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Abstract. For some rearrangement-invariant functional ‖·‖X having the lat-
tice property, we give a characterization of linearity of the set {f : ‖f‖X < ∞}.
Afterwards we apply this general abstract theorem in the case of Orlicz–Lorentz
spaces.

1. Introduction

The concept of rearrangement-invariant spaces plays an important role in anal-
ysis and its applications. Since the concept was first presented in the 1930s, it has
served a number of important applications, such as partial differential equations
and Sobolev space theory. It has been intensively studied since the 1950s, start-
ing with the famous pioneering paper [7] in which the so-called classical Lorentz
spaces were introduced. It was also shown in that very same article, however, that
the functional which governs these spaces is not necessarily a norm in general. In
certain cases these “spaces” do not even need to be linear sets. The main reason
for this fact is that the operator which associates a measurable function with
its nonincreasing rearrangement is not subadditive. Many authors have studied
functional properties of these spaces. In 1990, Sawyer in [9] characterized the
normability of classical Lorentz spaces. Many papers, with characterizations of
linearity (see [4]) quasinormability (see [3]) and normability ([2]) followed (see
also [5]).
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General properties of Banach lattices were also studied in [6], and the notion of
space symetrization was considered. In the following pages we will adopt a similar
approach when studying the problem of linearity of a rearrangement-invariant
lattice.

Our principal goal in this paper is to establish necessary and sufficient con-
ditions for a rearrangement-invariant lattice to be linear set. It turns out that
under these circumstances such conditions depend on finiteness of the dilation
operator.

We also point out some applications of this result (including an alternative
approach to the characterization of linearity of Orlicz–Lorentz) which enjoy the
above-mentioned properties. In the case of linearity, the result is known (see [4])
but it assumes the ∆2-condition of the function ϕ. In the present article, we will
present a stronger version of this theorem without that restriction.

2. Preliminaries and main theorem

Let (R, µ) be a nonatomic, σ-finite measure space. Denote the set of all real-
valued µ-measurable functions on R by M(R). In the special case when R =
(0,∞), we write M(0,∞). For f ∈ M(R), we will define the distribution func-
tion by

f∗(t) := µ
{
|f | > t

}
and the nonincreasing rearrangement of f by

f ∗(t) := inf
{
s ∈ [0,∞) : f∗(s) ≤ t

}
, t ∈ [0,∞).

For a > 0, we denote the dilation operator Ea by

Eag(t) = g(a−1t) for g ∈ M(0,∞) and t ∈ (0,∞).

It is known that the operation f 7→ f ∗ is not subadditive, and instead we have
the following inequality

(f + g)∗(s) ≤ E2f
∗(s) + E2g

∗(s) for every f, g ∈ M(R) and s ∈ (0,∞). (2.1)

We will also use the term weight for a positive locally integrable function defined
on (0,∞). For a weight w, we will define function W by the following formula:

W (t) :=

∫ t

0

w(s) ds, t ∈ [0,∞).

When a functional ‖ · ‖X : M(R) → [0,∞] is given, we denote

X :=
{
f ∈ M(R) : ‖f‖X < ∞

}
.

Definition 2.1. We call X a rearrangement-invariant (RI) lattice if the following
conditions are satisfied:

(P1) If f ∗ = g∗, then ‖f‖X = ‖g‖X .
(P2) If |f | ≤ |g| µ-a.e., then ‖f‖X ≤ ‖g‖X .
(P3) ‖af‖X = |a|‖f‖X .
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We call ‖ · ‖X a quasinorm if (P1)–(P3) hold and, moreover, if the inequality

‖f + g‖X ≤ C
(
‖f‖X + ‖g‖X

)
holds for some C ∈ (0,∞) independent on f and g. If X is an RI lattice and if
there exists a functional

‖ · ‖X̄ : M(0,∞) → [0,∞]

satisfying

‖f‖X = ‖f ∗‖X̄ ,

then we say that ‖ · ‖X̄ is the representation functional of X.

We will use the following immediate consequence of Hardy’s lemma (see [1,
Proposition 3.6, p. 56], see also [9]): for given weights w, v we have

sup
f∈M(R)

∫∞
0

f ∗(s)w(s) ds∫∞
0

f ∗(s)v(s) ds
= sup

t>0

W (t)

V (t)
.

Although the following lemma is a simple observation and a kind of folklore, let
us make it convenient to the reader by listing it with a proof, which is a little bit
technical.

Lemma 2.2. Let (R, µ) be a nonatomic σ-finite measure space. Let h ∈
M(0, µ(R)) be a nonnegative, nonincreasing, and right-continuous function. Then
there exists a function f ∈ M(R) such that f ∗ = h.

Proof. Let us first suppose that h is a simple function. Let

h =
l∑

i=1

aiIi,

where Ii are disjointed intervals. Since (R, µ) is nonatomic, there exist Ai ⊂ R
disjointed with µ(Ai) = |Ii| (see [1, Lemma 2.5, p. 46]). If we set

f :=
l∑

i=1

aiχAi
,

then we have f ∗ = h, as desired.
For general nonincreasing nonnegative function h, we will find simple functions

hn such that 0 ≤ hn ↑ h and fn such that fn+1 ≥ fn and f ∗
n = hn. Then if we

define

f := lim
n
fn,

we have f ∗ = h (by [1, Proposition 1.7, p. 41]).
Now, let us conctruct such a sequence in the following way. For k, l ∈ N, set

Hk
l :=

{ l

2k
< h ≤ l + 1

2k

}
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and find F k
l ⊂ R such that µ(F k

l ) = |Hk
l |, F k

j ∩F k
i = ∅ for i 6= j and F k+1

2l ∪F k+1
2l+1 =

F k
l . Define

fn :=
n2n−1∑
i=1

i

2n
χFn

i
+ nχFn ,

where Fn =
⋃

j≥nF
1
j , and set

hn := f ∗
n.

One readily checks that such a sequence has the required properties. �

Our main result is statement (i) in the following theorem.

Theorem 2.3. Let X be an RI lattice for which there exists a representation
functional ‖ · ‖X̄ .

(i) Assume that the space

X̄ :=
{
f ∈ M(0,∞) : ‖f‖X̄ < ∞

}
is a linear set. Then the space X is a linear set if and only if the following
implication holds:

If ‖f ∗‖X̄ < ∞, then ‖E2f
∗‖X̄ < ∞. (2.2)

(ii) Assume that ‖ · ‖X̄ is a quasinorm. Then ‖ · ‖X is a quasinorm if and only
if there exists a positive constant C such that

‖E2f
∗‖X̄ ≤ C‖f ∗‖X̄ . (2.3)

(iii) Assume that ‖ · ‖X̄ is a norm. Then ‖ · ‖X is a norm if and only if

‖E2f
∗‖X̄ ≤ 2‖f ∗‖X̄ . (2.4)

Proof. (i) Assume first that (2.2) holds. Let there be f, g such that ‖f‖X < ∞
and ‖g‖X < ∞. Then, by (2.1) and (2.2), we get

‖f + g‖X =
∥∥(f + g)∗

∥∥
X̄
≤ ‖E2f

∗ + E2g
∗‖X̄ < ∞.

Conversely, let f be such that ‖f ∗‖X̄ < ∞ but ‖E2f
∗‖X̄ = ∞. Let us first

suppose that µ(R) = ∞. Then there exists two sets of infinite measure E,M ⊂ R
such that E ∩M = ∅. Now (E, µ) and (M,µ) are two measure spaces; therefore,

according to Lemma 2.2, there exist functions h̃ ∈ M(E) and g̃ ∈ M(M), with

g̃∗ = h̃∗ = f ∗.

Let us extend them by zero at the rest of R to functions h and g. We have

g∗ = h∗ = f ∗

and

(g + h)∗(t) = 2f∗(t).

Hence

(g + h)∗(s) = E2f
∗(s) for s ∈ (0,∞).

Therefore, g, h ∈ X, but g + h /∈ X. Consequently, X is not a linear set.
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In the case when r := µ(R) < ∞, we find a µ-measurable set E ⊂ R such that{
|f | > f ∗

(r
2

)}
⊂ E ⊂

{
|f | ≥ f ∗

(r
2

)}
, (2.5)

and µ(E) = r/2. Then there exists h, g with disjointed supports satisfying

h∗ = g∗ = (fχE)
∗,

and we have

‖h+ g‖X =
∥∥(h+ g)∗

∥∥
X̄
≥ ‖E2f

∗‖X̄ .
Therefore, g, h ∈ X but g + h /∈ X, and hence, again, X is not a linear set.

For proof of the statement (ii), see [6, Lemma 1.4]. The proof of (iii) is analogous
to that of (ii). �

Remark 2.4. Let δ > 1. Then the conditions (2.2) and (2.3) can be respectively
replaced by

‖f ∗‖X̄ < ∞ then ‖Eδf
∗‖X̄ < ∞

and

‖Eδf
∗‖X̄ ≤ C‖f ∗‖X̄ .

3. Applications

In this section, we will illustrate the results obtained on the particular example
of Lorentz–Orlicz spaces. We start with a general definition of a general structure
that covers such spaces. These spaces first appeared in [8, Definition 7.2].

Definition 3.1. Let ϕ : [0,∞) → [0,∞) be a continuous strictly increasing func-
tion with ϕ(0) = 0 and limt→∞ϕ(t) = ∞. Let w be a weight. Then we define the
functional

‖f‖Λϕ,w := inf
{
λ :

∫ ∞

0

ϕ
(f ∗(s)

λ

)
w(s) ds ≤ 1

}
and the set

Λϕ,w :=
{
f ∈ M(R) : ‖f‖Λϕ,w < ∞

}
.

We note that, clearly, Λϕ,w is an RI lattice. Furthermore, the representation
functional is therefore defined as

‖f‖Lϕ
w
:= inf

{
λ :

∫ ∞

0

ϕ
( |f(s)|

λ

)
w(s) ds ≤ 1

}
, f ∈ M(0,∞).

Note that

Lϕ
w =

{
f ∈ M(0,∞) : ∃λ ∈ (0,∞) :

∫ ∞

0

ϕ
( |f(s)|

λ

)
w(s) ds < ∞

}
.

The following lemma is a classical result (for a more general form, see [8]).

Lemma 3.2. Let ϕ and w be as in Definition 3.1. Then

(i) ‖ · ‖Lϕ
w
has lattice property,

(ii) Lϕ
w is a linear set.
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The following theorem is known in a weaker form (with the additional assump-
tion of ϕ . E2ϕ) (see [4, Theorem 4.1]). We will point an alternative proof based
on Theorem 2.3 removing the assumption.

Theorem 3.3. Let ϕ and w have the same properties as in Definition 3.1. Then
the following conditions are equivalent:

(i) Λϕ,w is linear,
(ii)

sup
t>0

W (2t)

W (t)
< ∞.

Proof. According to Lemma 3.2, the representation space meets the assumptions
of Theorem 2.3. Let us first prove that (ii) implies (i). We have∫ ∞

0

ϕ
(f ∗( s

2
)

λ

)
w(s) ds

= 2

∫ ∞

0

ϕ
(f ∗(t)

λ

)
w(2t) dt

≤ 2sup
f

( ∫∞
0

ϕ(f
∗(t)
λ

)w(2t) dt

2
∫∞
0

ϕ(f
∗(t)
λ

)w(t) dt

)∫ ∞

0

ϕ
(f ∗(t)

λ

)
w(t) dt (3.1)

= sup
t>0

W (2t)

W (t)

∫ ∞

0

ϕ
(f ∗(t)

λ

)
w(t) dt

≤ C

∫ ∞

0

ϕ
(f ∗(t)

λ

)
w(t) dt,

where the last inequality follows immediately from Hardy’s lemma. This proves
(i) via Theorem 2.3(i).

Now, let us assume that condition (ii) is violated. Then we may pick a sequence
{tn} such that

W (2tn)

W (tn)
> 4n for all n ∈ N.

Since the function W (2t)
W (t)

is continuous, and therefore locally bounded on (0,∞),

we may assume that either tn ↑ ∞ or tn ↓ 0. Let us first suppose that tn ↑ ∞.
Since in this case the weight cannot be integrable, we may assume (by a picking
suitable subsequence if necessary) that

W (tn) ≥ 2W (tn−1), W (2tn) > 2W (2tn−1), and

∫ tk

tk−1

w(s) ds ↑ .

Then
W (2tn)−W (2tn−1)

W (tn)−W (tn−1)
≥ c4n for some c > 0 and all n ∈ N.

For our technical convenience, we set t0 := 0. Now, let us define a sequence of
functions {fn} ⊂ M(R) with pairwise disjoint supports and such that

f ∗
n = χ(0,tn−tn−1)ϕ

−1
((

2n
∫ tn

tn−1

w
)−1)

for n ∈ N.
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Set

f :=
∞∑
i=1

fn.

Calculation shows that∫ ∞

0

ϕ
(
f ∗(s)

)
w(s) ds =

∞∑
k=1

∫ tk

tk−1

ϕ
(
ϕ−1

((
2k

∫ tk

tk−1

w
)−1))

w(s) ds

=
∞∑
k=1

2−k = 1.

On the other hand, we have∫ ∞

0

ϕ
(
E2f

∗(s)
)
w(s) ds = 2

∫ ∞

0

ϕ
(
f ∗(t)

)
w(2t) dt

≥
∫ tk

tk−1

w(2t)

2kW (tk)−W (tk−1)
dt

≥ W (2tk)−W (2tk−1)

2k(W (tk)−W (tk−1))
≥ c2k

for some c > 0 and all k ∈ N. Therefore, E2f
∗ /∈ Lϕ

w, which implies that Λϕ,w is
not a linear set. On the other hand, if tk ↓ 0, then we may suppose that

W (tn−1) ≥ 2W (tn), W (2tn−1) ≥ 2W (2tn) and

∫ tn−1

tn

w(s) ds ↓ .

Now we find fn with disjointed supports such that

f ∗
n = χ(0,tn−1−tn)ϕ

−1
((

2n
∫ tn−1

tn

w
)−1)

.

We have

‖f‖Λϕ,w =
∞∑
n=2

∫ tn−1

tn

w(t)

2n(W (tn−1)−W (tn))
dt

=
∞∑
n=2

2−n =
1

2
.

On the other hand,

‖E2f
∗‖Lϕ

w
= 2

∞∑
n=2

∫ tn−1

tn

w(2t)

2−n(W (tn−1)−W (tn))

≥ 2

∫ tn−1

tn

w(2t)

2−n(W (tn−1)−W (tn))
≥ 2n,

whence E2f
∗ /∈ Lϕ

w. This shows that Λϕ,w is not linear, which is a contradiction.
The proof is complete. �
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