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ABSTRACT. Let E; be Banach spaces, and let Xg, be Banach spaces con-
tinuously contained in the spaces of E;-valued sequences (2(j)); € EY, for
i = 1,2,3. Given a bounded bilinear map B : E; x Ey — FEj3, we define
(Xg,, XE,)B, the space of B-multipliers between X g, and Xpg,, to be the set
of sequences (\;); € EY such that (B(\j,2(4))); € Xg, for all (2(5)); € Xg,,
and we define the Hadamard projective tensor product Xg, ®p X g, as consist-
ing of those elements in E} that can be represented as " . > B(@n(5), 9n (7)),
where (,)n € XE,, (Yn)n € Xg,, and Zn HanXE1 ||yn||XE2 < 0.

We will analyze some properties of these two spaces, relate them, and com-
pute the Hadamard tensor products and the spaces of vector-valued multipliers
in several cases, getting applications in the particular case where E = L(E1, E2)
and B(T,z) = T(x).

1. INTRODUCTION AND PRELIMINARIES

One of the classic problems in Fourier analysis is the description of the space of
coefficient multipliers between function spaces. Several papers have shown math-
ematicians’ interest in determining this space in particular cases (see the recent
monograph [18]; see also [20] for the historical situation for Hardy spaces and [16]
and [17] for several techniques and results regarding mixed norm; we refer the

Copyright 2016 by the Tusi Mathematical Research Group.
Received Dec. 11, 2014; Accepted Apr. 14, 2015.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 46B28; Secondary 46E40.
Keywords. vector-valued multipliers, Hadamard product, bilinear map.
71


http://dx.doi.org/10.1215/17358787-3319378
http://projecteuclid.org/bjma
http://projecteuclid.org/publisher/euclid.publisher.tmrg

72 0. BLASCO and C. ZARAGOZA-BERZOSA

reader to [11], [24], and [15] for the notation and results concerning Hardy and
Bergman spaces that are used in this paper.

The operator-valued multipliers (X (E}), Y (Fs)) corresponding to sequences of
operators (1}); € L(Ey, Es), for which (Tj(x;)); € Y (E,) for all (z;) € X(E,)
where X () and Y (Es) stand for different spaces of vector-valued sequences
(see [2]) or different spaces of vector-valued analytic functions (see [6] and refer-
ences therein), have been deeply investigated.

Recently, O. Blasco and M. Pavlovic (see [7]) have considered general properties
on the spaces of analytic functions in an abstract context to be able to carry
over the study of multipliers between these spaces relying on the construction of
certain Hadamard tensor products. These techniques allow them to recover many
old results on concrete examples. Motivated by their paper (see also the recent
monograph [21]), we shall introduce the notion of S(E)-admissibility and consider
the vector-valued analogues of several of the results in [7]. In particular, we shall
develop a very general theory of vector-valued multipliers adapted to bilinear
maps, which will cover most of the known cases in the vector-valued setting and
will generate new ones, as well as another point of view.

A Banach space E, S(E) stands for the space of sequences f = (z;); C E
endowed with the locally convex topology given by the seminorms p;(f) = ||z},
j > 0. We shall say that X is S(E)-admissible if X is a Banach space contained
with continuity in S(E) and the maps x — we;, where e¢; : D — K, ¢;(z2) = 27,
from E < Xg are also continuous for each j.

It is easy to check that most of the well-known vector-valued sequence spaces
such as P(E), lyeax(F), and 2 @, E, and most vector-valued spaces of analytic
functions, such as vector-valued Hardy, Bergman, Bloch, or bounded mean oscil-
lation analytic (BMOA) spaces, turn out to be S(FE)-admissible.

Let us now introduce the basic notions in this paper. For a given bounded
bilinear map B : E x E; — FE5, we define the space of multipliers between Xpg,
and Xpg, to be

(XE17XE2)B = {()‘j)j € EN s.t. (B()\j,mj))j € XE2 V(ﬂfj)j S XEl}
Then, if B verifies that there exists C' > 0 such that
lellz <C sup ||Ble,x
1

Izl 2, =

Wy, e€F, (1.1)

(XE,, Xg,)p becomes an S(E)-admissible Banach space with its natural norm
(see Theorem 3.3).

The particular instances of bilinear maps such as By : K x £ — FE given by
(a,x) = ax, Bp : E' x E — K given by (2/,x) — (2/,x), and B, : L(FE, F) X
E — F given by (T,z) — T(x) have been considered in the literature quite
often, and the corresponding spaces of B-multipliers have been described in some
cases.

Given now two admissible spaces X, and Xpg, and a bilinear map B : E; X
Ey, — E, we define Xp, ®p Xg, as the space of elements h € S(FE) such that
h=732,2;B(xn(j),yn(j)), where the series converges in S(E), (zn)n € Xp,,

(Yn)n € Xg,, and Zn ”anXEl ||yn||XE2 < 0.
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It is not difficult to see that this space, normed in a natural way, is also
S(FE)-admissible for bilinear maps satisfying the following condition: 3C'" > 0
such that for each e € F there exists (x,,y,) € E1 X Ej verifying

e=Y Blawy), Y lwallelyalle. < Cllells (1.2)

(see Theorem 4.3).
A particular example with such a condition, and one very important for our
purposes, is the following bilinear map, defined using the projective tensor product

BW:E1XE2—>E1®7TE27 (I’,y)|—>$®y

We refer the reader to [10] or [22] for the definitions and properties of the pro-
jective tensor product and norm.

Hadamard tensor products and multipliers are closely related. One first con-
nection with multipliers comes using the topological dual and the vector-valued
Kéthe dual X = (Xg, (1) p,. It will be shown that

(Xp, ®5 Xp,)" = (Xp,, X5 5
and
(Xp, ®p Xpg,) = (X, Xg,) -
where B* : E' x F; — FE is the bounded bilinear map defined by
<B*(e’,x),y> = <e’,B($,y)>, x € FE,yc€ FEye ek

(see Proposition 4.6).
Given a continuous bilinear map B : X x Y — Z, there then exist unique
bounded linear operators T : X @, Y — Z and ®p : X — L(Y, Z) satisfying

Tp(r ®y) = B(z,y) = ®p(r)(y), r€X,yeY. (1.3)
Using these identifications, one gets that
B(X xY,Z)=L(X®:Y,Z)=L(X,L(Y, Z))

are isometric isomorphisms. These identifications will give us a basic formula (see
Theorem 4.7),

(XE1 ®B, XEzﬂ XE3)B£ - (XE17 (XE27XE3)B£)B£= (14)

which shows that describing Hadamard tensor products helps to determine mul-
tipliers.

We shall get the description of Hadamard tensor products in some cases. A par-
ticularly interesting example is the description of H'(D) ®p, H'(D, L?) for the
values 1 < p < 2 in Theorem 5.5. We will use the above formula and the pre-
viously mentioned description to recover some known results on vector-valued
multipliers (see [0]):

(H'(T), BMOA(T, L)) , = Bloch(D E(Lp Lp)), 2 <p < oo,
(Hl("JT, LP), BMOA(T ) = Bloch( ), 1<p<2,
where ]lj + [% =1 (see Corollary 5.6).
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The paper is organized as follows: Section 2 is devoted to introducing S(F)-
admissibility and gives some examples. In Section 3, we introduce coefficient mul-
tipliers through a bilinear map, deal with solid spaces, and relate multipliers with
the Kothe dual. The Hadamard tensor product is defined in Section 4, where
we find its connection with multipliers via the Kéthe dual and show the formula
(1.4). In the last section, we first use multipliers to determine the Hadamard ten-
sor product of some spaces and, in the other direction, we also use the Hadamard
product to obtain some vector-valued multiplier spaces showing applications to
vector-valued Hardy spaces.

2. VECTOR-VALUED S-ADMISSIBILITY

Let E be a Banach space. We use the notation S(F) for the space of sequences
f = (z;)j>0, where z; € E, endowed with the locally convex topology given by
the seminorms p;(f) = |||z, 7 > 0. We shall think of f as a formal power series
with coefficients in E, that is, f(2) = . ¢2;2/, and most of the time we will
write f(j) instead of ;. Hence a sequence (f,), C S(E) converges to f € S(E)
if and only if p;(f — f.) — 0 for all j > 0 if and only if || f(j) — fu(5)||lz — 0 as
n — oo for all j > 0.

We will write e;(z) = 27 for each j > 0 and P(FE) for the vector space of the
analytic polynomials with coefficients in E; that is, Ejv xjej, where x; € E.

We first introduce the basic notion that plays a fundamental role in what
follows.

Definition 2.1. Let E be a Banach space, and let Xg be a subspace of S(E). We
will say that Xg is S(F)-admissible (or simply admissible) if
(i) (Xg,| - |lx,) is a Banach space,
(ii) the projection 7; : Xp — E, f — f(j) is continuous, and
(iii) the inclusion i; : E — Xp, x +— xe; is continuous.
We denote 7;(Xg) = ||7;|| and i;(Xg) = ||7;]]-
Hence, for each 7 > 0, we have
|| < m(XB)| fllxs, lvejllxp < ij(Xp)llz|e.

Remark 2.1. Let Xg, be S(Es)-admissible, and let E; be isomorphic to a closed
subspace of Fy, say, I(F;). Define
Xpy = {(2); 105 € Br, (I(x)); € X, }
and the norm
)il = 1T @)l

Then Xpg, is S(E))-admissible.
Also, we have that if Z is a Banach space and Xz C Z C Yg where Xg and
Yg are S(E)-admissible, then Z is S(E)-admissible.

Let us give a method to generate S(E)-admissible spaces from classical S-
admissible spaces (i.e., keeping our notation, S(K)-admissible spaces).
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Proposition 2.2. Let E be a Banach space, and let X be S-admissible. We
denote

X[E] = {(2;);20 € S(B) : || (l2ll) ||« < 00},
Xueak(E) = {(25);20 € S(E) : ||(95j)ijweak(E) = sup H(<933"x/>)j||x < oo}.

[l || =1
Then X @, E, X[E] and Xyear(E) are S(E)-admissible.
Proof. The fact that X[E] is a Banach space is easy and left to the reader. Clearly,

Xyeak(F) = L(E', X) and X ®, E have complete norms.
Due to the continuous embeddings

X @, E C X[E] C Xyeak(E),

we only need to see that P(E) C X ®, E with continuous injections i; for j > 0
and that Xyea(E) C S(F) with continuity. Both assertions follow trivially from
the facts

lzeillx g, & = Izl ellejllx < i;(X)lz|e
and
sl = sup_ |G, @)] < mCO | @rellx, ey 0
X E' =

Definition 2.3. Let Xg be S(E)-admissible, and denote X% = P(E)XE. We say
that Xg is minimal whenever P(E) is dense in Xp; that is to say X% = Xp.

Of course, X% is S(E)-admissible whenever Xp is.

Proposition 2.4. Let Xp be S(F)-admissible, and let F' be a Banach space.
Then L(Xg, F) is S(L(E, F))-admissible.
In particular, (Xg)" and (X%) are S(E')-admissible.

Proof. 1dentifying each T € £(Xp, F) with the sequence (T(5)); € S(L(E, F))
given by T'(j)(z) = T(ze;), we have that L(Xp, F) — S(L(E, F)). Moreover,

7 (L(XE, F)) <i;(Xg) due to the estimate 17 Meer) < G(Xe)| T cxp,m)-
To show P(L(E, F)) C L(Xg, I'), we use that, for each j > 0and S € L(E, F),
Se; defines an operator in L(Xg, F') by means of

S@j(f) = S(Ij), f = (SL’J) S XE
Moreover, i;(L(E, F')) < 7;(Xg) because ||Se;|| cixp,r) < Ti(XE)||S] 2e,r)- O

Ezample 2.1. Some examples of S(E)-admissible spaces are *(E), ¢ | (E), and
P %, E for 1 < p < oo, where

e(B) = (8] = { (@20 ¢ |20 |y = (i frulfy) " < 00},
gp

Pk B) = {({L’n)nzo : H(xn)”efmak(E) ” S”up (Z} Ty, T >1/P < oo},

with the obvious modifications for p = oc.
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In particular, ¢y(F) = ((*(F))? and
UC(E) = (6L )% (E) = {(ﬂfn)nzo el (E); Z T, CONVerges unconditionally}

weak
n

are S(FE)-admissible spaces.
Another interesting space, not coming from the above constructions, is

Rad(FE) = {(:lij)jzo : Sljtp [/01 ixﬂj(t)

where r; stands for the Rademacher functions (see [9]).
It is well known (see [9]) that

0t (E) CRad(E) C 2 . (E)

weak weak

with continuous embeddings, and therefore Rad(F) is S(F)-admissible.

2 1/2
dt}
FE

<o)

Let us mention the interplay with the geometry of Banach spaces when com-
paring the space Rad(E) and

Rad(E] = {(z;); € S(E) : ||(Iz51l5) ;|| gaa
and
Radyeax (E) = { ()20 € S(E) :

}}(xj)j“Radweak(E) = I ’SHup 1H ((ﬂf], :L‘/>)jHRad < 00}7
|| gr=
where Rad = Rad(K). Recall that the notions of type 2 and cotype 2 correspond
to /*(E) C Rad(F) and Rad(E) C (*(E), respectively (see [9]).

Proposition 2.5. Let E/ be a Banach space.
(i) Rad(E) = Rad[E] if and only if E is isomorphic to a Hilbert space.
(ii) Radyeax(E) = Rad[E] if and only if E is finite-dimensional.

Proof. Note that, using the orthonormality of r,, Plancherel’s theorem gives
Rad[E] = (?(E) and Radyea(E) = (2., (E). Of course, if E is a Hilbert space,
then Rad(FE) = (%(E) and, for finite-dimensional spaces, Radyear (E) = (2, (E) =
(*(E).

On the other hand, clearly Rad[E] C Rad(E) if and only if E has type 2, and
Rad(FE) C Rad[FE] if and only if E has cotype 2. Now use Kwapien’s theorem (see
[9, Corollary 12.20, p. 246]) to conclude (i).

To see the direct implication in (ii), simply use that if dim(F) = oo, then
(2(E) C 2. (E) (see [9, Theorem 2.18, p. 50]). O

weak

Ezample 2.2. Let E be a complex Banach space, and denote by H(D, E) the
space of holomorphic functions from the unit disk ID into E; that is,

f(z) = ijzj, z; € E, |z <1
=0

Then, with the notation in the Introduction, f would be written >, f(j)e; and
P(FE) would actually be the E-valued polynomials.
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In particular, for £ = C, most of the classical examples—such as Hardy spaces,
Bergman spaces, Besov spaces, Bloch functions, and so on—become S-admissible.
Let us introduce the vector-valued versions of those used in this paper. The
vector-valued disk algebra and the bounded analytic functions will be denoted by

AD,E)={feHD,E),f € CD,E)}

and
H*D,E)={f e H(D,E), ‘81|1<p1||f(z)HE < oo},

respectively, where we define

1 fllap.z) = |81|1_lef(2’)HE7 £l ros(0.y = lsTlng(Z)HE-

It is easy to see that (H>(D, E))* = A(D, E).
Given 1 < p < oo, the E-valued Bergman space AP(D, E) is defined as the
space of F-valued analytic functions on the unit disk such that

| £l ar(0,) = /Hf )5 dA(2 / M,(f,r rdr} p<oo,

My(f.7) = [1/ [t at]

It is known that AP(D, E') are minimal for 1 < p < oo (see, e.g., [1]).
The E-valued Hardy space H? (DD, E) is defined as the space of E-valued analytic
functions on the unit disk such that
[ fllzre,) = sup M(f,r) < oo.

0<r<1

where

We also have the space defined at the boundary
Hp(']I‘,E):{fGL”(']I‘E / f(e® _mt;l —On<0}

where LP(T, E) stands for the functions which are p-integrable Bochner with
values in E. Tt is not difficult to see that H?(T, E) = (H?(D, E))°.
It is also well known that, for 1 < p < o0,
A(D,E) c H*(D,E) C H?(D,E) C A?(D,E) C A'(D, E).

Observe that A(D)®, E C A(D,E) and AY(D, E) C Al _, (D, E). Using that
A(D) = A(D,K) and A'(D) = A'(D,K) are S-admissible, we have that all the
previous spaces of analytic functions are S(F)-admissible.

Finally, we define the E-valued Bloch space, Bloch(D, E), to be the set of
FE-valued holomorphic functions on the disk that verify

sup(1— [2])[| /()| p < oo

It is a Banach space under the norm

Il = 1700+ sup(1 = DL )]
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We will denote by BMOA(T, F) the space of functions in L'(T, ) with Fourier
coefficients f(n) = 0 for n < 0 and such that

1 ; dt
Supm/IHf(e - fI”E% <00

where the supremum is taken over all intervals I C [0, 27), || is normalized I’s
Lebesgue measure, and f; = ﬁ Il o f (e“)g—;. This becomes a Banach space under
the norm

1 " dt
1 flsyoacr.z) = [|£(0)]| +supm/l||f(ez )— fIHE%'

Again we can use that
A(D, E) € BMOA(T, E) C Bloch(D, E)

and Bloch(D, E) = Blochyea(D, E) to obtain that both spaces are S(E)-
admissible.

Remark 2.2. The spaces X (F) and X[E] are quite different whenever X C H(D)
for infinite-dimensional Banach spaces F.
For instance, let F = ¢(, and denote by (e, ), the canonical basis. Consider the

functions fy(z) = S0 e,z
Let us analyze its norm in H?(D, F') and H?(D)[E]. We have

| fnllae@ee) < | fnllaemeny =1, p>1.

However,

N o yjeo) = N + 1,
v e @)eo) = |l m2m)e) = (N + D2 2 < p < oo,

and, using Hardy’s inequality for functions in H' (see [11]),

N
1
1fn e @)l = vl @y = CY e Clog(N+1), 1<p<2
n=0

Similarly,

AX(D)[E] = { z;); ), € BN Z I ]H }

j+1

and then, for p > 2,

1/2
Iinllarme <1 fvllarmye) > C(log(N + 1)),

which exhibits the difference between the spaces above and the vector-valued
interpretation X[E].
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3. MULTIPLIERS ASSOCIATED TO BILINEAR MAPS

Now that we have introduced new classes of sequence spaces, we define a general
convolution using bilinear maps, which will be the main notion in this paper.

Definition 3.1. Let Ey, 5, and E3 be Banach spaces, and let B : Fy X Fs — Ej3
be a bounded bilinear map.

We define the B-convolution product as the continuous bilinear map S(E;) x
S(Ey) — S(FE3) given by (A, f) = A xp f, where

Neg [(7) = B(AG), (7)), J=0.
In particular, our results in the sequel could be applied to the following bilinear
maps:
e For By: ExK — E, (z,a) — ax, we get
Ak, = (ajz);.

e For Bp: F' x E — K, (2/,2) — (2, ), we get

A *p f = (<$;,$J>)j
e For By : L(E1, Ey) x By — Es, (T, x) — T(z), we get

j
o For B, : B| x By — B, @, By, (z,y) — r @y, we get
[ e g = (2 ®y;);.
e For a Banach algebra (A,:) and P: A x A — A, (a,b) — ab, we get
Axp f=(a;b));.
Associated to a bilinear convolution we have the spaces of multipliers.
Definition 3.2. Let Ey, Fs, and E be Banach spaces, and let B : £ X Fy — Ey
be a bounded bilinear map. Let Xpg, and Xpg, be S(E;)- and S(Es)-admissible

Banach spaces, respectively. We define the multipliers space between X, and
Xg, through the bilinear map B as

(XE17XE2)B = {)\ € S(E) . )\*Bf € XE2 Vf € XE1}

with the norm

”/\”(XEl,XEz)B = Sup “/\ *B f”XEQ'
Ifllxp, <1

In the particular case where F = L(E;, Es) and B = B, we simply write
(XEl’ XE2)'
It is easy to prove that || - [|(x,, xpu,), 18 @ norm on (Xg,, Xpg,)p whenever B
satisfies the condition
B(e,z) =0, VxeE, = e=0.

In other words, the mapping £ — L(E, Es), given by e — T, where T, (z) =
B(e, ), is injective.
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Theorem 3.3. Let E1, Ey, and E be Banach spaces, and let B : E X 1 — Ey
be a bounded bilinear map for which there exists C' > 0 such that

lellg < C | sup HB(e,x}HEZ, ee k. (3.1)
x|y =
If Xg, and Xg, are S(Ey), S(E2)-admissible Banach spaces, respectively, then
(Xg,, Xg,)B is S(F)-admissible.

Proof. We shall consider first the case where £ = L(E), Ey) and B = By.
Let A = (T}); € (XEg,, Xg,) and j > 0. For each x € E, using the admissibility
of Xp, and Xp,, we have

|1T5(@)|| 5, < 75(X,) || T ()

HE2 eJHXE2

(X&,)
T (Xm)[IA x2 wej x,

(Xe,)

)

T (X )Ml (xs, X5 1765 [ x5,
(X B, )i (XA (x5, X 2] 2, -
This gives (Xg,, Xg,) — S(L(E1, E2)) with continuity.

On the other hand, if p € P(L(E}, Ey)) and f € Xg,, we have pxc f € P(Ey) C
Xpg,. Hence p € (Xg,, Xg,). For each j > 0 and T' € L(FE, E3), we have to show
that ||Te;l|(xp, xp,) < CilIT||. Now given f € Xg,, again by the admissibility of
XE1 and XEQ,

VARVAN

ITe; 2 fllxs, = |T(f j))eJHXEQ
|
|

< i5(Xe)[IT(FD)
<1 XEQ)\THIIf Mg,
<45 (Xp)m (XTI Nl x, -

Therefore C; = i;(Xg,)m;(Xg, ).

Let us now show the completeness of (Xg,, Xg,). Let (M\,)n C (Xg,, Xg,) be a
Cauchy sequence of multipliers. Since the sequence of operators A, (f) = A, *¢ f
is a Cauchy sequence in L(Xg,, Xg,), we define A € L(Xg,, Xg,) to be its limit
in the norm. Therefore

A=Al =0 = [JA) =MDl =0 = Xaxc f— A(f) € S(EBn).

.,

On the other hand, we know that (Xg,, Xg,) — S(L(E1, E»)), and then there
exists A € S(L(E1, E»)) such that

)‘n*ﬁf_>)‘*£f

in S(L(F1, E»)). Hence, necessarily, A(f) = A . f.

For the general case, assumption (3.1) allows us to use Remark 2.1 where the
isomorphism is given by e € E — T, € L(E4, Ey) where T,.(x) = B(e, x) for each
e € F and x € F;. Just note that

(XEUXE2)B = {(5‘(]))] € EN : (T)\(j ) (XE17XE2>} 0J

Let us consider the particular cases B = By and B = Bp.
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Definition 3.4. Let X be S(F)-admissible. We define
Xp=A{f=(2;); € S(E) : (ayuy); € Xp,¥(ay); € £}
with the norm

[z)illxs = sup [[(ez);lx,
ll(aj)jlloo=

and

XE = {F = (@) € S(E) : Y| 0] < 00, ¥(w); € X},

where
@il = sup > | {af25)].

1(z);llxp=1";

We also denote

XEN = {7 = (@), € S(B) - 3| (@, 2)] < o0.¥(a)), € XE .

In general we have
X3 C Xp C XEK

One basic concept in the theory of multipliers is the notion of solid space
(see [3]). We have the analogue notion in our setting.

Definition 3.5. We say that Xp C S(E) is S(E)-solid (or simply solid) whenever
X is an S(E)-admissible space verifying (o, f(j)); € Xg for f € Xg and (), €
>°; that is to say Xp = X2.

Using that (¢, Xg)p, = X2 and X5 = (Xg, ('), together with Theorem 3.3,
we obtain the following corollary.

Corollary 3.6. Let Xp be S(E)-admissible. Then X3 and X5 are S(E)-solid
and S(E')-solid, respectively.

Remark 3.1. Let us collect here some observations of solid spaces.

(a) X[E], Xyeak(E), and X ®, E are S(E)-solid if and only if X is a solid
space.
(b) Rad(E) is a S(E)-solid space. (This follows from Kahane’s contraction
principle [9, Contraction Principle 12.2, p. 231].)
(c) Neither H?(D, E') nor AP(D, E) are S(E)-solid unless p = 2.
Assuming that they are S(F)-solid, and restricting to ¢(z)z for ¢ € H(D) and
x € E, we will have that also H? or AP must be solid for p # 2, which is not the
case.

Proposition 3.7. Let X be S-solid, and let E be a Banach space. Then
(1) (X ®7T E)K - (XK)Weak(El);
(i) (X[EDF = XF[ET].
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Proof. (i) We first claim that (2); € (X*)weax(£’) if and only if ((2}, z)); € X*
for all z € E. We only need to see that if

sup [[((h ), g < o
|zl z=1

then ((z”,2%)); € X* for 2" € E".
For each ( i) € X, [(e)]lx <1, and N € N, there are ¢; with |¢;| =1

N N
Sl aag] =[S alage;
j=0 j=0
N
= ‘<x//’ Zx;&j€j>
j=0
N
< ||:v”||E~Hz_:fB}04j€j .

< [|2"||g sup Z\ 7)oy

llzll p=1 j=0

< lleller sup [[({5, 7)o

le=1

This concludes the claim.
We show first that (X @ E)X C (XH)year(E'). Take X = (2}); € (X @, E)¥,
x € E, and (¢;); € X. Note that

Axp (o) @ 2) = ((2), 2)ax ) el (3.2)
and then we obtain (); € (X*)wear(E') wWith [|[(2]);]lx#), () < 1Al from the

previous result.

Assume now that A = (2}); € (X*)weax(£’), and let us show that A\ €

(X&@.E)f. If e >0and f = > fu®z, € X®, F with fn(j) = af and
> on M fallxllznlle < | fllx &, £ + € then we have

D> _[Xen 7() ZZI 2} )|
=ZZ| 2} )|
<Z”5”””EH<< Hxn\|>>
< (@il ey (2 Il sl Falx)

S H(x‘/j)jH(XK)weak(E,) (HfHX ®7r E + 6)'

ol
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(ii) We first notice that

Sl@han] <3 lagllelasle < (125 e), Ll Olaslle), |-

J

This shows that XX [E'] C (X[E])¥X.

To see the other inclusion, let A = (); € (X[E])* and show that (|2 g);>0 €

XK Fix (aj); € X, € > 0, and j > 0. Select z; € E with [|zj||p = 1 and
)]z = [{@}, 2;)] + €270+ D]y |~ for a; # 0. Consider now f = (ejaz;); € X[E]
and observe that, using that X is solid, we get

S e lagl = (@, @) lay] + €
j j

= [Axp fllo + €

< I Mexspx [ fllxe + €

< IMlexiepe][(a); x +e
This finishes the proof. O
Remark 3.2. In general, X @, F' C (Xyeax(E))¥.

Indeed, for each g = (3;); € XX, 2’ € E', and f = (z;); € Xyeak(E), we have
that

(g ® JI/) *D f = (<x/7 xj>ﬁj)j7 (3'3)
which satisfies

D 1@ @8] < gl 2|11 | x s
J
and then
l9 @ 2 llxeenc < llgll ']l e
Now we extend using linearity and density to obtain X¥ @, E' C (Xyear(E))¥.
For the case X = (7, 1 < p < 00, it has been shown (see [8], [13], [2]) that

(&

weak

(BN =&, F.

Theorem 3.8. Let E1, F5, and E be Banach spaces, and let B : E x E1 — Fy
be a bounded bilinear map satisfying (5.1).
Define B, : E x Ey — FE| given by

(Bi(e,y'),z) =(y,Ble,x)), e€ E,x€ Eyy € Ej.
If Xp, and Xp, are admissible spaces and Xg, = X, then
(XE1’XE2)B = (XJIE’Z?XJI;JB*'

Proof. From the definition we can write, for A € S(E), f € S(E,), g € S(F)),
and 7 > 0,

(907). X5 F()) = (X 9(7). F(5))-
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Assume now that A € (Xg,, Xpg,)p and g € XJ5 . We have

X e, gl = sup{ SN ez 9, )]+ 17 xe, <1

= sup{z

J
<lgllxg, sup{(|(A x5 N,  1fllxs, <1

< H)‘H(XEl,XEZ)B ”gHXg2

(3). X PN+ 1 lxs, <1}

Using the assumption Xp, = X/, one can argue as above for A € (X[, XF )5,
and f € Xp, to obtain

A5 fllxe, =sup{ >
= sup{ 221 (Ve590). S0 - gl <1}

§0) 35 TGN - gl <1}

< I, sup{[v 5. 9)][ g = Nl < 1}

f||XE1' ]

< ||)\||(X52,xg1)3*

4. THE B-HADAMARD TENSOR PRODUCT

Let us now generate a new S(F)-admissible space using bilinear maps and
tensor products.

Definition 4.1. Let Ei, Ey, and E3 be Banach spaces, and let B : E; X Ey — Ej3
be a bounded bilinear map. Let Xg,, Xg, be S(E)),S(E,)-admissible, respec-
tively. We define the Hadamard projective tensor product Xp, ®p Xpg, as the
space of elements h € S(FE3) that can be represented as

h:an*Bgm

where the convergence of Zn fn*Bgn is considered in S(E3), being f, € Xg,, gn €
XE27 and
S U fallxe, gl < 0.
The particular case B3 = E; @, Ey and B, : E; x Ey — E3 will be simply
denoted as Xp, ® Xg,

Proposition 4.2. Let F1, E>, and E3 be Banach spaces, and let B : 1 X Ey —
Es be a bounded bilinear map. Let h € Xg, ®p Xpg,, and define

Iolls = inf Y |l fullxe, I9allxs,

where the infimum is taken over all possible representations of h =" fn *p gn.
Then (Xg, ®p Xg,, | - ||5) is a Banach space.
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Proof. Let ||h]|p = 0 and € > 0. Thus there exists a representation h =) f, *p
gn such that > || fullxg, lgnllxs, < € Since the series converges in S(E3) we

conclude that ﬁ(]) => . B(fn (7), 9n(7)). Using the admissibility of Xp, and Xg,,

W) |, < DB, () ||,

Fo|l 5,

9n (]|,
<|IBIlmj(Xe)7i (X)) > I fallx, 1Gnllxs, < e

Consequently, iL( j)=0forall j >0.

Of course, ||ah||p = |al||h||p for any a € K and h € Xp, ®p5 Xg,.

The triangle inequality follows using that if by = (f}*pg.), and hy = (f2*592),
such that

i i € .
> M Filxe, 190l xs, < l1Ralls + 5 1=L2
then hy +he = >, fa*p gy + Y., [2 *p g2, and then
1ha + h2lls < I bllxe, lonllxs, + D 1 fallxe, 19mllxs, < 1halls + a5 + €.

Finally, let us see that Xp, ®p Xg, is complete. Let ) h, be an absolute
convergent series in Xp, ®p Xg, with h,, € Xg, ®p Xg,. For each n € N select a
decomposition h,(z) =Y, [’ *p g such that

D s, 98 s, < 20hnll5-
k

Let us now show that > h, = > >, fi *xp g; in S(E3). Indeed, for each
7 >0, we have

ZZHB fk /ZL )HE3 < ||BH7TJ(XE1>7TJ XE2 ZZ ”fk HXE1||ngXE2
<2||Bl[m(Xe)7m;(XE) Z 1|,

and since Fj3 is complete we get the result.

Moreover, h = 3 h, € Xp, ®p Xp, because Y > o 1 fillxp, g7 xs, < oo
Now use that

H =3 Z 71, N8 xe, <2 Z I

to conclude that the series Zn h, converges to h in Xg, ®p Xg,. O

Remark 4.1. It h =Y fu %z gn € Xg, ®p Xg,, then Y ||f, *5 gul|lp < 0o and
h =Y fu*p gn converges in Xp, ®p Xg,.
Indeed, simply use that

1 *5 9lls < [1fllxg, l9llxe,
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for f € Xp, and g € X, and that, for M > N,

M
n=N

Theorem 4.3. Let Fy, F5, and E be Banach spaces, and let B : Fy X Fy — E
be a bounded bilinear map satisfying that there exists C' > 0 such that for each
e € E there exists (x,,yn) € Ey X Ey such that

e=Y Blaay), D lwalmlyle < Clels: (4.1)

M M
< anlls < 3 Il loellxe,
n=N n=N

If Xg, and Xg, are admissible spaces, then Xgp, ®p Xg, is S(F)-admissible.
In particular, Xg, ® Xg, is admissible.

Proof. We show first that Xp, ®p Xg, C S(E) with continuity. For € > 0 we can

find a representation h = ) f, *p g, such that > || fullxp 9nllxs, < |PllB+e
Therefore, for each 7 > 0,

Wl < SN B(Fali)s an()) |
<|BIIY

<N\ Bllms(Xe)my(Xe) D I allxe, lgnllxs, < Csllkllz + e

Fo D,

()| g,

To show that P(E) C Xp, ®p Xg,, it suffices to see that ee; € Xp, ®p5 X, for
each j > 0 and e € E. Now use condition (4.1) to write e = Y B(xp,yn) € E,

and therefore
€6 = Z(%Bj) *5 (Yne;)
and

Z ||1'n€j||XE1 HynejHXEQ < ij(XE1)ij(XE2> Z ”anElHynHl% < CJHe”E
n n

Hence ee; < XE1 ®p XE2 and HeejHB < CZ](XEl)Zj(XEz)HeHE O

Remark 4.2. If E;, F5, and E are Banach spaces and B : F; x Fy — FE is a
surjective bounded bilinear map such that there exists C' > 0 such that for every
e € F there exists (z,y) € By X E, verifying

e=B(zy), |zlelyle < Clels, (4.2)
then we can apply Theorem 4.3.

A simple application of (4.2) gives the following cases.

Corollary 4.4.

(i) If X and Xg are admissible spaces and By : K x E — E is given by
(o, x) = ax, then X ®p, Xg is S(F)-admissible.

(ii) Let (3, p) be a measure space, 1 < p; < oo fori=1,2,3 and1/ps = 1/p1+
1/py. Let B : LP*(p) x LP*(pu) — LP3(u) be given by (f,g9) — fg. Then if
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X and Xppe are admissible spaces, then Xppn ®p Xprs is admissible.

(iii) Let A be a Banach algebra with identity and P : A x A — A given
by (a,b) — ab. If X4 and Y are admissible spaces, then X ®p Yy is
admassible.

Remark 4.3. Tt is straightforward to see that, under the assumptions of Theo-
rem 4.3, if either Xp, or Xp, are solid spaces, then Xp, ®p Xp, is an S(F)-solid
space.

Proposition 4.5. Let E1, E5, and E be Banach spaces, and let B : E1 X Ey — E
be a bounded bilinear map satisfying (/.1). Let Xg,, X, be admissible Banach
spaces such that either X, or Xg, are minimal spaces; then Xg, ®p Xg, 1S5 a
minimal S(E)-admissible space.

Proof. We shall prove the case X%l = Xp,. Let h € X, ®p Xpg,. From Re-
mark 4.1, there exist f,, € Xg,, g, € Xp,, and N € N such that

N
Hh - an *B gn
n=0

By density, choose polynomials p, with coefficients in E; such that

_¢
B 2

€
N+ Dllgnllxz,

||fn _p”||XE1 < 2(

Then fo:opn *p gn € P(F) and

N
n=0

N N
LS Hh— > fukB gn T HZ(fn — Pn) *B gn 5
n=0 n=0

€

WE

N
€ €
< E — < —

€. O

DO |
Il
[e)

Proposition 4.6. Let B : Ey X Ey — E be a bounded bilinear map satisfying
(4.1). Denote by B* : E' x Ey — E} the bounded bilinear map defined by

(B*(¢',x),y) = (¢, B(x,y)), x€Eye by ek
If Xg, and Xg, are admissible, then

(XEl ®B XEQ)K - (XENX}{;Q)BM
(X, ® Xp,)' = (Xp,, Xp,) B+

In partz’cular, (XEl ® XEz)/ = (XEUX/EQ) and (XE1 ® XE2)K = (XEUX]IE(Q)

Proof. Let A € (Xg,, X} )+, and define, for f € Xp, and g € Xp,,

Mf*p9)"0G) = (A *s £)7),805)), >0
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Let us see that, A € (Xg, ®5 XEQ)Ka
Z’)\ f*5g)” ‘—Z} >\*B* ~ (), (J)>|

<A Pl lglxe,

< MMlxy x5 e 1 L, 191, -

EQ)B*

By linearity we can extend the result to finite linear combinations of *g-products
and, by continuity, to Xg, ®p Xg,; that is,

= Z 5‘(fn *B gn)

whenever h =) f.*pgn and Y || fn*5 gnllz < 00. Therefore we conclude that
(Xg,, X5,)B+ € (XE, ®5 X5,)"

For the other inclusion, consider v € (X, ®p Xg,)" and define (f)"(j) € E}
by

<;)J/<f)/\(.7)7y> = ’}/(f *B yej)/\<j)7 f € XE'Ny S E27j > 0.
This gives
FH~G)a0)) =2(f*9)"(), f€Xp,g9€Xg,,j>0.
Let us see that, ¥ € (Xg,, X5 )5,

FDlg = sup Zlvf*Bg ~()]

gl =1 %5

S H’}/H(XE1®BXE2)K sup H.f *B gHB
lollx, =1

< Al x, ©8x2,)% 1l x5,

The argument to study the dual is similar: Let A € (Xg,, Xp,)p-, and define
OA(f *B g) = (M *p- f,g). Note that X, is also S(Ej)-admissible and that

|¢/\ [ *B g)| < ”)‘H (Xp,, XE,)B*

By linearity we can extend the result to ﬁmte linear combinations of *pg-products
and extend by continuity Xpg, ®p Xg,; that is,

h) = &x(fo 5 gn)

Flixe, 9l xp,-

whenever h =Y f.*p g, and Y || fn*5 gnl|lp < 00. Therefore we conclude that
(XEl’ Xng)B* - (XEl ®pB XEz)/'
For the other inclusion, consider T € (Xpg, ®p Xg,)’, and define

Ar(f)(9) =T(f *B g)-
Then
Az (1)

x, = Sup !/\T @] < sup TN *5 glls < ITNflxg, -

P2 glxp, =1 lgllx, =1
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Theorem 4.7. Let Xg,, Xg,, Xg, be admissible Banach spaces. Then
(XE1 ® XE27 XEg) = (XEN (XE27 XEg)) .

Proof. Due to the identification between L(E) @, Ey, E3) and L(E;, L(E», E3)),
where the correspondence was given by ¢(r ® y) = T,(z)(y), we obtain, in our
case, that each A\ € S(L(E,®y Ey, F3)) can be identified with A € S(L(Ey,
L(E,, E3)) satistying

AG)(FG) @ 3(7)) = AG) (FG)) (30)).
Let A € (Xg, ® Xg,, Xg,). For each f € Xp, and g € Xg,, we have
Aky (f #x ) = (Ao f) 53 g, (4.3)

where *; is used for multipliers in S(L(E) @, Es), E3), %o is used for multipliers
in S(L(F1, L(Es, E3))), and *3 is used for multipliers in S(L(Es, E3)).

Let us now show that \ € (Xg,, (X, XE;)).

We use (4.3) to get

H(S\ 9 f) *3 QHXE3 < \|)\H(XE1®XE2,XE3)H(f * 9)”
= |\l (xm, @xm,,Xm) |1 x5, 19 x5, -

Therefore [|Allxp, .(xg, x5,) < Al (x5, X5, X5,)-
For the converse, take A € (Xg,, (Xg,, Xg,)) and h € Xg, ® Xp,. Assume that
h = Zn fn *z gn With Zn ||fn||XE1 ||gn||XE2 < o00. Hence

||/\ *q1 h||XE3 S ZH)\ *q (fn * gn)HXE3

- ZHO\ *2 fn)H(XEgvng)”gnHXE2
<Y M e, Xy X il L, 19,

< ||)\||(XE17(XE27XE3)) Z ||fn||XE1 ||gn”XE27

which gives H)\”(XE1®XE27XE3) < “)\H(XEP(XEQ»XE?,))' O

5. EXAMPLES AND APPLICATIONS

In this section we use Theorem 4.7 in both directions; that is, we compute
multiplier spaces and Hadamard tensor products.

We first start with a characterization of S(E)-solid spaces in terms of Hadamard
tensor products.

Proposition 5.1. Let Xg be admissible. Then (® ®p, Xg is the smallest S(E)-
solid space which contains Xg.
In particular, Xg is S(E)-solid if and only if Xp = (> ®p, Xg.
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Proof. Of course, Xg C (™ ®p, Xg, and {*° ®p, Xg is solid (due to Remark 4.3).
Let Yg be a solid space with Xz C Yg. We shall see that (>~ ®p, Xp C Y.
Let h € {*° ®p, Xg be given by h = > f,, * gn, where f, € (>, g, € Xp, and

Zn ”anongnHXE < o0o. Note that fn * On € YE and an * gnHYE < ||fn”0<>Hgn”YE
for each n because Yz is solid. Hence

Y fa % gallve < D falloollgnllve < C Y I fallollgallxs < oo,
n n n

and then h € Y. O

Proposition 5.2. Let 1 < p,q < oo with ]lj + é = 1. Then
gp(El) @ gq(EQ) = gl(El ®ﬂ- EQ)
Proof. Let f € (°(Ey) and g € (4(Es). Since f #» g(j) = f(j) ® §(j) and

17 9|y .y < IF O, 13,

we have, using Hoélder’s inequality,

1f *x 9l ey &, 5y < I lev () 9l ea i) (5.1)

Let h € (P(Ey) ® (1(E,). Let € > 0, and take h = ) f, % g With f,, € (P(Ey)
and g, € (1(E») and > || fullee(i) | gnlleaces) < ||BlB, + €

From (5.1) we have that h = Y f. *» g, converges in ('(E; @, Fy) and
1hllp 2, &, By < IPllB, + € This implies that P(E;) ® (1(Ey) C (1(E) @ E)
with inclusion of norm 1.

Take now h € (*(E; ®, E,). In particular, for each j > 0 and € > 0, there exists
2J € Fy and y) € Ey such that h(j) = 3 27 ® 4 and

S leile il < 2O o, 2, + 55

Define F,, and G,, by the formulas

n

~ . . . 1/ €T, N . . . 1/
Fo(3) = (lznlle ol 2.) pllx”jHE o Gal) = (lllslyille,) ™
7 1

yi

97 1|2

Note that
. . 1/p . . 1/q
1Bl = (O leilmlgile.) " Gl = (3 Iz e Il )
J J

and
S IFlle@lGallesy =D Nadlle 1yl e < Ihllow 6. m) + €
n n,j

In such a way we have h = Y F, %, G, € (P(E) ® (?(E,) with ||h|p, <
HhHZl(El & E2)* ]
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To analyze the other values of p, we shall make use of the following result of
multipliers (see [1, Proposition 2.2]):
(gpl(El)’£p2(E2)) == gps (,C(El,EQ)), (52)

where 0 < L + L =1L < 1.
pP1 p2 p3

Proposition 5.3. Let 1 < p,q < oo with 0 < %%— % = % < 1. Then
gP(El) @ €q<E2> = gT(El ®ﬂ- E2>

Proof. Note that the same argument as in Proposition 5.2 gives (?(E) ® (1(Ey) C
("(Ey @ Fy) with inclusion of norm 1.
Indeed, as above, if f € P(E;) and g € (9(E,), then

172 901 6. 1 < IFD s, N3G,
Hence
1f *x 9ller (e, @ m) < N fllermn) 19]lea()- (5.3)

For a general h = ) fu*: g, € (P(E1)®{9(E,), where f,, g, are chosen such that
fn € Ep(El) and g, € EQ(E2) and Zn “anZP(El)HgnHﬁq(EQ) < ||h||B7r + €, we have
from (5.3) that >° || fn *x guller(s, &, ) < 00. Then h =3 f, %5 gn converges
in £'(Ey @ B>) and [|hll (g, 6, 5y < [1Bll5, + €.

To see that they coincide it suffices to show that (P(E;) ® (1(FEs)) =
(0"(Ey &y E»))'. Tt is well known that, for & =1 — 1,

("(Ey & B)) = 07 (L(Ey, B3)).
On the other hand, using Proposition 4.6 and (5.2) we have
(P(Er) ® (1(E,)) = ((7(By), 07 (Ey)) = €7 (LB, Ey)),
0

where i =1-

Q=

We now compute the Hadamard tensor product in some particular cases of
spaces of analytic functions. We shall analyze the case H' and H'(DD, E), at least
for particular Banach spaces F, following the ideas developed in [7].

We need some notions and lemmas before the statement of the result. Given

an E-valued analytic function, F(z) = 372 x;27, we define
DF(z) =Y (j+ 1)x;#.
=0

Lemma 5.4. Let E be a complex Banach space, 1 < p < 0.
(i) There exist Ay, As > 0 such that
Air™[ fllmeme) < Mp(f,r) < Aor™|| fllar @), 0<7 <1,
for f € P(E) given by f(z) = > x;27, x; € E, n,m € N, and where

j=n

M,(f.r) = (fy || f(re®)|payi/e,
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2n+1

(ii) If P(z) = Yoo 1 P(k)z*, P(k) € C, then there exist constants By and
Bs such that
Bi2"|| P xp, fllarm,e) < 1P 5y Dflar.e) < Bo2"|P #p, fllurwe) — (54)
for any f € H?(D, E).
Proof. 1t is well known (see Lemma 3.1 [19]) that
r|@lloe < Moo(@,7) < 7|0, 0 <1 <1,

for each scalar-valued polynomial ¢(2) = 37" a;27, where [|¢]|oo = sup,_; [#(2)]

and MOO(¢7T) = Sup|z|:1 |¢)(TZ)|
This allows us to conclude, composing with elements in the unit ball of the
dual space,

[ F]loe < Moo(F,7) <7"|Flloo, 0<7 <1,

for any F'(z) = >, y;2/ where y; € Y and where Y is a complex Banach space.
For f : D — K an analytic function, define f,, to be f,(z) = f(wz). Now select
Y = H?(D, E) and F(z) = f,; that is to say

m
— apd 5
w)fg zju’ 2.
j=n

Using that
| Flloe = sup || 2|l zr@,2) = || fl|zr(0,B)

|2|=1

and My (F,r) = M,(f,r), we obtain the result.
To see (ii) we first use [7, Lemma 7.2], which guarantees the existence of con-

stants By, By such that
Bi2"|[P xp, ¢llcc < [|P #p, Dolloc < Ba2"[|P #p, ¢||oc

for any ¢ € H*°(D). Now apply the same argument as above to extend it to
H?(D, E). OJ

Theorem 5.5. Let BY(D, E) denote the space of E-valued analytic functions
F(z) =3, g %% such that DF(z) € AYD, E) with the norm given by

I1Flavoy = [FO), + [ PP dac)
Let E = LP(u) for any measure p and 1 < p < 2. Then
(H'(D) ®p, H' (D, LP(n))) = B (D, L (n)).

Proof. Let us first show that B'(D, E) C (H'(D) ®p, H'(D, E)) for any Banach
space E. We argue similarly to [7, Theorem 7.1].
Let {W,}&° be a sequence of polynomials such that

supp(W,) € 2", 2"7'] (n>1),  supp(Wo) C [0,1],  sup[[Wylh < oo,
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and

g:ZWn*Bog7 gEH<D7E>

n=0

Let f € BY(D, £). Note that
| (W, 5, f)?"HHl(]D)’E) < |Wallll fellm ey < Clf e ,5)-

Hence, [|W,, *p, fllzrm.e) < Ol f||lo1(m,E)-
Denoting @, = W,,_1 + W,, + W, .1 we can write

f= ZQn xg, Wy *p, f.
n=0

Note now that Lemma 5.4 allows us to conclude that

S NQuli W <5, flmm.e) < KD IWa s, flmo.p
n=0 n=0

<KY [ 2 Wk, flmes dr

00 1—2—(n+1)
SKZ 7"2 HWn *BO DfHHl(]D),E) d?“
n=0“1-27"
> 1—2-(nt1)
<KY My (W, xp, Df,r)dr

n=0“1-27"

1
= K/ M,(Df,r)dr
0
< K| flls @.2)-

To show the other inclusion between these spaces we shall use that £ =
LP(u) for 1 < p < 2 satisfies the following vector-valued extension of a Hardy—
Littlewood theorem (see [14]):

1 1/2
[ a=maorna]” < Al (55)

for some constant A > 0 (see [0, Definition 3.5, Proposition 4.4]).
It suffices to see that ¢ g, g € B(D, LP(u)) for each ¢ € H'(D) and g €
H'(D, L?(p)). Now taking into account that D*(¢ *p, g) = D¢ *p, Dg and

[e.e]

DG, 9)(re") = 3+ DD ¢ = [ Doxm, 9)(se") .

J=0



94 0. BLASCO and C. ZARAGOZA-BERZOSA

we have

/01 My (D(¢ *5, g),7)rdr < /01 [/ M, (D*(¢ g, 9), 5) ds}rdr

0

_ /0 (1 — 5)M; (D*( %5, 9), 5) ds

1
< 2/ (1 —r?)My(r, Do) M, (Dg,r)r dr.
0

Now, from Cauchy—Schwarz and (5.5), we obtain
1 1 1/2
/ (1 —r*)My (D¢, r)My(Dg,r)r dr < [/ (1 —r*)ME(Do,r)r dr]
0 0

1/2

1
) [/ (1 —r*)M;(Dg,r)r dr}
0
< Kol 19l 112 o, - -

It is known, by Fefferman’s duality result, that (H')’ = BMOA (see [12], [23]).
In the vector-valued case, using LP as an unconditional martingale difference
space for 1 < p < 0o, we have

(H'(T,L7(n)))" = BMOA(T, L (1)), 1<p<oo

(see [4]). Tt is also well known that (B')" = Bloch (see [3]) and that, for the
vector-valued case, (B!(D, E))" = Bloch(D, E') for any complex Banach space F
(see [5, Corollary 2.1]) under the pairing

(F,G) = / (DF(2),G(2)) dA(2).
D
Using now Proposition 4.6, we recover the following result.

Corollary 5.6 ([6, Corollary 8.4]). Let 1 < p; < 2 and 2 < py < co. Then we
have

(H'(T, L7),BMOA(T)) , = Bloch(D, L(L¥, L*));
(Hl(T), BMOA(T, LPQ))BE — BloCh(]D, L(LP, LpQ)),
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