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Abstract. In this note, we prove that the Birkhoff–James orthogonality, as
well as the strong Birkhoff–James orthogonality, is a symmetric relation in a
full HilbertA-module V if and only if at least one of the underlying C∗-algebras
A or K(V ) is isomorphic to C.

1. Introduction and preliminaries

Let V be a Hilbert C∗-module over a C∗-algebra A, and let x, y ∈ V . The
usual way to define the orthogonality in V is by means of the C∗-valued inner
product: we say that x is orthogonal to y, and we write x ⊥ y, if 〈x, y〉 = 0.
Another concept of orthogonality in a Hilbert C∗-module is the Birkhoff–James
orthogonality (see [5], [7]). This concept makes sense in every normed linear space
X and, in the case when X is an inner product space, it is equivalent to the usual
orthogonality given by the inner product. Recall that, for two elements x and y of
a normed linear space X, we say that x is orthogonal to y in the Birkhoff–James
sense; in short, x ⊥B y, if

‖x‖ ≤ ‖x+ λy‖, ∀λ ∈ C.
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Having in mind that in Hilbert C∗-modules the role of scalars is played by the
elements of the underlying C∗-algebra, the authors introduced a new concept
of orthogonality in [2]; for x, y ∈ V , we say that x is strongly Birkhoff–James
orthogonal to y; in short, x ⊥s

B y, if

‖x‖ ≤ ‖x+ ya‖, ∀a ∈ A.

It was shown in [2] that the strong Birkhoff–James orthogonality is stronger
than the Birkhoff–James orthogonality, and weaker than the orthogonality with
respect to the inner product, that is, 〈x, y〉 = 0 ⇒ x ⊥s

B y ⇒ x ⊥B y, while the
converses do not hold in general. If V is a full Hilbert A-module, then the only
case when the orthogonalities ⊥s

B and ⊥B coincide is when A is isomorphic to C
(see [3, Theorem 3.5]), while orthogonalities ⊥s

B and ⊥ coincide only when A or
K(V ) is isomorphic to C (see [3, Theorems 4.7, 4.8]).

Obviously, the orthogonality relation ⊥ is nondegenerate (x ⊥ x if and only if
x = 0); homogenous (if x ⊥ y, then λx ⊥ µy, ∀λ, µ ∈ C); symmetric (x ⊥ y if
and only if y ⊥ x); right-additive (if x ⊥ y1 and x ⊥ y2, then x ⊥ (y1 + y2)); and
left-additive (if x1 ⊥ y and x2 ⊥ y, then (x1 + x2) ⊥ y).

In general, the orthogonality relations ⊥B and ⊥s
B are nondegenerate and ho-

mogenous, but neither symmetric nor additive (see [2, Remark 2.7(b)] for ⊥s
B;

the same examples apply for ⊥B because of [3, Proposition 3.1]). In this note, we
describe the class of full Hilbert C∗-modules in which the (strong) Birkhoff–James
orthogonality is symmetric.

Let us also mention that there are numerous papers about orthogonalities in
C∗-algebras and Hilbert C∗-modules, among which considerable attention has
been paid to orthogonality preserver problems (see, e.g., [6], [9]).

Before stating our results, let us recall some basic facts about C∗-algebras and
Hilbert C∗-modules and introduce our notation.

A C∗-algebraA is a Banach ∗-algebra with the norm satisfying the C∗-condition
‖a∗a‖ = ‖a‖2. A positive element of a C∗-algebraA is a self-adjoint element whose
spectrum is contained in [0,∞). If a ∈ A is positive, then we write a ≥ 0. A partial
order may be introduced on the set of self-adjoint elements of a C∗-algebra A: if
a and b are self-adjoint elements of A such that a− b ≥ 0, then we write a ≥ b or
b ≤ a. If a ≥ 0, then there exists a unique positive b ∈ A such that a = b2; such
an element b, denoted by a

1
2 , is called the positive square root of a. An element

p ∈ A is called a projection if p = p∗ = p2. A projection p is minimal if there is
not a nonzero projection q ∈ A, q 6= p, such that q ≤ p. A projection p ∈ A for
which pAp = Cp is minimal, but the converse does not hold in general.

A linear functional ϕ of A is positive if ϕ(a) ≥ 0 for every positive element
a ∈ A. A state is a positive linear functional whose norm is equal to one.

A representation of A in a complex Hilbert space H is a ∗-homomorphism of
A into the C∗-algebra B(H) of all bounded linear operators acting on H. Any
C∗-algebra has a faithful (i.e., injective) representation.

A (right) Hilbert C∗-module V over a C∗-algebra A (or a (right) Hilbert
A-module) is a linear space which is a right A-module equipped with an A-valued
inner-product 〈·, ·〉 : V ×V → A that is sesquilinear, positive definite, and respects
the module action; that is,
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(1) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉 for x, y, z ∈ V , α, β ∈ C,
(2) 〈x, ya〉 = 〈x, y〉a for x, y ∈ V , a ∈ A,
(3) 〈x, y〉∗ = 〈y, x〉 for x, y ∈ V ,
(4) 〈x, x〉 ≥ 0 for x ∈ V ; if 〈x, x〉 = 0, then x = 0,

and such that V is complete with respect to the norm defined by ‖x‖ = ‖〈x, x〉‖ 1
2 ,

x ∈ V . By 〈V, V 〉 we denote the closure of the span of {〈x, y〉 : x, y ∈ V }. We say
that a Hilbert A-module V is full if 〈V, V 〉 = A.

Every Hilbert space is a Hilbert C-module. Also, every C∗-algebra A can be
regarded as a Hilbert C∗-module over itself with the inner product 〈a, b〉 := a∗b,
and the corresponding norm is just the norm on A because of the C∗-condition.

In a Hilbert A-module V , we have the following version of the Cauchy–Schwarz
inequality: ∣∣ϕ(〈x, y〉)∣∣2 ≤ ϕ

(
〈x, x〉

)
ϕ
(
〈y, y〉

)
, ∀x, y ∈ V,

where ϕ is a positive linear functional of A.
A mapping T : V → V on a Hilbert A-module V is called adjointable if there

exists a mapping T ∗ : V → V such that 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ V . Every
adjointable operator T is a bounded and A-linear mapping. The set B(V ) of all
adjointable mappings acting on V is a C∗-algebra.

For every x, y ∈ V we define θx,y : V → V by θx,y(z) = x〈y, z〉. It is easy to
see that all θx,y are adjointable and that θ∗x,y = θy,x. By K(V ) we denote the
C∗-algebra spanned by {θx,y : x, y ∈ V }. Every right Hilbert A-module V may
be regarded as a left Hilbert K(V )-module with the inner product [x, y] := θx,y
for x, y ∈ V . Thus it holds that ‖[x, x]‖ = ‖θx,x‖ = ‖x‖2 for all x ∈ V . For details
about C∗-algebras and Hilbert C∗-modules we refer the reader to [8] and [10].

2. Results

Let us first state some known results from [1], [2], [3], and [4] that we shall use
in our proofs. (Observe that in [2], instead of the symbols ⊥s

B and ⊥B we used
⊥∗ and ⊥, respectively.)

Lemma 2.1. Let V be a Hilbert A-module. Then the following statements hold
for every x, y ∈ V :

(1) x ⊥B y if and only if there is a state ϕ of A such that ϕ(〈x, x〉) = ‖x‖2
and ϕ(〈x, y〉) = 0;

(2) x ⊥s
B y if and only if x ⊥B ya for all a ∈ A, that is, if and only if x ⊥s

B ya
for all a ∈ A;

(3) x ⊥s
B y if and only if x ⊥B y〈y, x〉;

(4) x ⊥s
B y if and only if there is a state ϕ of A such that ϕ(〈x, x〉) = ‖x‖2

and ϕ(〈x, y〉〈y, x〉) = 0;
(5) x ⊥B y if and only if 〈x, x〉 ⊥B 〈x, y〉 if and only if 〈x, x〉 ⊥B 〈y, x〉;
(6) x ⊥s

B y if and only if 〈x, x〉 ⊥s
B 〈x, y〉;

(7) if 〈x, y〉 ≥ 0 then x ⊥B y ⇔ x ⊥s
B y;

(8) x ⊥s
B (‖x‖2x− x〈x, x〉).

In the first result we obtain a necessary condition on an element x ∈ V which
has the symmetry property.
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Theorem 2.2. Let V be a Hilbert A-module, and let x ∈ V \ {0} be such that
one of the following conditions holds:

(a) for every y ∈ V such that x ⊥s
B y, it holds that y ⊥s

B x;
(b) for every y ∈ V such that x ⊥B y, it holds that y ⊥B x.

Then 〈x, x〉 is a scalar multiple of a minimal projection in A.

Proof. Without loss of generality we may assume that ‖x‖ = 1.
Suppose that (a) holds. By Lemma 2.1(8), for every x ∈ V , it holds that

x ⊥s
B (x − x〈x, x〉), and, by Lemma 2.1(2), x ⊥s

B (x〈x, x〉 − x〈x, x〉2); that is,
x ⊥s

B x(〈x, x〉 − 〈x, x〉2). By symmetry, x(〈x, x〉 − 〈x, x〉2) ⊥s
B x, and again by

Lemma 2.1(2), x(〈x, x〉− 〈x, x〉2) ⊥s
B x(〈x, x〉− 〈x, x〉2). From the nondegeneracy

of ⊥s
B, it follows that x(〈x, x〉 − 〈x, x〉2) = 0, from which 〈x, x〉 = 〈x, x〉2; that is,

〈x, x〉 is a projection.
Let us show that the projection p = 〈x, x〉 is minimal. Let q ∈ A be a projection

such that 0 ≤ q ≤ p, q 6= p. Let π : A → B(H) be a faithful representation of A in
a Hilbert space H. Then π(p) and π(q) are projections such that 0 ≤ π(q) ≤ π(p)
and π(q) 6= π(p). Therefore, there is a unit vector ξ ∈ H such that π(p)ξ = ξ and
π(q)ξ = 0. Then∥∥π(p) + λπ(q)

∥∥ ≥
∥∥(π(p) + λπ(q)

)
ξ
∥∥ = ‖ξ‖ = 1 =

∥∥π(p)∥∥
for all λ ∈ C. Since π is isometric, we have ‖p+ λq‖ ≥ ‖p‖ for all λ ∈ C; that is,
p ⊥B q, which can be written as p ⊥B q〈q, p〉 and then, by Lemma 2.1(3), p ⊥s

B q.
Since q = pq = 〈x, xq〉, we have 〈x, x〉 ⊥s

B 〈x, xq〉, and so Lemma 2.1(6) implies
x ⊥s

B xq. By the symmetry assumption, we have xq ⊥s
B x; this implies xq ⊥s

B xq,
and so xq = 0. Then q = 〈x, xq〉 = 0. This proves that p is minimal.

Suppose that (b) holds. Again, x ⊥s
B (x−x〈x, x〉), and therefore x ⊥s

B (x〈x, x〉−
x〈x, x〉2). Then we have x ⊥B (x〈x, x〉−x〈x, x〉2), and by the symmetry assump-
tion, (x〈x, x〉−x〈x, x〉2) ⊥B x. Since 〈x〈x, x〉−x〈x, x〉2, x〉 = 〈x, x〉2−〈x, x〉3 ≥ 0,
by Lemma 2.1(7), it follows that (x〈x, x〉 − x〈x, x〉2) ⊥s

B x. Then, as before, it
follows that p := 〈x, x〉 is a projection.

To show that p is minimal, suppose that q ∈ A is a projection such that
0 ≤ q ≤ p, q 6= p. As before, we conclude that x ⊥s

B xq. Then x ⊥B xq and,
by the symmetry assumption, we have xq ⊥B x. Since 〈xq, x〉 = qp = q ≥ 0, we
conclude that xq ⊥s

B x, from which, as before, q = 0. �

The converse of the previous theorem does not hold, as the following example
shows.

Example 2.3. Let V = A = C([0, 1] ∪ [2, 3]) be the C∗-algebra of all continuous
complex-valued functions on [0, 1] ∪ [2, 3] regarded as a Hilbert C∗-module over
itself. Let x ∈ A be defined as

x(t) =

{
1 if x ∈ [0, 1],

0 if x ∈ [2, 3].
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Then 〈x, x〉 = x, and this is a minimal projection in A. Let

y(t) =

{
t if x ∈ [0, 1],

0 if x ∈ [2, 3].

Then x ⊥s
B y, since, for every a ∈ A, it holds that

‖x+ ya‖ ≥
∣∣x(0) + y(0)a(0)

∣∣ = 1 = ‖x‖.
However, y 6⊥s

B x, since y ⊥s
B x would imply y ⊥s

B xy = y, and then y = 0. Since
〈x, y〉 ≥ 0, by Lemma 2.1(7), we deduce that x ⊥B y, but y 6⊥B x.

The following result is a kind of converse of Theorem 2.2.

Proposition 2.4. Let V be a Hilbert A-module, and let x ∈ V be such that
〈x, x〉A〈x, x〉 = C〈x, x〉.

(a) For every y ∈ V such that x ⊥s
B y, it holds that 〈x, y〉 = 0.

(b) For every y ∈ V such that x ⊥B y, it holds that 〈x, x〉〈y, x〉 = 0.

Proof. If x = 0, then the statements are trivial, so suppose that x 6= 0. Without
loss of generality we may assume that ‖x‖ = 1. Denote p = 〈x, x〉. Since 〈x, x〉 is
a projection, we have x = x〈x, x〉.

(a) If x ⊥s
B y, then, by Lemma 2.1(6) and (2), 〈x, x〉 ⊥s

B 〈x, y〉, and therefore
〈x, x〉 ⊥s

B 〈x, y〉〈y, x〉. Since
〈x, y〉〈y, x〉 = 〈x, x〉〈x, y〉〈y, x〉〈x, x〉 = λ〈x, x〉,

for some λ ∈ C, we have 〈x, x〉 ⊥s
B λ〈x, x〉, from which it follows that λ = 0 and

then 〈x, y〉 = 0.
(b) Suppose x ⊥B y. By Lemma 2.1(5), it follows that 〈x, x〉 ⊥B 〈y, x〉 and

then 〈x, x〉2 ⊥B 〈x, x〉〈y, x〉; that is, 〈x, x〉 ⊥B 〈x, x〉〈y, x〉. Since
〈x, x〉〈y, x〉 = 〈x, x〉〈y, x〉〈x, x〉 = λ〈x, x〉,

for some λ ∈ C, we conclude that λ = 0 and 〈x, x〉〈y, x〉 = 0. �

Remark 2.5. Let A be a C∗-algebra such that there is p ∈ A \ {0} satisfying
pAp = Cp. (As an example, one can take a C∗-algebra A of all compact operators
on some Hilbert space and any one-dimensional projection p ∈ A.) Let V be a
full Hilbert A-module. Let y ∈ V be such that yp 6= 0 (such an element exists
since V is a full Hilbert A-module). Let x = yp. Then it holds that

〈x, x〉 = 〈yp, yp〉 = p〈y, y〉p ∈ pAp,

and so 〈x, x〉 = λp for some λ > 0. Thus we have

〈x, x〉A〈x, x〉 = λ2(pAp) = λ2(Cp) = C〈x, x〉,
and so x satisfies the assumption of Proposition 2.4.

Let us now state our main result.

Theorem 2.6. Let V be a full Hilbert A-module. The following statements are
equivalent:

(a) ⊥B is a symmetric relation;



22 L. ARAMBAŠIĆ and R. RAJIĆ

(b) ⊥s
B is a symmetric relation;

(c) ⊥s
B coincides with the inner product orthogonality;

(d) A or K(V ) is isomorphic to C.
Proof. By [3, Theorems 4.7, 4.8], we know that (c)⇔(d).

It is obvious that (c)⇒(b).

If (d) holds, then V is an inner product space with the norm ‖x‖ = 〈x, x〉 1
2

or ‖x‖ = [x, x]
1
2 , depending on whether A or K(V ) is isomorphic to C. If A is

isomorphic to C, then it holds that x ⊥B y precisely when 〈x, y〉 = 0, while in
the case when K(V ) is isomorphic to C, we have x ⊥B y if and only if [x, y] = 0.
Note that, in both cases, ⊥B is a symmetric relation; that is, (a) holds.

Let us prove (b)⇒(c). First, observe that it follows from Theorem 2.2 that
〈v, v〉 is a scalar multiple of a minimal projection for every v ∈ V , and so

v〈v, v〉 = ‖v‖2v, ∀v ∈ V. (2.1)

Let x, y ∈ V be such that x ⊥s
B y. If y = 0, then 〈x, y〉 = 0. Suppose that

y 6= 0. Without loss of generality we may assume that ‖y‖ = 1. Then x ⊥s
B

y〈y, x〉, and so, by symmetry, y〈y, x〉 ⊥s
B x. Then, by Lemma 2.1(6), it holds that

〈y〈y, x〉, y〈y, x〉〉 ⊥s
B 〈y〈y, x〉, x〉. By using (2.1) we get〈

y〈y, x〉, y〈y, x〉
〉
= 〈x, y〉〈y, y〉〈y, x〉 =

〈
x, y〈y, y〉

〉
〈y, x〉 = 〈x, y〉〈y, x〉,

and so 〈x, y〉〈y, x〉 ⊥s
B 〈x, y〉〈y, x〉. Therefore, 〈x, y〉〈y, x〉 = 0, and so 〈x, y〉 = 0.

This proves our statement.
The implication (a)⇒(c) is proved in a similar way. First, Theorem 2.2 implies

(2.1). Let x, y ∈ V \ {0} be such that x ⊥s
B y. Again assume that ‖y‖ = 1. Then

x ⊥B y〈y, x〉, and so, by symmetry, y〈y, x〉 ⊥B x. Then, by Lemma 2.1(5), it
holds that 〈y〈y, x〉, y〈y, x〉〉 ⊥B 〈y〈y, x〉, x〉. As before, by using (2.1), we get〈

y〈y, x〉, y〈y, x〉
〉
= 〈x, y〉〈y, x〉,

and so we have 〈x, y〉〈y, x〉 ⊥B 〈x, y〉〈y, x〉. It follows that 〈x, y〉 = 0. �

Corollary 2.7. The relation ⊥s
B (resp., ⊥B) is symmetric in a C∗-algebra A if

and only if A ' C.
Remark 2.8. It would also be interesting to describe Hilbert C∗-modules in which
relations ⊥B or ⊥s

B are left- or right-additive.
This problem is easy to solve in the case of a unital C∗-algebra A (with the

unit e), regarded as a Hilbert C∗-module over itself. Namely, suppose that a ∈
A is noninvertible. Then aa∗ or a∗a is noninvertible. Assume that b := aa∗ is
noninvertible. By [2, Remark 2.7(a)], e ⊥B b and e ⊥B (‖b‖e− b), and so, if ⊥B

is right-additive, then e ⊥B ‖b‖e, from which b = 0 and then a = 0. The same
conclusion is obtained in the case when a∗a is noninvertible. This proves that
every nonzero element of A is invertible, and so A ' C.

The same proof works for right-additivity of ⊥s
B, since b ≥ 0 and ‖b‖e− b ≥ 0,

and therefore, by Lemma 2.1(7), e ⊥B b ⇔ e ⊥s
B b and e ⊥B (‖b‖e− b) ⇔ e ⊥s

B

(‖b‖e− b).
Suppose that ⊥B is left-additive. Let a ∈ A be positive and noninvertible. Let

ϕ be a state of A such that ϕ(a) = 0. Then ϕ(‖a‖e − a) = ‖a‖ = ‖‖a‖e − a‖.
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(Indeed, since a is positive and noninvertible, ‖a‖ belongs to the spectrum of
‖a‖e−a ≥ 0, and so ‖a‖ ≤ ‖‖a‖e−a‖. On the other hand, 0 ≤ ‖a‖e−a ≤ ‖a‖e,
and so ‖‖a‖e− a‖ ≤ ‖a‖; hence ‖a‖ = ‖‖a‖e− a‖.) Further, by [3, Lemma 4.1],
ϕ((‖a‖e− a)2) = ‖‖a‖e− a‖2. By the Cauchy–Schwarz inequality, we have∣∣ϕ((‖a‖e− a

)
a
)∣∣2 = ∣∣ϕ((‖a‖a 1

2 − a
3
2

)
a

1
2

)∣∣2
≤

∣∣ϕ((‖a‖a 1
2 − a

3
2

)2)∣∣∣∣ϕ(a)∣∣ = 0,

and so ϕ((‖a‖e− a)a) = 0. By Lemma 2.1(1), this gives (‖a‖e− a) ⊥B a, which,
together with ‖a‖e ⊥B a, by left-additivity gives a ⊥B a; that is, a = 0. So,
A ' C. Since (‖a‖e − a)a ≥ 0, by Lemma 2.1(7), we have (‖a‖e − a) ⊥B a ⇔
(‖a‖e− a) ⊥s

B a, and so the same proof works for left-additivity of ⊥s
B.
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