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Abstract. Let A be a bounded closed convex set in a Banach space. The
boundaries of the wide spherical hull η(A) and the tight spherical hull θ(A) are
characterized, the existence of diametral points of these three sets are discussed,
and a further relation between these three sets is clarified. Moreover, a new
characterization of balls is presented.

1. Introduction

We denote by H the family of bounded closed sets containing at least two
points in a Banach space X, whose origin is o, and by BX(x, γ) (SX(x, γ), resp.)
the ball (sphere, resp.) centered at x ∈ X having radius γ > 0. The unit ball
BX(o, 1) (unit sphere SX(o, 1), resp.) is simply denoted by BX (SX , resp.).

For each A ∈ H, we put

γ(A, x) = sup
{
‖x− a‖ : a ∈ A

}
,

γ′(A, x) = inf
{
‖x− a‖ : a /∈ A

}
, ∀x ∈ X,

γ(A,B) = inf
{
γ(A, x) : x ∈ B

}
, ∀B ⊆ X,

γ(A) = γ(A,X), γ′(A) = sup
{
γ′(A, x) : x ∈ A

}
.

Here γ(A) is called the radius of A, and a point x ∈ X satisfying γ(A) = γ(A, x)
will be called a center of A. Note that not every bounded set has a center.
Suppose that x ∈ A. We say that x is a diametral point of A if γ(A, x) = δ(A),
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and that x is a strongly diametral point of A if there exists a point y ∈ A such
that ‖x − y‖ = δ(A). A pair of points x, y ∈ A is called a diametral pair if
‖x− y‖ = δ(A). The wide spherical hull η(A) and the tight spherical hull θ(A) of
A are defined by

η(A) =
⋂
x∈A

BX

(
x, δ(A)

)
, θ(A) =

⋂
x∈η(A)

BX

(
x, δ(A)

)
,

where

δ(A) = sup
{
‖x− y‖ : x, y ∈ A

}
is the diameter of A. It is known (see the proof of Theorem 5 in [2]) that δ(A) =
δ(θ(A)) and (see equation (3) in [9]) that

η(A) =
⋂

x∈θ(A)

BX

(
x, δ(A)

)
=

⋂
x∈θ(A)

BX

(
x, δ

(
θ(A)

))
= η

(
θ(A)

)
. (1)

In the following we use bdA to denote the boundary of A.
The notions of wide spherical hull and tight spherical hull are tightly connected

to the notions of complete sets and completions of sets. If the implication

x /∈ A ⇒ δ
(
A ∪ {x}

)
> δ(A)

holds, then A is called a complete set. If A is a complete set containing a set B
and satisfying δ(A) = δ(B), then A is called a completion of B. It is known (see,
e.g., [1, Proposition 3.1] and [3, Theorem 3]) that

(1) η(A) and θ(A) are both bounded closed convex sets,
(2) A ⊆ θ(A) ⊆ η(A),
(3) η(A) is the union of all completions of A,
(4) θ(A) is the intersection of all completions of A,
(5) A is complete if and only if A = η(A),
(6) A and θ(A) have the same centers, the same radius, and the same com-

pletions.

Also the following facts are equivalent (see [1, Theorem 3.7], [5, Proposition 2],
[4, Theorem 1]):

(1) A has a unique completion,
(2) η(A) = θ(A),
(3) θ(A) is complete,
(4) δ(η(A)) = δ(A),
(5) η(A) is complete.

There are many problems related to the structures of wide and tight spheri-
cal hulls. For example, in [6] Schneider and Moreno mentioned the problem of
characterizing spaces X so that the Maehara set µ(A) defined by

µ(A) :=
1

2

(
η(A) + θ(A)

)
is a completion of A for each A ∈ H. Note that the original problem is stated
for Minkowski spaces (i.e., for real finite-dimensional Banach spaces). And they
wrote “We do not know whether the Minkowski spaces in which every Maehara
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set is complete (without necessarily being of constant width) have a simple char-
acterization”. This situation indicates that the structure of wide spherical hull
and tight spherical hull of bounded sets is still not perfectly known.

In the present article, we study the relation between the sets A, η(A), and θ(A)
when A ∈ H.

2. On the Boundary structure and diametral points

2.1. Characterizations of bd η(A) and bd θ(A).

Proposition 2.1. If A ∈ H, then x ∈ bd η(A) if and only if γ(A, x) = δ(A).

Proof. In [7] it is shown that γ(A, x) = δ(A) holds for each x ∈ bd η(A). We only
need to show that γ(A, x) = δ(A) implies that x ∈ bd η(A).

Let γ0 = γ(A, x) = δ(A). It is clear that x ∈ η(A). If x /∈ bd η(A), then there ex-
ists a number γ > 0 such that BX(x, γ) ⊆ η(A). For each ε ∈ (0,min{δ(A), γ/2}),
there exists a point y ∈ A such that

‖x− y‖ ≥ δ(A)− ε.

Clearly,

z = x+ γ
x− y

‖x− y‖
∈ BX(x, γ) ⊆ η(A).

However,

‖z − y‖ =
∥∥∥x+ γ

x− y

‖x− y‖
− y

∥∥∥ =
(
1 +

γ

‖x− y‖

)
‖x− y‖

= ‖x− y‖+ γ

≥ δ(A)− ε+ γ

> δ(A),

which is a contradiction. Thus x ∈ bd η(A). �

For θ(A) we have the following similar result.

Proposition 2.2. Suppose that A ∈ H and that x ∈ θ(A). Then x ∈ bd θ(A) if
and only if γ(η(A), x) = δ(A).

Proof. First suppose that x ∈ bd θ(A). Suppose to the contrary that γ(η(A), x) <
δ(A). Then for each point z ∈ BX(x, δ(A)−γ(η(A), x)) and each point w ∈ η(A),
we have

‖z − w‖ ≤ ‖z − x‖+ ‖x− w‖ ≤ δ(A)− γ
(
η(A), x

)
+ γ

(
η(A), x

)
= δ(A).

It follows that BX(x, δ(A) − γ(η(A), x)) ⊆ θ(A), which is a contradiction to the
fact that x ∈ bd θ(A).

Now assume that γ(η(A), x) = δ(A). If x /∈ bd θ(A), then there exists a number
γ ∈ (0, δ(A)) such that BX(x, γ) ⊆ θ(A). Since γ(η(A), x) = δ(A), there exists a
point y ∈ η(A) such that ‖x− y‖ > δ(A)− γ. Then

x+ γ
x− y

‖x− y‖
∈ θ(A)
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and ∥∥∥x+ γ
x− y

‖x− y‖
− y

∥∥∥ = ‖x− y‖+ γ > δ(A)− γ + γ = δ(A),

a contradiction. �

2.2. Diametral points of A, η(A), and θ(A). As the following example shows,
a set A ∈ H need not have a diametral point; a set having diametral points does
not necessarily have strongly diametral points.

Example 2.3. Let X = (c0, ‖ · ‖∞) and

A =
{
(αi)

∞
i=1 : |αi| ≤ 1− 1

i
,∀i ∈ N

}
.

Then δ(A) = 2, and A has no diametral point. Now put

B =
{
(αi)

∞
i=1 : 0 ≤ αi ≤ 1− 1

i
,∀i ∈ N

}
.

Then δ(B) = 1; each point of B is diametral but not strongly diametral.

Next we characterize the set of diametral points of A and θ(A).

Proposition 2.4. For each A ∈ H, the set of diametral points of A is precisely
A ∩ bd η(A).

Proof. If x is a diametral point of A, then γ(A, x) = δ(A). Proposition 2.1 shows
that x ∈ bd η(A). Thus x ∈ A ∩ bd η(A).

Conversely, suppose that x ∈ A∩bd η(A). Proposition 2.1 shows that γ(A, x) =
δ(A). Therefore, x is a diametral of A. �

As we have mentioned, η(θ(A)) = η(A). Therefore we have the following.

Corollary 2.5. For each A ∈ H, the set of diametral points of θ(A) is precisely
θ(A) ∩ bd η(A).

With the help of Proposition 2.4 and Corollary 2.5, we can prove the following.

Proposition 2.6. Let A ∈ H, x ∈ A. Then x is a diametral point of A if and
only if it is a diametral point of θ(A).

Proof. First suppose that x is a diametral point of A. By Proposition 2.4,

x ∈ A ∩ bd η(A) ⊆ θ(A) ∩ bd η(A).

Then Corollary 2.5 shows that x is a diametral point of θ(A).
Now suppose that x ∈ A is a diametral point of θ(A). Then

x ∈ θ(A) ∩ bd η(A),

which shows that γ(A, x) = δ(A). Thus x is a diametral point of A. �

The following example shows that θ(A) may have diametral points while A
does not.
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Example 2.7. Let X be the linear subspace of C[0, 1] that consists of functions
f ∈ C[0, 1] satisfying f(0) = 0, let ‖ · ‖ be the norm on X which is given by

‖f‖ = ‖f‖∞ + ‖f‖1 = max
{∣∣f(α)∣∣ : α ∈ [0, 1]

}
+

∫ 1

0

∣∣f(α)∣∣ dα, ∀f ∈ X,

and let A be a set defined by

A :=
{
f ∈ X : f(0) = 0, f(1) = 1, f(α) ∈ [0, 1],∀α ∈ (0, 1)

}
.

(1) δ(A) = 2: Clearly, δ(A) ≤ 2. For each integer n ≥ 3, put

fn(α) =

{
nα, 0 ≤ α < 1

n
,

1, 1
n
≤ α ≤ 1,

gn(α) =

{
0, 0 ≤ α < 1− 1

n
,

nα + (1− n), 1− 1
n
≤ α ≤ 1.

Then

‖fn − gn‖ = 1 +

∫ 1
n

0

|nα| dα +

∫ 1− 1
n

1
n

1 dα +

∫ 1

1− 1
n

∣∣1− nα− (1− n)
∣∣ dα

≥ 1 + 1− 2

n
= 2− 2

n
.

Thus δ(A) ≥ 2. It follows that δ(A) = 2.
(2) A has no diametral point: For each f ∈ A, there exist two numbers γ1, γ2

such that 0 < γ1 < γ2 < 1 and that

1

4
≤ f(α) ≤ 3

4
, ∀α ∈ [γ1, γ2].

Then, for each g ∈ A, we have

‖f − g‖ ≤ 1 +

∫ γ1

0

∣∣f(α)− g(α)
∣∣ dα +

∫ γ2

γ1

∣∣f(α)− g(α)
∣∣ dα

+

∫ 1

γ2

∣∣f(α)− g(α)
∣∣ dα

≤ 1 + γ1 + 1− γ2 +
3

4
(γ2 − γ1) = 2− 1

4
(γ2 − γ1).

Hence f is not diametral.
(3) o ∈ θ(A): We only need to show that ‖f‖ ≤ 2 holds for each f ∈ η(A). For

each sufficiently small ε > 0, there exists an integer N0 ≥ 2 such that

max
{∣∣f(α)∣∣ : 0 ≤ α < 1− 1

n

}
≥ ‖f‖∞−ε and

∫ 1− 1
n

0

∣∣f(α)∣∣ dα ≥ ‖f‖1−ε

holds for each integer n ≥ N0. For each n ≥ N0, put

gn(α) =

{
0, 0 ≤ α < 1− 1

n
,

αn+ 1− n, 1− 1
n
≤ α ≤ 1.
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Then gn ∈ A. Therefore,

2 ≥ ‖f − gn‖ = ‖f − gn‖∞ + ‖f − gn‖1

≥ max
{∣∣f(α)∣∣ : 0 ≤ α < 1− 1

n

}
+

∫ 1− 1
n

0

∣∣f(α)∣∣ dα
≥ ‖f‖∞ + ‖f‖1 − 2ε.

It follows that

‖f‖ = ‖f‖∞ + ‖f‖1 ≤ 2.

(4) o is a diametral point of θ(A): For each integer n ≥ 2, put

gn(α) =

{
nα, 0 ≤ α < 1

n
,

1, 1
n
≤ α ≤ 1.

Then gn ∈ A and

‖gn‖ = 1 +

∫ 1
n

0

nα dα +

∫ 1

1
n

1 dα ≥ 1 + 1− 1

n
= 2− 1

n
.

Thus

γ
(
θ(A), o

)
≥ γ(A, o) ≥ 2− 1

n
, ∀n ≥ 2.

It follows that o is a diametral point of θ(A).

If A ∈ H is complete, then A = η(A), and by Proposition 2.1 each boundary
point of A is a diametral point.

The following example shows that η(A) may have no diametral point, even if
A has.

Example 2.8. Let X be the subspace of C[−1, 1] consisting of functions f satis-
fying f(0) = 0. Let

A =
{
f ∈ X : α ≤ f(α) ≤ 0,∀α ∈ [−1, 0); f(α) ∈ [0, 1],∀α ∈ (0, 1]

}
.

Then δ(A) = 1,

η(A) =
{
f ∈ X : −1 ≤ f(α) ≤ 1 + α, ∀α ∈ [−1, 0); f(α) ∈ [0, 1],∀α ∈ (0, 1]

}
,

θ(A) = A, δ(η(A)) = 2, η(A) has no diametral point while both A and θ(A) have
diametral points.

When the underlying space is finite-dimensional, then both A and θ(A) have
strongly diametral points. As we will show in the next section, both θ(A) and A
can have no diametral point and it is possible that A ⊆ int θ(A) for some A ∈ H.
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2.3. On the distance from A to bd η(A) and bd θ(A).

Proposition 2.9. For each A ∈ H, we have

γ = inf
{
‖x− y‖ : x ∈ A, y ∈ bd η(A)

}
= 0.

Proof. Otherwise, γ > 0. Let x be an arbitrary point in A, and y be an arbitrary
point in BX(x, γ/2). If y /∈ int(η(A)), then by the convexity of η(A) and the fact
that A ⊆ η(A), we have

BX(x, γ/2) ∩ bd η(A) 6= ∅,
which is in contradiction to the definition of γ. Thus

BX(x, γ/2) ⊆ int
(
η(A)

)
, ∀x ∈ A.

Clearly, A contains two points u, v such that

‖u− v‖ ≥ δ(A)− γ/4.

On the one hand, we have

u+
γ

2

u− v

‖u− v‖
∈ η(A),

and, on the other hand,∥∥∥u+
γ

2

u− v

‖u− v‖
− v

∥∥∥ = ‖u− v‖+ γ

2
≥ δ(A) + γ/4 > δ(A),

which is another contradiction. Thus, γ = 0. �

Corollary 2.10. For each A ∈ H,

γ = inf
{
‖x− y‖ : x ∈ θ(A), y ∈ bd η(A)

}
= 0.

In a similar way, we can prove the following

Proposition 2.11. For each A ∈ H,

γ = inf
{
‖x− y‖ : x ∈ A, y ∈ bd θ(A)

}
= 0.

Proof. Otherwise γ > 0. In a similar way as in the proof of Proposition 2.9, we
have

BX(x, γ/2) ⊆ int
(
θ(A)

)
⊆ int

(
η(A)

)
, ∀x ∈ A.

Then the distance from each point x ∈ A to bd η(A) is not less than γ/2, which
is a contradiction to Proposition 2.9. �

One may expect that bd η(A) ∩ A 6= ∅ and bd η(A) ∩ θ(A) 6= ∅ hold for each
A ∈ H, which is true when the dimension of the underlying space is finite. In the
following we show by a concrete example that this is not true in general. We will
use the following lemma.

Lemma 2.12. Suppose that A ∈ H. Then

η(−A) = −η(A), θ(−A) = −θ(A).

If A = −A, then (δ(A)/2)BX is a completion of A.
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Proof. Let p be an arbitrary point in η(−A), and let x be an arbitrary point in A.
Then

‖−p− x‖ =
∥∥p− (−x)

∥∥ ≤ δ(A) = δ(−A).

Thus −p ∈ η(A). It follows that η(−A) ⊆ −η(A). Replacing −A by A, we have
−η(A) ⊆ η(−A). Thus η(−A) = −η(A). In a similar way we can show that
θ(−A) = −θ(A).

Now suppose that −A = A. Then, for each point x ∈ A, we have

‖x‖ =
1

2

∥∥x− (−x)
∥∥ ≤ δ(A)/2,

which implies that x ∈ (δ(A)/2)BX . Thus, (δ(A)/2)BX , a ball containing A whose
diameter is δ(A), is a completion of A. �

We denote by X the Banach space (c0, ‖ · ‖∞), where ‖ · ‖∞ is the usual maxi-
mum norm, and by Y the Banach space (c0, ‖ · ‖D), where ‖ · ‖D is Day’s norm.
More precisely, for each (αi)

∞
i=1 ∈ c0,∥∥(αi)

∞
i=1

∥∥
D
=

( ∞∑
i=1

(βi

2i

)2)1/2

,

where (βi)
∞
i=1 is a permutation of (αi)

∞
i=1 such that

|βi| ≥ |βi+1|, ∀i ∈ N.

Each permutation of (αi)
∞
i=1 having this property will be called a nonincreasing

permutation of (αi)
∞
i=1.

It is not difficult to verify (see, e.g., [11, p. 1774]) that∥∥(αi)
∞
i=1

∥∥
D
= sup

{( n∑
k=1

(αik

2k

)2)1/2

: n ∈ N, {ik : 1 ≤ k ≤ n} ⊂ N
}
.

The space Y is locally uniformly convex and the norm ‖ · ‖D is equivalent to
‖ · ‖∞ on c0 (see [10]). Therefore, if x ∈ Y and if {xn}∞n=1 ⊆ Y satisfies

‖x‖D = 1 = ‖xn‖D, ∀n ∈ N and lim
n→∞

‖x+ xn‖D = 2,

then

lim
n→∞

‖x− xn‖D = 0.

Now put A = BX . Then A is a bounded closed convex set in Y symmetric with
respect to o.

Proposition 2.13. Let A be the subset of Y defined above. Then

(i) δ(A) = 2
√
3/3,

(ii) BY (o,
√
3/3) is a completion of A,

(iii) SY (o,
√
3/3) ∩ bd η(A) = ∅,

(iv) bd η(A) ∩ θ(A) = ∅, and therefore θ(A) has no diametral point,
(v) A ⊆ int θ(A).
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Proof. (i) Let (αi)
∞
i=1 and (βi)

∞
i=1 be two arbitrary points in A, and let (γi)

∞
i=1 be

a nonincreasing permutation of (αi − βi)
∞
i=1. On the one hand, we have∥∥(αi − βi)

∞
i=1

∥∥
D
=

( ∞∑
i=1

(γi
2i

)2)1/2

≤
( ∞∑

i=1

4

4i

)1/2

=
2
√
3

3
.

Therefore,

δ(A) ≤ 2
√
3

3
.

On the other hand, for each n ∈ N, let (αn
i )

∞
i=1 and (βn

i )
∞
i=1 be two points in A

such that

αn
i = −βn

i = 1, ∀i ≤ n

αn
i = βn

i = 0, ∀i > n.

Then ∥∥(αn
i − βn

i )
∞
i=1

∥∥
D
=

( n∑
i=1

4

4i

)1/2

=
2
√
3

3
·
(
1− 1

4n

)1/2

.

It follows that δ(A) ≥ 2
√
3/3. Thus (i) follows.

(ii) This follows from (i), Lemma 2.12, and the fact that A = −A.
(iii) It sufficies to show that

γ(A, x) < δ(A), ∀x ∈ SY

(
o,

√
3

3

)
. (2)

Let x = (αi)
∞
i=1 be an arbitrary point in SY (o,

√
3/3), and let (ηi)

∞
i=1 be a nonin-

creasing permutation of (αi)
∞
i=1. Then

∞∑
i=1

|ηi|2

4i
=

1

3
.

Since

lim
i→∞

ηi = 0,

there exists a number N ∈ N such that

|ηi| ≤
1

2
, ∀i > N.

Therefore,

1

3
=

∞∑
i=1

|ηi|2

4i
=

N∑
i=1

|ηi|2

4i
+

∞∑
i=N+1

|ηi|2

4i

≤
N∑
i=1

|η1|2

4i
+

∞∑
i=N+1

1

4i+1

=
1

3

(
η21 −

η21
4N

)
+

1

3 · 4N+1
.
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Hence,

η21 ≥
1− 1

4N+1

1− 1
4N

=
4N+1 − 1

4N+1 − 4
> 1.

This shows that x /∈ A.
Suppose the contrary, namely, that γ(A, x) = δ(A). Then there exists a se-

quence {xn}∞n=1 ⊆ A such that

δ(A) ≥ ‖x− xn‖D ≥ δ(A)− 1

n
, ∀n ∈ N.

By the triangle inequality, we have

δ(A)/2 ≥ ‖xn‖D ≥ ‖x− xn‖D − ‖x‖D ≥ δ(A)/2− 1

n
.

Put

u =
x

‖x‖D
, un = − xn

‖xn‖D
, ∀n ∈ N.

Then

‖u+ un‖D =
∥∥∥ x

‖x‖D
− xn

‖xn‖D

∥∥∥
D

=
∥∥∥ x

‖x‖D
− xn

‖x‖D
+
(
1− ‖x‖D

‖xn‖D

) xn

‖x‖D

∥∥∥
D
,

which implies that

lim
n→∞

‖u+ un‖D = lim
n→∞

‖x− xn‖D
‖x‖D

= 2.

Since (c0, ‖ · ‖D) is locally uniformly convex,

lim
n→∞

un = u.

Therefore

lim
n→∞

xn = − lim
n→∞

(
‖xn‖D · un

)
= −δ(A)

2
u = −x.

Since A = −A is closed and x /∈ A, this is impossible. Hence γ(A, x) < δ(A).
(iv) (iii) implies that

θ(A) ∩ bd η(A) ⊆ BY

(
o,

√
3

3

)
∩ bd η(A)

⊆ SY

(
o,

√
3

3

)
∩ bd η(A) = ∅,

where the second inclusion holds since each interior point of BY (o,
√
3/3) is also

an interior point of η(A). Corollary 2.5 shows that θ(A) has no diametral point.
(v) Let (αi)

∞
i=1 be an arbitrary point in bdA, and let N0 be the number of

elements in this sequence whose absolute value is not less than 1/2. Let (βi)
∞
i=1

be an arbitrary point in η(A). We show that∥∥(αi − βi)
∞
i=1

∥∥2

D
< δ(A)2 − 3

4N0+2
. (3)
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For each k ∈ N, let Nk ≥ max{k + 1, N0 + 1} be an integer such that

|αi − βi| ≤
1

2k
, ∀i ≥ Nk.

Therefore there are at most Nk − 1 numbers in the sequence (αi − βi)
∞
i=1 whose

absolute value is strictly greater than 1/2k.
For each i < Nk, put

γk
i =

{
1, βi ≤ 0;

−1, βi > 0,

and, for each i ≥ Nk, put γ
k
i = αi. Then (γk

i )
∞
i=1 ∈ bdA. Suppose that π(·) is a

permutation of natural numbers such that the sequence (ηi)
∞
i=1 defined by

ηi = απ(i) − βπ(i), ∀i ∈ N,

is a non-increasing permutation of (αi − βi)
∞
i=1. Then

δ(A)2 −
∥∥(αi − βi)

∞
i=1

∥∥2

D

≥
∥∥(γk

i − βi)
∞
i=1

∥∥2

D
−

∥∥(αi − βi)
∞
i=1

∥∥2

D

≥
Nk−1∑
i=1

(γk
π(i) − βπ(i))

2

4i
−

Nk−1∑
i=1

(απ(i) − βπ(i))
2

4i
−

∞∑
i=Nk

(απ(i) − βπ(i))
2

4i

≥
Nk−1∑
i=1

(γk
π(i) − βπ(i))

2

4i
−

Nk−1∑
i=1

(απ(i) − βπ(i))
2

4i
−

∞∑
i=Nk

( 1
2k
)2

4i

≥
Nk−1∑
i=1

(γk
π(i) − βπ(i))

2

4i
−

Nk−1∑
i=1

(απ(i) − βπ(i))
2

4i
− 1

3 · 16k
. (4)

Clearly,

(γk
π(i) − βπ(i))

2 − (απ(i) − βπ(i))
2 ≥ 0, ∀i ∈ N.

First suppose that there exists an integer i0 ≤ N0 such that |απ(i0)| < 1/2. If
|γk

π(i0)
− βπ(i0)| = 1 + |βπ(i0)|, then (4) implies that

δ(A)2 −
∥∥(αi − βi)

∞
i=1

∥∥2

D
≥

(1 + |βπ(i0)|)2 − (απ(i0) − βπ(i0))
2

4i0
− 1

3 · 16k

≥ 3

4i0+1
− 1

3 · 16k
>

3

4N0+2
− 1

3 · 16k
.

Otherwise, γk
π(i0)

= απ(i0) and |γk
π(i0)

− βπ(i0)| = |απ(i0) − βπ(i0)| ≤ 1/2k. The

construction of (γk
i )

∞
i=1 shows that there are at least Nk − 1 integers i such that

|γk
i − βi| = 1 + |βi|. Thus there exists an j0 ≥ Nk such that

|γk
π(j0)

− βπ(j0)| = 1 + |βπ(j0)|.
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By replacing, in (4), (γk
π(i0)

− βπ(i0))
2 with (γk

π(j0)
− βπ(j0))

2 we obtain

δ(A)2 −
∥∥(αi − βi)

∞
i=1

∥∥2

D
≥

(1 + |βπ(j0)|)2 − (απ(i0) − βπ(i0))
2

4i0
− 1

3 · 16k

≥ 3

4i0+1
− 1

3 · 16k
>

3

4N0+2
− 1

3 · 16k
.

Now suppose that, for each i0 ≤ N0, we have |απ(i0)| ≥ 1/2. Then |απ(N0+1)| <
1/2. In a similar way as above, we can show that

δ(A)2 −
∥∥(αi − βi)

∞
i=1

∥∥2

D
≥ 3

4N0+2
− 1

3 · 16k
.

Since k is arbitrary, (3) holds. Thus γ(η(A), (αi)
∞
i=1) < δ(A), which implies that

(αi)
∞
i=1 ∈ int θ(A). Therefore A ⊆ int θ(A). �

3. A characterization of balls

In this short section we prove a simple characterization of the case when η(A)
is a ball.

Theorem 3.1. Let A ∈ H. Then η(A) is a ball if and only if

γ
(
η(A)

)
= δ

(
η(A)

)
/2 = δ(A)/2. (5)

Proof. First suppose that η(A) is a ball. Then η(A) is complete and, therefore, is
the unique completion of A. It follows that

δ
(
η(A)

)
= δ(A). (6)

Since η(A) is a ball,

γ
(
η(A)

)
= γ

(
η(A), η(A)

)
= δ

(
η(A)

)
/2. (7)

Then (5) follows from (6) and (7).
Conversely, suppose that (5) holds. Then η(A) is the unique completion of A

and, therefore, a complete set whose diameter is δ(A). Thus (see [8])

γ
(
η(A)

)
+ γ′(η(A)) = δ

(
η(A)

)
= δ(A). (8)

From (8) and (5) it follows that

γ
(
η(A)

)
= γ′(η(A)) = δ

(
η(A)

)
/2.

Applying Theorem 3.1 in [8] we have that η(A) is a ball. �

Remark 3.2. Note that δ(η(A)) = 2γ(η(A)) does not imply that η(A) is a ball.
For example, let X = l2∞, x = o, y = (1, 0), A = [x, y]. Then δ(A) = 1, γ(A) = 1

2
,

δ(η(A)) = 2, γ(η(A)) = 1. But η(A) is not a ball.

Corollary 3.3. A set A ∈ H is a ball if and only if it is the unique completion
of a set B ∈ H and δ(A) = 2γ(A).
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