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ABSTRACT. In this note, we prove that the Birkhoff-James orthogonality, as
well as the strong Birkhoff-James orthogonality, is a symmetric relation in a
full Hilbert .A-module V' if and only if at least one of the underlying C*-algebras
A or K(V) is isomorphic to C.

1. INTRODUCTION AND PRELIMINARIES

Let V be a Hilbert C*-module over a C*-algebra A, and let x,y € V. The
usual way to define the orthogonality in V is by means of the C*-valued inner
product: we say that x is orthogonal to y, and we write x L y, if (z,y) = 0.
Another concept of orthogonality in a Hilbert C*-module is the Birkhoff-James
orthogonality (see [5], [7]). This concept makes sense in every normed linear space
X and, in the case when X is an inner product space, it is equivalent to the usual
orthogonality given by the inner product. Recall that, for two elements x and y of
a normed linear space X, we say that x is orthogonal to y in the Birkhoff-James
sense; in short, x 1 gy, if

el < lle+Ayll, vaeC.
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Having in mind that in Hilbert C*-modules the role of scalars is played by the
elements of the underlying C*-algebra, the authors introduced a new concept
of orthogonality in [2]; for z,y € V, we say that z is strongly Birkhoff-James
orthogonal to y; in short, z L% v, if

ol < lle +yall, VaeA

It was shown in [2] that the strong Birkhoff-James orthogonality is stronger
than the Birkhoff-James orthogonality, and weaker than the orthogonality with
respect to the inner product, that is, (x,y) =0 =z 1% y = = Lp y, while the
converses do not hold in general. If V' is a full Hilbert A-module, then the only
case when the orthogonalities L% and L coincide is when A is isomorphic to C
(see [3, Theorem 3.5]), while orthogonalities L% and L coincide only when A or
K(V) is isomorphic to C (see [3, Theorems 4.7, 4.8]).

Obviously, the orthogonality relation L is nondegenerate (x L z if and only if
x = 0); homogenous (if x L y, then Az L py, VA, u € C); symmetric (x L y if
and only if y L z); right-additive (if x L y; and & L y,, then x L (y; +y2)); and
left-additive (if ;1 L y and xo L y, then (1 + x9) L y).

In general, the orthogonality relations L p and 17 are nondegenerate and ho-
mogenous, but neither symmetric nor additive (see [2, Remark 2.7(b)] for L%;
the same examples apply for L g because of [3, Proposition 3.1]). In this note, we
describe the class of full Hilbert C*-modules in which the (strong) Birkhoff-James
orthogonality is symmetric.

Let us also mention that there are numerous papers about orthogonalities in
C*-algebras and Hilbert C*-modules, among which considerable attention has
been paid to orthogonality preserver problems (see, e.g., [6], [9]).

Before stating our results, let us recall some basic facts about C*-algebras and
Hilbert C*-modules and introduce our notation.

A C*-algebra A is a Banach x-algebra with the norm satisfying the C*-condition
la*a|| = ||a||*. A positive element of a C*-algebra A is a self-adjoint element whose
spectrum is contained in [0, 00). If a € A is positive, then we write a > 0. A partial
order may be introduced on the set of self-adjoint elements of a C*-algebra A: if
a and b are self-adjoint elements of A such that a —b > 0, then we write a > b or
b < a.If a >0, then there exists a unique positive b € A such that a = b?; such
an element b, denoted by a%, is called the positive square root of a. An element
p € A is called a projection if p = p* = p*. A projection p is minimal if there is
not a nonzero projection g € A, ¢ # p, such that ¢ < p. A projection p € A for
which pAp = Cp is minimal, but the converse does not hold in general.

A linear functional ¢ of A is positive if p(a) > 0 for every positive element
a € A. A state is a positive linear functional whose norm is equal to one.

A representation of A in a complex Hilbert space H is a x-homomorphism of
A into the C*-algebra B(H) of all bounded linear operators acting on H. Any
C*-algebra has a faithful (i.e., injective) representation.

A (right) Hilbert C*-module V over a C*-algebra A (or a (right) Hilbert
A-module) is a linear space which is a right A-module equipped with an A-valued
inner-product (-, ) : VxV — A that is sesquilinear, positive definite, and respects
the module action; that is,
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) (x,ay + Bz) = alx,y) + Blx, 2) for z,y,z € V, o, 5 € C,
) {z,ya) = (x,y)a for x,y € V, a € A,
) (@, y)" = (y,x) for z,y €V,

) (x,x) >0 for x € V; if (x,2) =0, then x =0,

and such that V is complete with respect to the norm defined by ||z]| = ||(x, z)| 2,
x € V. By (V,V) we denote the closure of the span of {(z,y) : z,y € V'}. We say
that a Hilbert A-module V' is full if (V,V) = A.

Every Hilbert space is a Hilbert C-module. Also, every C*-algebra A can be
regarded as a Hilbert C*-module over itself with the inner product (a,b) := a*b,
and the corresponding norm is just the norm on A because of the C*-condition.

In a Hilbert A-module V', we have the following version of the Cauchy—Schwarz
inequality:

(1
(2
(3
(4

(@) [* < (@ 2))e(w9), VayeV,
where ¢ is a positive linear functional of A.

A mapping T : V' — V on a Hilbert A-module V is called adjointable if there
exists a mapping T* : V' — V such that (Tx,y) = (x, T*y) for all z,y € V. Every
adjointable operator T is a bounded and A-linear mapping. The set B(V') of all
adjointable mappings acting on V is a C*-algebra.

For every z,y € V we define 6,, : V. — V by 0,,(2) = x(y, 2). It is easy to
see that all f,, are adjointable and that 0; = 0,,. By K(V) we denote the
C*-algebra spanned by {6,, : z,y € V}. Every right Hilbert A-module V' may
be regarded as a left Hilbert K(V')-module with the inner product [z,y] := 6,,
for x,y € V. Thus it holds that ||[z, z]|| = ||0..| = ||z||* for all z € V. For details
about C*-algebras and Hilbert C*-modules we refer the reader to [8] and [10].

2. RESuULTS

Let us first state some known results from [1], [2], [3], and [4] that we shall use
in our proofs. (Observe that in [2], instead of the symbols 1% and 1 p we used
1, and L, respectively.)

Lemma 2.1. Let V be a Hilbert A-module. Then the following statements hold
for every x,y € V:
(1) z Lp y if and only if there is a state ¢ of A such that o({x,z)) = ||z
and ¢((z,y)) = 0;
(2) x L%y if and only if x L ya for alla € A, that is, if and only if x 1% ya
forall a € A;
(3) x L%y if and only if x Lp y(y,x);
(4) z L% y if and only if there is a state ¢ of A such that o({z,z)) = ||z||?
and o({z,y)(y,z)) = 0;
) & Ly y if and only if (3,7} Ly (3,) if and only if (z,3) Lp (y,2);
) x L%y if and only if (z,x) L% (z,y);
) if (x,y) >0 thenz Lpy <z L5 y;
) @ L% (=lPPz — o(z, z)).

In the first result we obtain a necessary condition on an element z € V which
has the symmetry property.

(5
(6
(7
(8
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Theorem 2.2. Let V' be a Hilbert A-module, and let x € V \ {0} be such that
one of the following conditions holds:

(a) for everyy € V such that x L% y, it holds that y L5 x
(b) for everyy € V' such that x Ly, it holds that y Lp x.

Then (z,x) is a scalar multiple of a minimal projection in A.

Proof. Without loss of generality we may assume that ||z| = 1.

Suppose that (a) holds. By Lemma 2.1(8), for every x € V, it holds that
r 1% (v — z{x,z)), and, by Lemma 2.1(2), x 1% (x(z,z) — x{x,z)?); that is,
v 1% z({z,z) — (x,7)?). By symmetry, r({z,x) — (z,2)?) 1% z, and again by
Lemma 2.1(2), x({x, ) — (z,2)?) L% z((z,z) — (z, :L‘>2) From the nondegeneracy
of L%, it follows that x((z,x) — (x, z) ) = 0, from which (z,z) = (x, z)?; that is,
(x,z) is a projection.

Let us show that the projection p = (z, z) is minimal. Let ¢ € A be a projection
such that 0 < ¢ < p, ¢ # p. Let 7 : A — B(H) be a faithful representation of A in
a Hilbert space H. Then 7 (p) and 7(q) are projections such that 0 < 7(q) < 7(p)
and 7(q) # w(p). Therefore, there is a unit vector £ € H such that 7(p){ = € and
m(¢)¢ = 0. Then

l7(p) + A7 (@)]| = [[(w(p) + Am(@))¢]| = llgll = 1 = [[= @)

for all A € C. Since 7 is isometric, we have ||p + Ag|| > ||p|| for all A € C; that is,
p L g, which can be written as p L g ¢(q, p) and then, by Lemma 2.1(3), p L% ¢
Since ¢ = pq = (x, zq), we have (x,z) L% (x,zq), and so Lemma 2.1(6) implies
x L% xq. By the symmetry assumption, we have zq L% z; this implies zq L} xq,
and so zq = 0. Then ¢ = (x,zq) = 0. This proves that p is minimal.

Suppose that (b) holds. Again, x L%, (z—x(z, z)), and therefore x L% (x(z, x)—
x{x,z)?). Then we have x L (z(x,z) — x(x,x)?), and by the symmetry assump-
tion, (z(z,z) —x(zx,x)?) Lp x. Since {(x(z,x) —x{x, 1) ) = (z,2)* — (x,z)> > 0,
by Lemma 2.1(7), it follows that (z(z,z) — z(z,z)?) L% 2. Then, as before, it
follows that p := (x, z) is a projection.

To show that p is minimal, suppose that ¢ € A is a projection such that
0 <q < p, qF# p. As before, we conclude that + L% xq. Then  Lp xq and,
by the symmetry assumption, we have zq Lp z. Since (zq,x) = qgp = q¢ > 0, we
conclude that zq L3 x, from which, as before, ¢ = 0. OJ

The converse of the previous theorem does not hold, as the following example
shows.

Ezxample 2.3. Let V = A = C(]0,1] U [2,3]) be the C*-algebra of all continuous
complex-valued functions on [0, 1] U [2, 3] regarded as a Hilbert C*-module over
itself. Let x € A be defined as

x(t) =

1 ifzelo,1],
0 ifzel23.
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Then (x,z) = x, and this is a minimal projection in A. Let

)t ifzel0,1],
y<t)_{o itz e2,3).

Then = L% y, since, for every a € A, it holds that

|2+ yall > [2(0) +y(0)a(0)| = 1 = ||z
However, y L% x, since y L% x would imply y L% 2y = y, and then y = 0. Since
(x,y) >0, by Lemma 2.1(7), we deduce that x Lpy, but y Lp x.

The following result is a kind of converse of Theorem 2.2.

Proposition 2.4. Let V be a Hilbert A-module, and let x € V be such that
(z,2) Az, z) = Clz, ).

(a) For everyy € V' such that x 1% y, it holds that (x,y) = 0.

(b) For everyy € V such that x Lg y, it holds that (x,x){y, z) = 0.

Proof. If x = 0, then the statements are trivial, so suppose that x # 0. Without
loss of generality we may assume that ||x|| = 1. Denote p = (z, x). Since (x, z) is
a projection, we have v = z(x,x).

(a) If x L% vy, then, by Lemma 2.1(6) and (2), (z,z) L% (z,y), and therefore
(z,2) L% (z,y)(y, ). Since

(z,y){y, ) = (z,2)(z,y)(y, 2) (2, 2) = Nz, x),

for some A € C, we have (z,z) L% Az, ), from which it follows that A = 0 and
then (z,y) = 0.

(b) Suppose = Lp y. By Lemma 2.1(5), it follows that (x,z) Lp (y,x) and
then (x,z)? Lp (v, z)(y, z); that is, (z,z) Lp (x,z)(y, z). Since

(z,2)(y, z) = (2, 2)(y, x)(z, 1) = Mz, 1),
for some A € C, we conclude that A = 0 and (z,z)(y,z) = 0. O
Remark 2.5. Let A be a C*-algebra such that there is p € A\ {0} satisfying
pAp = Cp. (As an example, one can take a C*-algebra A of all compact operators
on some Hilbert space and any one-dimensional projection p € A.) Let V be a
full Hilbert A-module. Let y € V' be such that yp # 0 (such an element exists
since V' is a full Hilbert A-module). Let x = yp. Then it holds that
(z,z) = (yp,yp) = Py, y)p € PAp,
and so (x,x) = Ap for some A > 0. Thus we have
(z,2) Alz, x) = N*(pAp) = N*(Cp) = C(w, ),

and so x satisfies the assumption of Proposition 2.4.

Let us now state our main result.
Theorem 2.6. Let V' be a full Hilbert A-module. The following statements are
equivalent:

(a) Lp is a symmetric relation;
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b) L% is a symmetric relation;
B (Y
c) L% coincides with the inner product orthogonality;
B p g Y

(d) A or K(V) is isomorphic to C.

Proof. By [3, Theorems 4.7, 4.8], we know that (¢)<(d).

It is obvious that (c)=-(b).

If (d) holds, then V is an inner product space with the norm ||z|| = (z,z)2
or ||z|| = [, 7]z, depending on whether A or K(V) is isomorphic to C. If A is
isomorphic to C, then it holds that x Lp y precisely when (z,y) = 0, while in
the case when K(V) is isomorphic to C, we have z 1 g y if and only if [z,y] = 0.
Note that, in both cases, Lp is a symmetric relation; that is, (a) holds.

Let us prove (b)=-(c). First, observe that it follows from Theorem 2.2 that
(v,v) is a scalar multiple of a minimal projection for every v € V, and so

v(v,v) = ||v||*v, YveV. (2.1)

Let x,y € V be such that x 1% y. If y = 0, then (z,y) = 0. Suppose that
y # 0. Without loss of generality we may assume that ||y|| = 1. Then = 1%
y(y, x), and so, by symmetry, y(y, z) L% =. Then, by Lemma 2.1(6), it holds that
(y(y, =), y{y, x)) L (y(y,z),x). By using (2.1) we get

(yly, o), y(y.z)) = (@, y)y, v) (Y, ) = (z,y(y, 9) )y, z) = (2, y)(y, ©),

and so (z,y)(y,z) L% (x,y)(y,z). Therefore, (z,y)(y,x) = 0, and so (z,y) = 0.
This proves our statement.

The implication (a)=-(c) is proved in a similar way. First, Theorem 2.2 implies
(2.1). Let x,y € V' \ {0} be such that = L% y. Again assume that ||y|| = 1. Then
x L y(y,x), and so, by symmetry, y(y,z) Lp z. Then, by Lemma 2.1(5), it
holds that (y(y,x),y(y,z)) L (y(y,z),x). As before, by using (2.1), we get

(W, 2) yly. 2)) = (z.y){y. 2),
and so we have (x,y)(y,z) Lp (x,y)(y, z). It follows that (z,y) = 0. O

Corollary 2.7. The relation L% (resp., Lg) is symmetric in a C*-algebra A if
and only if A~ C.

Remark 2.8. Tt would also be interesting to describe Hilbert C*-modules in which
relations L or L% are left- or right-additive.

This problem is easy to solve in the case of a unital C*-algebra A (with the
unit e), regarded as a Hilbert C*-module over itself. Namely, suppose that a €
A is noninvertible. Then aa* or a*a is noninvertible. Assume that b := aa* is
noninvertible. By [2, Remark 2.7(a)], e Lg b and e Lg (]|b]le — b), and so, if Lp
is right-additive, then e Lg ||b]le, from which b = 0 and then a = 0. The same
conclusion is obtained in the case when a*a is noninvertible. This proves that
every nonzero element of A is invertible, and so A ~ C.

The same proof works for right-additivity of L%, since b > 0 and ||bl]le —b > 0,
and therefore, by Lemma 2.1(7), e Lpb<e L5 band e Lp (||blle —b) & e L5
(llolle — b).

Suppose that L g is left-additive. Let a € A be positive and noninvertible. Let
¢ be a state of A such that ¢(a) = 0. Then ¢(Jlalle — a) = ||a|| = ||||alle — al|.
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(Indeed, since a is positive and noninvertible, ||a|| belongs to the spectrum of
la]le —a > 0, and so ||a|| < ||||a|le — a||. On the other hand, 0 < ||alle —a < ||a]|e,
and so ||||al|e — al| < ||a||; hence ||a|| = ||||a|le — a]|.) Further, by [3, Lemma 4.1],
o((|lalle — a)?) = ||||lalle — a||*. By the Cauchy—Schwarz inequality, we have

e((lale = a)a)|” = |((llalla — a2)a?)|"

< le((lallaz —a2)?)||e(a)| =0,

and so ¢((|lalle — a)a) = 0. By Lemma 2.1(1), this gives (||lalle —a) L g a, which,
together with |lalle Lp a, by left-additivity gives a Lp a; that is, a = 0. So,
A ~ C. Since (||a|le — a)a > 0, by Lemma 2.1(7), we have (|ja|le —a) Lp a <
(|lal]le — a) L% a, and so the same proof works for left-additivity of L3%.
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