏
i=1

(ai + bi)
)α

n
.

Theorem 4.4. Let A,B ∈ Mn(C) be positive definite. If ν, µ, and α are real
numbers with 0 < ν ≤ µ < 1 and α ≥ 1, then, for −1 ≤ p < 1,(ν

µ

)α

det(A∇µB − A]p,µB)
α
n ≤ det(A∇νB)

α
n − det(A]p,νB)

α
n . (4.1)
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Proof. Applying the first inequality of (2.1) for the singular values si(T ) of the

positive definite matrix T = A− 1
2BA− 1

2 , we have

ν

µ
≤ 1∇νsi(T )− 1]p,νsi(T )

1∇µsi(T )− 1]p,µsi(T )

for all i = 1, 2, . . . , n for which si(T ) 6= 1. We have

det(I∇νT )
α
n =

(
det(I∇νT )

)α
n

=
( n∏
i=1

1∇νsi(T )
)α

n

≥
( n∏
i=1

[(ν
µ

)(
1∇µsi(T )− 1]p,µsi(T )

)
+ 1]p,νsi(T )

])α
n

≥
(ν
µ

)α
n∏

i=1

[
1∇µsi(T )− 1]p,µsi(T )

]α
n +

n∏
i=1

[
1]p,νsi(T )

]α
n

=
(ν
µ

)α

det(I∇µT − I]p,µT )
α
n + det(I]p,νT )

α
n .

The second inequality is obtained by Lemma 4.2. Multiplying (detA1/2)α/n to
both sides and by the multiplicativity of the determinant, we derive (4.1). �

Remark 4.5. If α = 1 in the inequality (4.1), then

ν

µ
det(A∇µB − A]p,µB)

1
n ≤ det(A∇νB)

1
n − det(A]p,νB)

1
n ,

and if α = n in the inequality (4.1), then

detA]p,νB +
(ν
µ

)n

det(A∇µB − A]p,µB) ≤ detA∇νB. (4.2)

Similarly, we have the following result.

Corollary 4.6. Let A,B ∈ Mn(C) be positive definite. If ν, µ, and α are real
numbers with 0 < ν ≤ µ < 1 and α ≥ 1, then(ν

µ

)α

det
(
A∇B −Hµ(A,B)

)α
n ≤ det(A∇B)

α
n − det

(
Hν(A,B)

)α
n .

In particular,

ν

µ
det

(
A∇B −Hµ(A,B)

) 1
n ≤ det(A∇B)

1
n − det

(
Hν(A,B)

) 1
n ,

and

detHν(A,B) +
(ν
µ

)n

det
(
A∇B −Hµ(A,B)

)
≤ detA∇B.
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