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Abstract. Let X be an infinite-dimensional complex Banach space and let
B(X ) be the algebra of all bounded linear operators. In this article we show that
an additive surjective map ϕ on B(X ) preserving the semi-Fredholm domain
in spectrum is an automorphism or an antiautomorphism on B(X ).

1. Introduction

Preserver problems aim to characterize those linear or nonlinear maps on oper-
ator algebras preserving certain properties, subsets, or relations. One of the most
famous problems in this direction is Kaplansky’s problem (see [6]) asking whether
every surjective unital invertibility-preserving linear map between two semisimple
Banach algebras is a Jordan homomorphism. This problem was first solved in the
finite-dimensional case. J. Dieudonné in [4] and Marcus and Purves in [7] proved
that every unital invertibility-preserving linear map on a complex matrix algebra
is either an inner automorphism or an inner antiautomorphism. This result was
later extended to the algebra of all bounded linear operators on a Banach space
by A. R. Sourour in [10] and to von Neumann algebras by B. Aupetit in [1]. As
we know, spectrum is a very fundamental and key concept in operator theory.
Hence many authors (see [1], [3], [5]) are interested in preserver problems related
to the spectrum as well as to certain parts of the spectrum. For example, in [3],
Cui and Hou showed that additive maps on standard operator algebras preserving
parts of the spectrum are either isomorphisms or anti-isomorphisms. It is known
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that the notion of semi-Fredholm operators have close relationship with compact
operators. Several authors have studied the linear maps which preserve Fredholm
operators, semi-Fredholm operators, or upper semi-Weyl operators in both direc-
tions (see [2], [8]). They showed that such maps preserve the ideal of compact
operators in both directions, and their induced maps on the Calkin algebra are
Jordan automorphisms. For example, in [2], the authors discuss the linear sur-
jective maps preserving upper semi-Weyl operators, and show that their induced
maps on the Calkin algebra are Jordan automorphisms. However, the problem
of determining the structure of the maps itself hasn’t been solved. In this paper,
we combine the spectrum with semi-Fredholm domain, and consider an additive
map which preserves the intersection of semi-Fredholm domain and spectrum.
How does the semi-Fredholm domain in spectrum influence the structure of au-
tomorphisms on the algebra of all bounded linear operators on a Banach (or
Hilbert) space? Let X be a complex infinite-dimensional Banach space, and let
B(X ) be the algebra of all bounded linear operators on X . We will show that
the semi-Fredholm domain in spectrum is an invariant of an automorphism or an
anti-automorphism on B(X ).

Let T ∈ B(X ). We denote by X ∗, T ∗, N(T ), and R(T ) the dual space of X ,
the conjugate operator, null space, and range of T , respectively. For a closed
subspace M of X , dimM is the dimension of M and codimM is the dimension
of the complemented subspace of M . Recall that an operator T is called upper
semi-Fredholm if dimN(T ) < ∞ and if R(T ) is closed, while T is called a lower
semi-Fredholm operator if codimR(T ) < ∞. The semi-Fredholm operator is up-
per semi-Fredholm or a lower semi-Fredholm operator. If both dimN(T ) < ∞
and codimR(T ) < ∞ are finite, then T is said to be a Fredholm operator. If T
is upper (lower) semi-Fredholm, then we define indT the index of T denote by
ind(T ) = dimN(T ) − codimR(T ). The operator T is Weyl if it is Fredholm of
index zero. Denote the spectrum and the point spectrum of T by

σ(T ) = {λ ∈ C : T − λI is not invertible},
σp(T ) = {λ ∈ C : T − λI is not injective};

the semi-Fredholm domain, the Fredholm domain, and the Weyl domain of T are
defined by

ρSF (T ) = {λ ∈ C : T − λI is semi-Fredholm operator},
ρe(T ) = {λ ∈ C : T − λI is Fredholm operator},
ρw(T ) = {λ ∈ C : T − λI is Weyl operator}.

The semi-Fredholm domain in the spectrum of T will be denoted by σ1(T ).
That is,

σ1(T ) =
{
λ ∈ σ(T ) : T − λI is semi-Fredholm operator

}
.

Then we obtain that σ1(T ) = σ(T )∩ρSF (T ). In the present article, we characterize
an additive surjective map ϕ on B(X ) which preserves the semi-Fredholm domain
in spectrum, that is σ1(ϕ(T )) = σ1(T ) for all T ∈ B(X ). We obtain that such a
surjective map is an automorphism or an antiautomorphism on B(X ).
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2. Main results

First, we fix some notation. Let h be a ring automorphism of C. A mapping
A : X → X will be called h-quasilinear if it is additive and if the relation
A(λx) = h(λ)Ax holds for all complex numbers λ and all x ∈ X . For x ∈ X ,
f ∈ X ∗, we denote by x ⊗ f the bounded linear rank 1 operator defined by
(x ⊗ f)y = f(y)x, ∀y ∈ X . For a subset M of X ,

∨
{M} denotes the closed

subspace spanned by M . Now, we give our main result.

Theorem 2.1. Let ϕ : B(X ) → B(X ) be a surjective additive map. If σ1(ϕ(T )) =
σ1(T ) for all T ∈ B(X ), then either

(1) there is an invertible operator A ∈ B(X ) such that ϕ(T ) = ATA−1 for all
T ∈ B(X ), or

(2) there is a bounded invertible linear operator C : X ∗ → X such that ϕ(T ) =
CT ∗C−1 for all T ∈ B(X ). In this case, X must be a reflexive space.

For the Fredholm domain (Weyl domain) in spectrum, we can get the following
result. Denote

σ2(T ) =
{
λ ∈ σ(T ) : T − λI is Weyl operator

}
,

σ3(T ) =
{
λ ∈ σ(T ) : T − λI is Fredholm operator

}
.

Corollary 2.2. Let ϕ : B(X ) → B(X ) be a surjective additive map; then the
following statements are equivalent:

(1) σ1(ϕ(T )) = σ1(T ) for all T ∈ B(X ),
(2) σ2(ϕ(T )) = σ2(T ) for all T ∈ B(X ),
(3) σ3(ϕ(T )) = σ3(T ) for all T ∈ B(X ),
(4) there is an invertible operator A ∈ B(X ) such that ϕ(T ) = ATA−1 for all

T ∈ B(X ) or there is a bounded invertible linear operator C : X ∗ → X
such that ϕ(T ) = CT ∗C−1 for all T ∈ B(X ). The last case occurs only if
X is a reflexive space.

It is known that the Fredholm index is a very important concept for the Fred-
holm operator, and thus we also discuss the idea that ϕ preserves the part of
the semi-Fredholm domain with nonpositive (nonnegative) index in spectrum. In
this case, it implies that ind(ϕ(T )) = ind(T ) if T is a semi-Fredholm operator; it
follows that the second case in Theorem 2.1 cannot occur if X is not reflexive, or
if B(X ) contains a semi-Fredholm operator with nonzero index.

Let

σ4(T ) =
{
λ ∈ σ(T ) : T − λI is semi-Fredholm operator and ind(T − λI) ≤ 0

}
,

σ5(T ) =
{
λ ∈ σ(T ) : T − λI is semi-Fredholm operator and ind(T − λI) ≥ 0

}
.

Then we have the following result.

Corollary 2.3. Let ϕ : B(X ) → B(X ) be a surjective additive map, then the
following statements are equivalent:

(1) σ4(ϕ(T )) = σ4(T ) for all T ∈ B(X ),
(2) σ5(ϕ(T )) = σ5(T ) for all T ∈ B(X ),
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(3) there is an invertible operator A ∈ B(X ) such that ϕ(T ) = ATA−1 for all
T ∈ B(X ) or there is a bounded invertible linear operator C : X ∗ → X
such that ϕ(T ) = CT ∗C−1 for all T ∈ B(X ). The last case cannot occur
if X is not reflexive, or if B(X ) contains a semi-Fredholm operator with
nonzero index.

The proof will be given only for Theorem 2.1, but also works for Corollary 2.2
and 2.3. First, recall that invertible operators are Fredholm of index zero, and so
are their rank 1 perturbations. In order to give the proof, we begin with a lemma.

Lemma 2.4. Let A,B ∈ B(X ). If σ1(A+F ) = σ1(B+F ) for all rank 1 operator
F ∈ B(X ), then A = B.

Proof. For any nonzero vector x ∈ X , N = {f ∈ X ∗ | f(x) = 1}, fix a scalar
α ∈ C such that α > ‖A‖+ ‖B‖. For any f ∈ N , we define an operator

Ff = (A− αI)x⊗ f.

Then Ffx = Ax − αx, and hence α ∈ σ(A − Ff ). So we have α ∈ σ1(A − Ff )
from the fact that A − Ff − αI is a semi-Fredholm operator; it follows that
α ∈ σ1(B − Ff ). It is known that B − Ff − αI is a Fredholm operator of index
zero, and thus α ∈ σp(B − Ff ). We obtain that there exists a nonzero vector yf
such that (B − Ff )yf = αyf . Then

yf = f(yf )(B − αI)−1(A− αI)x.

Let y = (B−αI)−1(A−αI)x; then we know that (B−Ff )y = αy for any f ∈ N .
We assert that y and x is linearly dependent, otherwise if y and x is linearly
independent, then there exists some f0 ∈ N such that f0(y) = 0. It implies that
By = αy, which is in contradiction to the fact that α > ‖A‖ + ‖B‖. It follows
that (B − Ff )x = αx. Consequently, Ax = Bx. From the arbitrariness of x, we
obtain that A = B. �

Proof of Theorem 2.1. We will prove the theorem in four steps.
Step 1: ϕ is injective.
Let ϕ(T ) = 0 for some T 6= 0. Then we can find a vector x0 ∈ X such that

Tx0 6= 0. So there exists f ∈ X ∗ such that f(x0) = 1 and f(Tx0) 6= 0. Fix a
scalar λ0 such that |λ0| > ‖T‖. We define an operator S ∈ B(X ):

S = (Tx0 + λ0x0)⊗ f.

Then (S − T )x0 = λ0x0. It follows that λ0 ∈ σ1(S − T ). Thus

λ0 ∈ σ1

(
ϕ(S − T )

)
= σ1

(
ϕ(S)

)
= σ1(S).

But σ1(S) = {λ0 + f(Tx0)}, a contradiction.
Step 2: ϕ preserves rank 1 operators in both directions.
Let P ∈ B(X ) be a rank 1 operator and let ϕ(P ) = Q. We will prove that Q

is rank 1. Assume that rank Q > 1; then there exist two linearly independent
vectors y1, y2 ∈ R(Q), and hence we can choose two linearly independent vectors
x1, x2 ∈ X such that Qx1 = y1, Qx2 = y2. Let M =

∨
{x1, x2, y1, y2}; then
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X = M⊕K, where K is a closed subspace. Fix a scalar λ0 such that |λ0| > 2‖Q‖.
There are three cases for dimM .

(1) If dimM = 2, then M =
∨
{x1, x2}. We define an operator R ∈ B(H) by

Rx1 = λ0x1 − y1,

Rx2 = λ0x2 − 2y2,

Rz = 0 ∀z ∈ K.

Then we have λ0 ∈ σ(R +Q) ∩ σ(R + 2Q) and λ0 /∈ σ(R).
(2) If dimM = 3, then without loss of generality, let M =

∨
{x1, x2, y1}, and

suppose that y2 = ξ1x1+ξ2x2+ξ3y1, where at least one of ξ1, ξ2, ξ3 ∈ C is nonzero.
If ξ1 6= 0, we define an operator R ∈ B(X ) by

Rx1 = λ0x1 − y1,

Rx2 = λ0x2 − 2y2,

Ry1 = x2,

Rz = 0 ∀z ∈ K.

Then λ0 ∈ σ(R + Q) ∩ σ(R + 2Q). We claim that R − λ0I is injective. If x ∈
N(R − λ0I), then Rx = λ0x. Let x = xm + xk, where xm ∈ M , xk ∈ K. Then
Rxm = Rx = λ0xm + λ0xk; this implies that xk = 0 and that x = xm ∈ M . So
let x = ax1 + bx2 + cy1, where a, b, c ∈ C. We get

0 = (R− λ0I)x = −ay1 − 2by2 + cx2 − cλ0y1.

Then

−2bξ1x1 + (c− 2bξ2)x2 − (a+ 2bξ3 + cλ0)y1 = 0.

It follows that a = b = c = 0 since the vectors x1, x2, y1 are linearly independent
and ξ1 6= 0. This shows that R− λ0I is invertible, which means that λ0 /∈ σ(R).

If ξ1 = 0, then ξ2 6= 0 since the vectors y1, y2 are linearly independent. We
define an operator R ∈ B(X ) by

Rx1 = λ0x1 − y1,

Rx2 = λ0x2 − 2y2,

Ry1 = x1,

Rz = 0 ∀z ∈ K.

Then we also obtain λ0 ∈ σ(R +Q) ∩ σ(R + 2Q) and λ0 /∈ σ(R).
(3) If dimM = 4, then M =

∨
{x1, x2, y1, y2}. We define an operator R ∈ B(X )

by 

Rx1 = λ0x1 − y1,

Rx2 = λ0x2 − 2y2,

Ry1 = x1,

Ry2 = x2,

Rz = 0 ∀z ∈ K.
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Then we have λ0 ∈ σ(R + Q) ∩ σ(R + 2Q). Using a similar proof of the above,
we can get λ0 /∈ σ(R).

Therefore, there exists a finite-rank operator R ∈ B(X ) and λ0 satisfying
|λ0| > 2‖Q‖, λ0 ∈ σ(R+Q)∩σ(R+2Q) and λ0 /∈ σ(R). We know that R+Q−λ0I
and R + 2Q− λ0I are both semi-Fredholm operators, and thus

λ0 ∈ σ1(R +Q) ∩ σ1(R + 2Q)

= σ1(R0 + P ) ∩ σ1(R0 + 2P )

⊆ σ(R0 + P ) ∩ σ(R0 + 2P ).

Here R0 ∈ B(X ) satisfying R = ϕ(R0) and it does exist since ϕ is surjective. By
Theorem 1 in [5], we must have σ(R0 +P )∩ σ(R0 +2P ) ⊆ σ(R0), and then λ0 ∈
σ(R0). This implies that λ0 ∈ σ1(R0) since λ0 ∈ σ1(R0 + P ) and P is finite-rank,
and thus λ0 ∈ σ1(R). This contradicts the fact that λ0 /∈ σ(R). Therefore, we
have rank Q = 1. Since ϕ is bijective and ϕ−1 has the same property as ϕ, it
follows that ϕ preserves the set of operators of rank 1 in both directions. By using
Theorem 3.3 in [9], we can see that there is a ring automorphism h : C → C, and
there are either h-quasilinear bijective mappings A : X → X and C : X ∗ → X ∗

such that

ϕ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X ∗,

or there are h-quasilinear bijective mappings A : X → X ∗ and C : X ∗ → X such
that

ϕ(x⊗ f) = Cf ⊗ Ax for all x ∈ X and f ∈ X ∗.

Step 3: ϕ preserves idempotents of rank 1 and their linear spans in both direc-
tions.

Let F is an idempotent of rank 1. Then σ1(F ) = {1}, and so σ1(ϕ(F )) = {1}.
This implies that ϕ(F ) is an idempotent of rank 1. Moreover, we have that ϕ is
h-quasilinear on rank 1 operators by step 2. So we get that ϕ preserves idempo-
tents of rank 1 and their linear spans in both directions.

Therefore, it follows from the Main Theorem in [9] that: (1) there is an invertible
operator A ∈ B(X ) such that ϕ(T ) = AFA−1 for all finite rank operators F ∈
B(X ), or (2) there is a bounded invertible linear operator C : X∗ → X such that
ϕ(T ) = CT ∗C−1 for all finite rank operators F ∈ B(X ). In this case X must be
a reflexive space.

Step 4: we extend the result of Step 3 to B(X ). There is an invertible operator
A ∈ B(X ) such that ϕ(T ) = ATA−1 for all T ∈ B(X ) or there is a bounded in-
vertible linear operator C : X∗ → X such that ϕ(T ) = CT ∗C−1 for all T ∈ B(X ).

Assume that (1) holds. Let T ∈ B(X ) and for any rank 1 operator F , we have

σ1(T + F ) = σ1

(
ϕ(T ) + ϕ(F )

)
= σ1

(
ϕ(T ) + AFA−1

)
= σ1

(
A
(
A−1ϕ(T )A+ F

)
A−1

)
= σ1

(
A−1ϕ(T )A+ F

)
.

Then we obtain that T = A−1ϕ(T )A by the Lemma 2.4. Consequently, ϕ(T ) =
ATA−1 for all T ∈ B(X ).
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If (2) holds, then we similarly have that ϕ(T ) = CT ∗C−1 for all T ∈ B(X ). �
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