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Abstract. Given an increasing sequence (Xn)n∈ω of quasi-uniform spaces and
paratopological groups, we study the topology of the direct limits qu-lim

−→
Xn

and pg-lim
−→

Xn of the sequence (Xn)n∈ω in the categories of quasi-uniform

spaces and paratopological groups, respectively. First, we prove that the quasi-
uniformity of the quasi-uniform direct limit qu-lim

−→
Xn is generated by some

special family of quasi-pseudometrics. Then we discuss some properties of the
direct limits pg-lim

−→
Xn. Finally, we give an explicit description of the topol-

ogy of the direct limit pg-lim
−→

Xn under certain conditions on the sequence of

paratopological groups (Xn)n∈ω. Moreover, some questions about direct limits
of qu-lim

−→
Xn and pg-lim

−→
Xn are posed.

1. Introduction

The concept of direct limit is a basic one in functional analysis, and it has
become widely used in algebra, topology, and other areas of mathematics, such as
algebraic geometry and complex analysis, including the fundamental notion that
a stalk of a sheaf uses direct limits. An important special case of the direct limit is
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the direct limit of a directed family of mathematical structures of the same type.
The problem of explicitly describing the topological structure of the direct limit
has been discussed in [2], [3], [5], [8], [9], [10], and [13]. In this paper, we mainly
discuss the topologies on a tower of quasi-uniform spaces and paratopological
groups.

A semitopological group G is a group G with a topology such that the product
map of G × G into G is separately continuous. If G is a semitopological group
and the inverse map of G onto itself associating x−1 with arbitrary x ∈ G is
continuous, then G is called a quasitopological group. A paratopological group G is
a group G with a topology such that the product map of G×G into G is jointly
continuous. If G is a paratopological group and the inverse map of G onto itself
associating x−1 with arbitrary x ∈ G is continuous, then G is called a topological
group. However, there exists a paratopological group which is not a topological
group; the Sorgenfrey line (see [6, Example 1.2.2]) is such an example.

Given a tower

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · ·

of topological spaces, the union X =
⋃

n∈ωXn endowed with the strongest topol-
ogy making the inclusion maps Xn → X, n ∈ ω, continuous is called the topolog-
ical direct limit of the tower (Xn)n∈ω and is denoted by t-lim

−→
Xn.

By a quasi-uniform space we mean the natural analogue of a uniform space
obtained by dropping the symmetry axiom. We shall denote the quasi-uniformity
of a quasi-uniform space X by QUX . The direct limit qu-lim

−→
Xn (resp., u-lim

−→
Xn)

of a tower (Xn)n∈ω of quasi-uniform spaces (resp., uniform spaces) is defined in a
similar fashion as the countable union X =

⋃
n∈ωXn endowed with the strongest

quasi-uniformity (resp., uniformity), making the inclusion maps Xn → X, n ∈ ω,
quasi-uniformly continuous (resp., uniformly continuous).

The direct limit pg-lim
−→

Gn (resp., g-lim
−→

Gn) of a tower (Gn)n∈ω of paratopo-

logical groups (resp., topological groups) is defined as the countable union G =⋃
n∈ω Gn endowed with the strongest topology that turns G into a paratopological

group (resp., topological group) and makes the inclusion maps Gn → G, n ∈ ω,
continuous.

This paper is organized as follows.
In Section 3, we prove that the quasi-uniformity of the quasi-uniform direct

limit qu-lim
−→

Xn of the sequence (Xn)n∈ω in the categories of quasi-uniform spaces

is generated by some special family of quasi-pseudometrics. Moreover, for two
towers (Xn)n∈ω and (Yn)n∈ω of quasi-uniform spaces, we show that the topology
of qu-lim

−→
Xn × qu-lim

−→
Yn coincides with the topology of qu-lim

−→
(Xn × Yn).

In Section 4, we discuss some properties of direct limits t-lim
−→

Gn and pg-lim
−→

Gn

of the sequence (Gn)n∈ω in the categories of paratopological groups. We show that
if t-lim

−→
Gn is a paratopological group, then t-lim

−→
G∗n = (t-lim

−→
Gn)

∗, where each

G∗n denotes the coarsest group topology on Gn which is finer than the original
topology of Gn.
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In Section 5, we give an explicit description of the topology of the direct limit
pg-lim

−→
Gn of the sequence (Gn)n∈ω in the categories of paratopological groups

under certain conditions on the sequence of paratopological groups (Gn)n∈ω. We
prove that, under certain conditions on a tower of paratopological groups (Gn)n∈ω,
the topology of the direct limit pg-lim

−→
Gn coincides with one (or all) four simply

described topologies on the group G =
⋃

n∈ω Gn. Moreover, we define the PPTA
(passing through assumption in paratopological groups) property and other prop-
erties of the tower (Gn)n∈ω, guaranteeing that the topology of pg-lim

−→
Gn coincides

with some kind of topology.

2. Preliminaries

Let X be a set. The family of all subsets of X ×X has an algebraic structure
related to the operation

U ◦ V =
{
(x, z) ∈ X ×X : there exists y ∈ X

such that (x, y) ∈ U and (y, z) ∈ V
}

for U, V ⊂ X ×X. Then the so-defined addition operation allows us to multiply
subsets U ⊂ X ×X by positive integers using the inductive formula U = U1 and
U (n+1) = Un ◦ U for n > 1. Moreover, for a subset U of X ×X, denote

U−1 =
{
(x, y) : (y, x) ∈ U

}
.

For a sequence (Ui)i∈ω of subsets of X ×X, put∑
i≤n

Ui = U0 ◦ · · · ◦ Un

and ∑
i∈ω

Ui =
⋃
n∈ω

∑
i≤n

Ui.

For a point x ∈ X, a subset A ⊂ X, and U ⊂ X ×X, let

B(x, U) =
{
y ∈ X : (x, y) ∈ U

}
and

B(A,U) =
⋃
x∈A

B(x, U)

be the U-ball around x and A, respectively.

Definition 2.1. A quasi-uniformity on a set X is a filter U on X ×X such that
(a) each member of U contains the diagonal of X ×X and (b) if U ∈ U , then
V ◦V ⊂ U for some V ∈ U . The pair (X,U ) is called a quasi-uniform space and
the members of U are called entourages.

By a tower of quasi-uniform spaces we shall understand any increasing sequence

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ · · ·
of quasi-uniform spaces.
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Definition 2.2. A function f : (X,U )→ (Y,V ) is called quasi-uniformly continu-
ous (resp., uniformly continuous) if, for each V ∈ V , there exists an U ∈ U such
that (f(x), f(y)) ∈ V whenever (x, y) ∈ U , where U and V are quasi-uniformities
(resp., uniformities) for X and Y , respectively.

Definition 2.3. A quasi-pseudometric d on a set X is a function from X ×X into
the set of nonnegative real numbers such that, for x, y, z ∈ X: (a) d(x, x) = 0
and (b) d(x, y) ≤ d(x, z) + d(z, y).

Every quasi-pseudometric d on X generates a topology F (d) on X which has
a base of the family of d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈
X : d(x, y) < r}.

We denote by ω the first countable order and by N the set of all natural
numbers. The letter e denotes the neutral element of a group. The readers may
consult [1], [4] and [6] for notations and terminology not explicitly given here.

3. Topological direct limit of quasi-uniform spaces

A quasi-pseudometric on a quasi-uniform space X is called quasi-uniform if,
for each ε > 0, the set

{d < ε} =
{
(x, y) ∈ X ×X : d(x, y) < ε

}
belongs to the quasi-uniformity of X. By [7, p. 3], the family of QPMX of
all quasi-uniform quasi-pseudometrics on a quasi-uniform space X generates the
quasi-uniformity QUX of X in the sense that the sets {d < 1}, d ∈ QPMX , form
a base of the quasi-uniformity QUX .

It follows from the definition of quasi-uniform direct limit that we have the
following theorem.

Theorem 3.1. Let (Xn)n∈ω be a tower of quasi-uniform spaces. Then a quasi-
pseudometric d on the quasi-uniform space qu-lim

−→
Xn is quasi-uniform if and only

if for each n ∈ ω the restriction d|Xn×Xn is a quasi-uniform quasi-pseudometric
on Xn.

For a tower (Xn)n∈ω of sets and points x, y ∈ X =
⋃

n∈ωXn, let

|x| = min{n ∈ ω : x ∈ Xn}
and

|x, y| = max
{
|x|, |y|

}
.

The |x| is said to be the height of the point x in X.

Definition 3.2. Let (dn)n∈ω ∈
∏

n∈ωQPMXn . Then we say that a sequence of
quasi-pseudometrics (dn)n∈ω is monotone if dn ≤ dn+1|Xn × Xn for any n ∈ ω.
By the direct limit d∞ = lim

−→
dn of a monotone sequence of quasi-pseudometrics

(dn)n∈ω, we understand the quasi-pseudometric on X =
⋃

n∈ωXn defined by the
following formula:

d∞(x, y) = lim
−→

dn(x, y) = inf
{ n∑

i=1

d|xi−1,xi|(xi−1, xi) : x = x0, x1, . . . , xn = y
}

on X.
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Lemma 3.3. Let (Xn)n∈ω be a tower of quasi-uniform spaces, and let (dn)n∈ω ∈∏
n∈ωQPMXn be monotone. For arbitrary points x, y ∈ X and ε > 0, there exists

a chain of points x = x0, x1, . . . , xn = y such that

n∑
i=1

d|xi−1,xi|(xi−1, xi) < lim
−→

dn(x, y) + ε (1)

and |xi| < max{|xi−1|, |xi|} for each 0 < i < n. The latter condition implies that
|x0| > |x1| > · · · > |xk| ≤ |xk+1| < · · · < |xn| for some 0 ≤ k < n.

Proof. Let x = x0, x1, . . . , xn = y be a sequence satisfying (1) and having the
smallest possible length n. Then the sequence x = x0, x1, . . . , xn = y has the
desired property.

Indeed, suppose that |xi| ≥ max{|xi−1|, |xi|} for some 0 < i < n. Since

d|xi−1,xi|(xi−1, xi) + d|xi,xi+1|(xi, xi+1) = d|xi|(xi−1, xi) + d|xi|(xi, xi+1)

≥ d|xi|(xi−1, xi+1)

≥ d|xi−1,xi+1|(xi−1, xi+1),

we can delete the point xi from the sequence x0, x1, . . . , xn, which will not enlarge
the sum in (1). However, it will diminish the length of the sequence, which is a
contradiction.

Let k be the smallest number such that |xk| = mini≤n |xi|. Then we have |x0| >
|x1| > · · · > |xk| ≤ |xk+1| < · · · < |xn|. �

Lemma 3.4. Let (Xn)n∈ω be a tower of quasi-uniform spaces. For an arbitrary
monotone sequence of quasi-pseudometrics (dn)n∈ω ∈

∏
n∈ωQPMXn, the direct

limit quasi-pseudometrics lim
−→

dn on qu-lim
−→

Xn is quasi-uniform.

Proof. Let d∞ = lim
−→

dn. By Theorem 3.1, it is easy to see that the quasi-uniformity

of the quasi-pseudometric d∞ is equivalent to the quasi-uniform continuity of
the identity map qu-lim

−→
Xn −→ (X, d∞). It follows from the definition of quasi-

uniform direct limit qu-lim
−→

Xn that the quasi-uniform continuity of the identity

map qu-lim
−→

Xn −→ (X, d∞) is equivalent to the quasi-uniform continuity of the

inclusion embedding Xn −→ (X, d∞) for each n ∈ ω. For each n ∈ ω, since
dn is a quasi-uniform quasi-pseudometric and (dn)n∈ω is monotone, the inclusion
embedding Xn −→ (X, d∞) is a quasi-uniform continuity. �

Lemma 3.5. Let (X,QUX) be a quasi-uniform space, and letM be a subset of X.
Then every bounded quasi-pseudometric ρ on the set M , which is quasi-uniform
with respect to QUM , is extendable to a bounded quasi-pseudometric σ on the
set X, which is quasi-uniform with respect to QUX .

Proof. Without loss of generality, we may assume that ρ < 1
2
for all x, y ∈ M .

For each i ∈ N, take a Vi ∈ QUX such that

Vi ∩ (M ×M) ⊂
{
(x, y) ∈M ×M : ρ(x, y) <

1

2i

}
,
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and take a quasi-uniform quasi-pseudometric σi on the set X bounded by 1 such
that {

(x, y) ∈ X ×X : σi(x, y) <
1

4

}
⊂ Vi

(see [7, p. 3] or [11]). Put

σ′(x, y) = 8
∞∑
i=1

1

2i
σi(x, y).

Then it is easy to see that σ′ is a quasi-pseudometric on X, which is quasi-uniform
with respect to QUX . Next we shall show that ρ(x, y) ≤ σ′(x, y) for all x, y ∈M .
Indeed, for each x, y ∈ M , if ρ(x, y) = 0, then it is obvious. Hence we may
assume that ρ(x, y) 6= 0. Then there exists an i ∈ N such that 1

2i+1 ≤ ρ(x, y) < 1
2i
;

hence (x, y) /∈ Vi+1, which implies that σi+1(x, y) ≥ 1
4
. Therefore, σ′(x, y) ≥

8× 1
2i+1σi+1(x, y) ≥ 8× 1

2i+1 × 1
4
= 1

2i
> ρ(x, y).

For x, y ∈ X, let

σ′′(x, y) = inf
{
σ′(x, a) + ρ(a, b) + σ′(b, y) : a, b ∈M

}
and

σ(x, y) = min
{
σ′(x, y), σ′′(x, y)

}
.

Since σ′ is a quasi-uniform quasi-pseudometric on X, σ is a quasi-uniform quasi-
pseudometric σ on the set X. Finally, we shall check σ|M×M = ρ. Indeed, it
suffices to check that σ′′ = ρ on M . Fix arbitrary x, y ∈M . Then we have

σ′′(x, y) ≤ σ′(x, x) + ρ(x, y) + σ′(y, y) = ρ(x, y).

Moreover, for arbitrary a, b ∈M , we have

ρ(x, y) ≤ ρ(x, a) + ρ(a, b) + ρ(b, y)

≤ σ′(x, a) + ρ(a, b) + σ′(b, y),

which implies that ρ(x, y) ≤ σ′′(x, y). Therefore, σ′′ = ρ on M . �

Theorem 3.6. The quasi-uniformity of the quasi-uniform direct limit qu-lim
−→

Xn

of a tower of quasi-uniform spaces (Xn)n∈ω is generated by the family of quasi-
pseudometrics {

lim
−→

dn : (dn)n∈ω ∈
∏
n∈ω

QPMXn is monotone
}
.

Proof. Let U ∈ QPMX be an entourage of the diagonal of the quasi-uniform
space qu-lim

−→
Xn. By Lemma 3.4, for each monotone sequence of quasi-

pseudometrics (dn)n∈ω ∈
∏

n∈ωQPMXn , the direct limit quasi-pseudometric
lim
−→

dn on qu-lim
−→

Xn is quasi-uniform. Therefore, we need to find a monotone

sequence of quasi-pseudometrics (dn)n∈ω ∈
∏

n∈ωQPMXn such that {lim
−→

dn <

1} ⊂ U .
Choose a sequence of entourages (Un)n∈ω ∈ (QPMX)

ω such that U4
0 ⊂ U and

U2
n+1 ⊂ Un for each n ∈ ω.
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Claim 1. There exists a monotone sequence of quasi-pseudometrics (dn)n∈ω ∈∏
n∈ωQPMXn such that {dn < 1} ⊂ Un for each n ∈ ω.

Indeed, it follows from [7, p. 3] or [11] that, for each k ∈ ω, there is a
bounded quasi-uniform quasi-pseudometric ρk on Xk such that {ρk < 1} ⊂ Uk.
By Lemma 3.5, for each n ≥ k, the quasi-pseudometric ρk can be extended to a
quasi-uniform quasi-pseudometric ρ̃k,n on the quasi-uniform space Xn ⊃ Xk. For
each n ∈ ω, let dn =

∑
k≤n ρ̃k,n. Then (dn)n∈ω is a required monotone sequence

of quasi-uniform quasi-pseudometrics.
By Claim 1, there exists a monotone sequence of quasi-pseudometrics (dn)n∈ω ∈∏
n∈ωQPMXn such that {dn < 1} ⊂ Un for each n ∈ ω. Let d∞ = lim

−→
dn. Then

we have {d∞ < 1} ⊂ U .
Indeed, take any points x, y ∈ X with d∞(x, y) < 1. By Lemma 3.3, there

exists a sequence of points x = x0, x1, . . . , xn = y such that
n∑

i=1

d|xi−1,xi|(xi−1, xi) < 1

and

|x0| > |x1| > · · · > |xk| ≤ |xk+1| < · · · < |xn|
for some 0 ≤ k < n. Note that, for each i ≤ k, we get |xi−1| ≥ |xi| and then

d|xi−1|(xi−1, xi) = d|xi−1,xi|(xi−1, xi) < 1.

Therefore, the choice of the quasi-pseudometric d|xi−1| guarantees that (xi−1, xi) ∈
{d|xi−1| < 1} ⊂ U|xi−1|.

For i > k, since |xi−1| ≤ |xi|, we have

d|xi|(xi−1, xi) = d|xi−1,xi|(xi−1, xi) < 1,

which implies that (xi−1, xi) ∈ U|xi|. It follows from

|x0| > |x1| > · · · > |xk| ≤ |xk+1| < · · · < |xn|
that

(x, y) ∈ U|x0| ◦ · · · ◦ U|xk−1| ◦ U|xk+1| ◦ · · · ◦ U|xn|

⊂ Uk−1 ◦ · · · ◦ U0 ◦ U0 ◦ · · · ◦ Un−k

⊂ U4
0

⊂ U. �

Question 3.7. For towers (Xn)n∈ω, (Yn)n∈ω of quasi-uniform spaces, is the identity
map id : qu-lim

−→
(Xn × Yn) −→ qu-lim

−→
Xn × qu-lim

−→
Yn a homeomorphism?

Let (X,QUX) be a quasi-uniform space. Denote QU∗X be the coarsest unifor-
mity on X which is finer than QUX .

Theorem 3.8. Let (Xn,QUXn) be a tower of quasi-uniform spaces, and let QUX

be the quasi-uniformity of qu-lim
−→

Xn. Then QU∗X is the uniformity of u-lim
−→

Yn,

where each Yn is the uniform space (Xn,QU∗Xn
).
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Proof. Let UX be the uniformity of u-lim
−→

Yn. Obviously, we have QU∗X ⊂ UX .
Next we shall prove that UX ⊂ QU∗X .

Let U ∈ UX . Obviously, we have U ∩ (Xn×Xn) ∈ QU∗Xn
for each n ∈ ω. Next,

we shall construct a sequence {Vn : n ∈ ω} of subsets of X × X such that the
following conditions hold:

(1) for each n ∈ ω, Vn ∈ QUXn ;
(2) for each n ∈ ω, Vn = Vn+1 ∩ (Xn ×Xn);
(3) for each n ∈ ω, Vn ∩ V −1n ⊂ U ∩ (Xn ×Xn).

Indeed, since U ∩ (X0 × X0) ∈ QU∗X0
, there exists a V0 ∈ QUX0 such that

V0∩V −10 ⊂ U∩(X0×X0). Now, suppose we have defined V0, V1, . . . , Vn. Since Vn∩
V −1n ⊂ (Xn+1×Xn+1)∩U and Vn∩V −1n ∈ QU∗Xn

, there exists a symmetric subset
W ∈ QU∗Xn+1

such that Vn∩V −1n = W ∩ (Xn×Xn) and W ⊂ (Xn+1×Xn+1)∩U .
Moreover, since Vn ∈ QUXn , there exists a L ∈ QUXn+1 such that L∩(Xn×Xn) =
Vn. Therefore, there exists an O ⊂ L and O ∈ QUXn+1 such that O ∩ O−1 ⊂ W .
Put Vn+1 = O∪Vn. Then Vn+1 ∈ QUXn+1 and Vn = Vn+1 ∩ (Xn×Xn). Moreover,

Vn+1 ∩ V −1n+1

= (O ∪ Vn) ∩ (O−1 ∪ V −1n )

= (O ∩O−1) ∪ (O ∩ V −1n ) ∪ (O−1 ∩ Vn) ∪ (Vn ∩ V −1n )

= (O ∩O−1) ∪
(
O ∩ (Xn ×Xn) ∩ V −1n

)
∪
(
O−1 ∩ (Xn ×Xn) ∩ Vn

)
∪ (Vn ∩ V −1n )

⊂ (O ∩O−1) ∪
(
L ∩ (Xn ×Xn) ∩ V −1n

)
∪
(
L−1 ∩ (Xn ×Xn) ∩ Vn

)
∪ (Vn ∩ V −1n )

⊂ (O ∩O−1) ∪ (Vn ∩ V −1n )

⊂ W ∪ (U ∩ Un)

⊂ U ∩ (Xn+1 ×Xn+1).

Therefore, {Vn : n ∈ ω} satisfies (1)–(3).
Put V =

⋃
n∈ω Vn. Obviously, the set V ∈ UX , and hence V ∩ V −1 ∈ U∗X .

Obviously, we have

V ∩ (−V ) =
⋃
n∈ω

(Vn ∩ V −1n ) ⊂
⋃
n∈ω

(
U ∩ (Xn ×Xn)

)
= U.

Therefore, we have U∗X ⊂ QUX . Then U∗X = QUX . �

4. Some properties of topological direct limit of
paratopological groups

Obviously, we have the following two theorems.

Theorem 4.1. Let (Gn)n∈N be a tower of paratopological groups. Then the topo-
logical direct limit t-lim

−→
Gn is a semitopological group.
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Remark 4.2. However, the multiplication t-lim
−→

Gn × t-lim
−→

Gn 3 (g, h) 7−→ gh ∈
t-lim
−→

Gn is not necessarily jointly continuous (see [12, Example 1.2]).

Theorem 4.3. Let (Gn)n∈N be a tower of paratopological groups, and let H be
a paratopological group. If ϕ is an algebraic homomorphism of the group G =⋃

n∈ω Gn into H, then the following conditions are equivalent:

(1) ϕ is continuous as a map from pg-lim
−→

Gn to H;

(2) ϕ is continuous as a map from t-lim
−→

Gn to H.

Let (G, τ) be a paratopological group. Denote G∗ by the coarsest group topol-
ogy on the abstract group G which is finer than τ .

Theorem 4.4. Let (Gn)n∈N be a tower of paratopological groups. If the topological
direct limit t-lim

−→
Gn is a paratopological group, then t-lim

−→
G∗n = (t-lim

−→
Gn)

∗.

Proof. Let τ , δ be the topologies of t-lim
−→

Gn and t-lim
−→

G∗n, respectively. Obviously,

we have τ ∗ ⊂ δ by the definition of the topological direct limit t-lim
−→

G∗n. Next,

we shall prove that δ ⊂ τ ∗. Let U be an open neighborhood of e in δ. Then each
U ∩Gn is open in G∗n. Next, we shall construct a sequence {Vn : n ∈ ω} of subsets
of G such that the following conditions hold:

(1) for each n ∈ ω, Vn is a neighborhood of e in Gn;
(2) for each n ∈ ω, Vn = Vn+1 ∩Gn;
(3) for each n ∈ ω, Vn ∩ V −1n ⊂ Gn ∩ U .
Indeed, since U∩G0 is open in G∗0, there exists an open neighborhood V0 of e in

G0 such that V0∩V −10 ⊂ G0∩U . Now, suppose we have defined V0, V1, . . . , Vn. Since
Vn ∩ V −1n ⊂ Gn+1 ∩U and Vn ∩ V −1n is open in G∗n, there exists a symmetric open
neighborhood W of e in G∗n+1 such that Vn ∩ V −1n = W ∩Gn and W ⊂ Gn+1 ∩U .
Moreover, since Vn is open in Gn, there exists an open neighborhood L of e
in Gn+1 such that L ∩ Gn = Vn. Therefore, there exists an open neighborhood
O ⊂ L of e in Gn+1 such that O ∩O−1 ⊂ W . Put Vn+1 = O ∪ Vn. Then Vn+1 is a
neighborhood of e in Gn+1 and Vn = Vn+1 ∩Gn. Then we have

Vn+1 ∩ V −1n+1 = (O ∪ Vn) ∩ (O−1 ∪ V −1n )

= (O ∩O−1) ∪ (O ∩ V −1n ) ∪ (O−1 ∩ Vn) ∪ (Vn ∩ V −1n )

= (O ∩O−1) ∪ (O ∩Gn ∩ V −1n ) ∪ (O−1 ∩Gn ∩ Vn) ∪ (Vn ∩ V −1n )

⊂ (O ∩O−1) ∪ (L ∩Gn ∩ V −1n ) ∪ (L−1 ∩Gn ∩ Vn) ∪ (Vn ∩ V −1n )

⊂ (O ∩O−1) ∪ (Vn ∩ V −1n )

⊂ W ∪ (U ∩ Un)

⊂ U ∩Gn+1.

Therefore, {Vn : n ∈ ω} satisfies (1)–(3).
Put V =

⋃
n∈ω Vn. Obviously, the set V is a neighborhood of e in τ ; hence

V ∩ V −1 is a neighborhood of e in τ ∗. Obviously, we have

V ∩ V −1 =
⋃
n∈ω

(Vn ∩ V −1n ) ⊂
⋃
n∈ω

(U ∩Gn) = U.
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Therefore, we have δ ⊂ τ ∗. Then δ = τ ∗; that is, t-lim
−→

G∗n = (t-lim
−→

Gn)
∗. �

Lemma 4.5 (see [5, Theorem Y]). Let (Gn)n∈N be a tower of metrizable topologi-
cal groups, where each Gn is closed in Gn+1. Then t-lim

−→
Gn is a topological group

if and only if each Gn is locally compact or some Gn is open in all Gm, m ≥ n.

Corollary 4.6. Let (Gn)n∈N be a tower of T0 first-countable paratopological
groups, where each Gn is closed in Gn+1. If the topological direct limit t-lim

−→
Gn is

a paratopological group, then each G∗n is locally compact or some G∗n is open in
all G∗m, m ≥ n.

Proof. Obviously, each G∗n is metrizable and each G∗n is closed in G∗n+1. By
Lemma 4.5 and Theorem 4.4, the theorem holds. �

Example 4.7. There exists a tower of T0 first-countable paratopological groups
(Gn)n∈N such that each Gn is closed in Gn+1 and the topological direct limit
t-lim
−→

Gn is not a paratopological group.

Proof. For each n ∈ ω, let Gn = Q× · · · ×Q︸ ︷︷ ︸
n

, where the rational number Q

endows with usual topology. Obviously, we can identify each Gn as a subset of
Gn+1. Then each Gn is a metrizable topological groups and each Gn is closed
in Gn+1. However, it follows from Lemma 4.5 that t-lim

−→
Gn is not a topological

group, and hence it is not a paratopological group by Theorem 4.4. �

Question 4.8. Let (Gn)n∈N be a tower of paratopological groups. If the topological
direct limit t-lim

−→
G∗n is a topological group, is the topological direct limit t-lim

−→
Gn

a paratopological group?

Question 4.9. Let (Gn)n∈N be a tower of T0 first-countable paratopological groups,
where each Gn is closed in Gn+1. If the topological direct limit t-lim

−→
G∗n is a

topological group, is the topological direct limit t-lim
−→

Gn a paratopological group?

Finally, we discuss the direct product of two towers of paratopological groups.
The following lemma is obvious.

Lemma 4.10. Let (Gn)n∈ω be a tower of paratopological groups, and let L be a
paratopological group. For each n ∈ ω, if the map ψn : Gn −→ L is a continuous
homomorphism and ψn+1|Gn = ψn, then the following homomorphism map

ψ : pg-lim
−→

Gn −→ L, X 3 x 7→ ψn(x),

where n = min{n ∈ ω : x ∈ Gn}, is continuous.

Theorem 4.11. Let (Gn)n∈ω, (Hn)n∈ω be two towers of paratopological groups.
Then the identity map id : (pg-lim

−→
Gn) × (pg-lim

−→
Hn) −→ pg-lim

−→
(Gn ×Hn) is a

homeomorphism.
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Proof. Obviously, the map id−1 : pg-lim
−→

(Gn×Hn) −→ (pg-lim
−→

Gn)× (pg-lim
−→

Hn)

is continuous. Let us prove the continuity of id.
We assert that the homomorphism (pg-lim

−→
Gn) 3 g 7−→ (g, eH) ∈ pg-lim

−→
(Gn ×

Hn) is continuous, where eH denotes the neutral element of pg-lim
−→

Hn.

To prove this, we apply Lemma 4.10 for L = pg-lim
−→

(Gn×Hn). Indeed, for each

n ∈ ω, the canonical map Gn×Hn 3 (gn, hn) 7−→ (gn, hn) ∈ L = pg-lim
−→

(Gn×Hn)

is continuous by the definition of the topology of pg-lim
−→

(Gn ×Hn), and the em-

bedding map Gn 3 gn 7−→ (gn, eHn) ∈ Gn×Hn is also continuous. Therefore, the
homomorphism Gn 3 gn 7−→ (gn, eH) ∈ L is continuous. Hence, by Lemma 4.10,
we get the asserted continuity.

Similarly, the homomorphism (pg-lim
−→

Hn) 3 h 7−→ (eG, h) ∈ pg-lim
−→

(Gn ×Hn)

is continuous, where eG denotes the neutral element of pg-lim
−→

Gn. Then the map

φ : pg-lim
−→

Gn × pg-lim
−→

Hn → pg-lim
−→

(Gn ×Hn)× pg-lim
−→

(Gn ×Hn),

(g, h) 7−→ ((g, eH), (eG, h)), is continuous. Moreover, the product map

ϕ : pg-lim
−→

(Gn ×Hn)× pg-lim
−→

(Gn ×Hn)→ pg-lim
−→

(Gn ×Hn),

((g, h), (g′, h′)) 7−→ (gg′, hh′), is continuous since the topology of pg-lim
−→

(Gn×Hn)

is a paratopological group topology. Therefore, the product of maps ψ · ϕ = id is
continuous. �

5. Topological direct limit of paratopological groups

In this section, given a tower of paratopological groups

G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gn ⊂ · · · ,

we define topologies on the group G =
⋃

n∈ω Gn.
Given a sequence of subsets (Un)n∈ω of the group G, where e ∈ Un, for each

m ∈ ω, let
−→∏

0≤n≤m

Un = U0U1 · · ·Um;

←−∏
0≤n≤m

Un = UmUm−1 · · ·U0;

←→∏
0≤n≤m

Un = UmUm−1 · · ·U0U0U1 · · ·Um.

Then we consider the following direct product in G:

−→∏
n∈ω

Un =
⋃
m∈ω

−→∏
0≤n≤m

Un;
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←−∏
n∈ω

Un =
⋃
m∈ω

←−∏
0≤n≤m

Un;

←→∏
n∈ω

Un =
⋃
m∈ω

←→∏
0≤n≤m

Un.

Note that(−→∏
n∈ω

Un

)−1
=
←−∏
n∈ω

U−1n and
←→∏
n∈ω

Un =
(←−∏
n∈ω

Un

)
·
(−→∏
n∈ω

Un

)
.

In each paratopological group Gn, fix a base Bn of open neighborhoods of the

neutral element e. The topologies
−→
τ ,
←−
τ ,
←→
τ ,
−→←−
τ on the group G are generated

by the bases, respectively:

−→
B =

{(−→∏
n∈ω

Un

)
· x : x ∈ G, (Un)n∈ω ∈

∏
n∈ω

Bn

}
;

←−
B =

{
x ·

(←−∏
n∈ω

Un

)
: x ∈ G, (Un)n∈ω ∈

∏
n∈ω

Bn

}
;

←→
B =

{
x ·

(←→∏
n∈ω

Un

)
· y : x, y ∈ G, (Un)n∈ω ∈

∏
n∈ω

Bn

}
;

−→←−
B =

{
x ·

(←−∏
n∈ω

Un

)
∩
(−→∏
n∈ω

Un

)
· y : x, y ∈ G, (Un)n∈ω ∈

∏
n∈ω

Bn

}
.

By
−→
G ,
←−
G ,
←→
G ,
−→←−
G we denote the group G endowed with the topologies

−→
τ ,
←−
τ ,

←→
τ ,
−→←−
τ , respectively. Obviously,

−→
G ,
←−
G ,
←→
G ,
−→←−
G are semitopological groups having

the families

−→
Be =

{−→∏
n∈ω

Un : (Un)n∈ω ∈
∏
n∈ω

Bn

}
,

←−
Be =

{←−∏
n∈ω

Un : (Un)n∈ω ∈
∏
n∈ω

Bn

}
,

←→
B e =

{←→∏
n∈ω

Un : (Un)n∈ω ∈
∏
n∈ω

Bn

}
,

−→←−
Be =

{(←−∏
n∈ω

Un

)
∩
(−→∏
n∈ω

Un

)
: (Un)n∈ω ∈

∏
n∈ω

Bn

}
,

and are neighborhood bases at the neutral element e, respectively.

Theorem 5.1. The identity map
←→
G −→ pg-lim

−→
Gn is continuous.
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Proof. Obviously,
←→
G and pg-lim

−→
Gn are semitopological groups. Therefore, it suf-

fices to prove the continuity of the identity map
←→
G −→ pg-lim

−→
Gn at the neutral

element e.
Take a neighborhood U of e in pg-lim

−→
Gn. By induction, construct a sequence

of open neighborhoods Vn of e in pg-lim
−→

Gn such that V 4
0 ⊂ U and V 2

n+1 ⊂ Vn for

each n ∈ ω. Then, for each m ∈ ω, we have

V 2
m ·

( ←−∏
0≤n<m

Vn

)
·
( −→∏
0≤n<m

Vn

)
· V 2

m ⊂ U.

Indeed, for m = 0, this inclusion holds according to the choice of V0. Suppose
that for some m ∈ ω the inclusion holds. Then we have

V 2
m+1 ·

( ←−∏
0≤n≤m

Vn

)
·
( −→∏
0≤n≤m

Vn

)
· V 2

m+1

= V 2
m+1 · Vm ·

( ←−∏
0≤n<m

Vn

)
·
( −→∏
0≤n<m

Vn

)
· Vm · V 2

m+1

⊂ Vm · Vm ·
( ←−∏
0≤n<m

Vn

)
·
( −→∏
0≤n<m

Vn

)
· Vm · Vm

⊂ U.

Therefore, we have(←−∏
n∈ω

Vn

)
·
(−→∏
n∈ω

Vn

)
=

(⋃
m∈ω

←−∏
0≤n≤m

Vn

)
·
(⋃
m∈ω

−→∏
0≤n≤m

Vn

)
⊂ U.

Since
←→∏

n∈ωVn = (
←−∏

n∈ωVn) · (
−→∏

n∈ωVn), we have
←→∏

n∈ωVn ⊂ U .

Therefore, the identity map
←→
G −→ pg-lim

−→
Gn is continuous. �

Obviously, the following five semitopological groups are linked by continuous
identity homomorphisms:

−→←−
G

�
��*

HHHj

←−
G

−→
G

HHHj

�
��*
←→
G

-pg-lim
−→

Gn.

Theorem 5.2. The following conditions are equivalent:

(1)
−→
G and

←−
G are paratopological groups;

(2)
−→←−
G is a paratopological group;
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(3) the identity map
←→
G −→

−→←−
G is continuous;

(4) the identity map
−→←−
G −→ pg-lim

−→
Gn is a homeomorphism.

Proof. (1) ⇒ (2). Suppose that
−→
G and

←−
G are paratopological groups. Next we

shall prove that
−→←−
G is a paratopological group.

Indeed, take a (
←−∏

n∈ωUn) ∩ (
−→∏

n∈ωUn) ∈
−→←−
Be. For each m ∈ ω, since

−→
G and

←−
G are paratopological groups, there exists a Vm ∈ Bm such that (

−→∏
n∈ωVn)

2 ⊂
−→∏

n∈ωUn and (
←−∏

n∈ωVn)
2 ⊂

←−∏
n∈ωUn, and hence(−→∏

n∈ω

Vn ∩
←−∏
n∈ω

Vn

)2

⊂
(−→∏
n∈ω

Vn

)2

∩
(←−∏
n∈ω

Vn

)2

⊂
(←−∏
n∈ω

Un

)
∩
(−→∏
n∈ω

Un

)
.

Therefore,
−→←−
G is a paratopological group.

(2) ⇒ (4). Obviously, all the inclusion homomorphisms Gn −→
−→←−
G , n ∈ ω, are

continuous. Since
−→←−
G is a paratopological group, it follows from the definition of

pg-lim
−→

Gn that the identity map pg-lim
−→

Gn −→
−→←−
G is continuous. By Theorem 5.1,

the identity map
−→←−
G −→ pg-lim

−→
Gn is also continuous. Then the identity map

−→←−
G −→ pg-lim

−→
Gn is a homeomorphism.

(4)⇒ (3). Let the identity map
−→←−
G −→ pg-lim

−→
Gn be a homeomorphism. Then

the composition of two continuous maps

←→
G −→ pg-lim

−→
Gn and pg-lim

−→
Gn −→

−→←−
G

is continuous, and hence the identity map
←→
G −→

−→←−
G is continuous.

(3)⇒ (1). Let the identity map
←→
G −→

−→←−
G be a continuous map. Then

←→
G −→

−→←−
G is a homeomorphism. Therefore, the identity maps between semitopological

groups
−→
G ,
←−
G ,
←→
G ,
−→←−
G are homeomorphisms. Moreover, the map

←−
G ×

−→
G −→

−→←−
G ,

(x, y) 7→ xy is continuous. Therefore, it is easy to see that the multiplication map
−→
G ×

−→
G −→

−→
G , (x, y)→ xy is continuous. �

Theorem 5.3. The semitopological group
←→
G is a paratopological group if and

only if the identity map
←→
G −→ pg-lim

−→
Gn is a homeomorphism.
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Proof. Sufficiency. Let the identity map
←→
G −→ pg-lim

−→
Gn be a homeomorphism.

Then
←→
G is a paratopological group because pg-lim

−→
Gn is a paratopological group

by the definition of pg-lim
−→

Gn.

The proof of necessity is similar to that of (2) ⇒ (4) in Theorem 5.2. �

Remark 5.4. Obviously, the equivalent conditions (1) through (4) in Theorem 5.2

imply that
←→
G is a paratopological group.

Corollary 5.5. Let (Gn)n∈N be a tower of abelian paratopological groups. Then
the following conditions are equivalent:

(1)
−→
G is a paratopological group;

(2)
←−
G is a paratopological group;

(3)
−→←−
G is a paratopological group;

(4) the identity map
←→
G −→

−→←−
G is continuous;

(5) the identity map
−→←−
G −→ pg-lim

−→
Gn is a homeomorphism.

Next we shall introduce the properties of PPTA, balanced and bi-balanced,
guaranteeing that the topology of the direct limit pg-lim

−→
Gn of a tower of paratopo-

logical groups (Gn)n∈ω coincides with the topologies
−→
G ,
←−
G ,
←→
G , and

−→←−
G .

Definition 5.6. A tower of paratopological groups (Gn)n∈ω is said to satisfy PPTA
if each paratopological group Gn has a neighborhood base Bn at the neutral
element e, consisting of open neighborhoods of e inGn, such that, for each U ∈ Bn

and each neighborhood V of e in Gm with m ≥ n, there is a neighborhood W of
e in Gm such that WU ⊂ UV and UW ⊂ V U .

Theorem 5.7. If a tower of paratopological groups (Gn)n∈ω satisfies PPTA, then

semitopological groups
−→
G and

←−
G are paratopological groups and hence conditions

(1)–(4) of Theorem 5.2 hold. In particular, the topology of pg-lim
−→

Gn coincides

with any of the topologies
−→
τ ,
←−
τ ,
←→
τ ,
−→←−
τ .

Proof. Since the tower of paratopological groups (Gn)n∈ω satisfies PPTA, each
paratopological group Gn has an open neighborhood base Bn at e, consisting of
an open neighborhood U in Gn, such that, for each m ≥ n and a neighborhood
V of e in Gm, there is a neighborhood W of e in Gm such that WU ⊂ UV and
UW ⊂ V U .

By Theorem 5.2, we shall show that
−→
G and

←−
G are paratopological groups.

Therefore, it suffices to check the continuity of the multiplication at the neutral

element e for semitopological groups
−→
G and

←−
G , respectively.
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Let
−→∏

n∈ωWn ∈
−→
Be and

←−∏
n∈ωWn ∈

←−
Be. Next, we find a neighborhood

−→∏
n∈ωVn ∈

−→
Be and

←−∏
n∈ωVn ∈

←−
Be such that(−→∏

n∈ω

Vn

)2

⊂
−→∏
n∈ω

Wn and
(←−∏
n∈ω

Vn

)2

⊂
←−∏
n∈ω

Wn.

For each n ∈ ω, we can find a neighborhood Un of e in Gn such that U2
n ⊂ Wn.

Put V
(0)
n = Un and, using PPTA, for each 0 < i ≤ n find a neighborhood V i

n of e
in Gn such that

(a) V i
n ⊂ Un, and

(b) V i
nUn−i ⊂ Un−iV

i−1
n and Un−iV

i
n ⊂ V i−1

n Un−i.
Note that, for i = n− k, the latter inclusion yields

(c) V n−k
n Uk ⊂ UkV

n−k−1
n and UkV

n−k
n ⊂ V n−k−1

n Uk.
By induction on k we can deduce from (c) the following two inclusions:

(d) (
−→∏

k<n≤mV
(n−k)
n ) · Uk ⊂ Uk · (

−→∏
k<n≤mV

(n−k−1)
n );

(e) Uk · (
←−∏

k<n≤mV
(n−k)
n ) ⊂ (

←−∏
k<n≤mV

(n−k−1)
n ) · Uk.

Claim 2. For each m > 0, we have( −→∏
n≤m

V (n)
n

)
·
( −→∏
n≤m

Un

)
⊂
−→∏
n≤m

Wn and
( ←−∏
n≤m

Un

)
·
( ←−∏
n≤m

V (n)
n

)
⊂
←−∏
n≤m

Wn.

Indeed, for each nonnegative integer k ≤ m+ 1, put

−→∏
k

=
( −→∏
0≤n<k

Wn

)
·
( −→∏
k≤n≤m

V (n−k)
n

)
·
( −→∏
k≤n≤m

Un

)
and

←−∏
k

=
( ←−∏
k≤n≤m

Un

)
·
( ←−∏
k≤n≤m

V (n−k)
n

)
·
( ←−∏
0≤n<k

Wn

)
of paratopological group Gm. Then it is easy to see that Claim 2 holds if and

only if
−→∏

0 ⊂
−→∏

m+1 and
←−∏

0 ⊂
←−∏

m+1. Next we shall show that
−→∏

k ⊂
−→∏

k+1 and
←−∏

k ⊂
←−∏

k+1 for each k ≤ m.

Since V
(0)
k Uk = UkUk ⊂ Wk and UkV

(0)
k = UkUk ⊂ Wk, it follows from (d) and

(e) that

−→∏
k

=
( −→∏
0≤n<k

Wn

)
·
( −→∏
k≤n≤m

V (n−k)
n

)
·
( −→∏
k≤n≤m

Un

)
=

( −→∏
0≤n<k

Wn

)
· V (0)

k ·
( −→∏
k<n≤m

V (n−k)
n

)
· Uk ·

( −→∏
k<n≤m

Un

)
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⊂
( −→∏
0≤n<k

Wn

)
· V (0)

k ·
(
Uk ·

−→∏
k<n≤m

V (n−k−1)
n

)
·
( −→∏
k<n≤m

Un

)
⊂

( −→∏
0≤n<k

Wn

)
·Wk ·

( −→∏
k<n≤m

V (n−k−1)
n

)
·
( −→∏
k<n≤m

Un

)
=
−→∏
k+1

and
←−∏
k

=
( ←−∏
k≤n≤m

Un

)
·
( ←−∏
k≤n≤m

V (n−k)
n

)
·
( ←−∏
0≤n<k

Wn

)
=

( ←−∏
k<n≤m

Un

)
· Uk ·

( ←−∏
k<n≤m

V (n−k)
n

)
· V (0)

k ·
( ←−∏
0≤n<k

Wn

)
⊂

( ←−∏
k<n≤m

Un

)
·
( ←−∏
k<n≤m

V (n−k−1)
n

)
· Uk · V (0)

k ·
( ←−∏
0≤n<k

Wn

)
⊂

( ←−∏
k<n≤m

Un

)
·
( ←−∏
k<n≤m

V (n−k−1)
n

)
·Wk ·

( ←−∏
0≤n<k

Wn

)
=
←−∏
k+1

.

Therefore, Claim 2 holds.

Since V
(n)
n ⊂ Un, it follows from Claim 2 that the following Claim 3 holds.

Claim 3. (
−→∏

n∈ωV
(n)
n )2 ⊂

−→∏
n∈ωWn and (

←−∏
n∈ωV

(n)
n )2 ⊂

←−∏
n∈ωWn.

By Claim 3 and Theorem 5.2, semitopological groups
−→
G and

←−
G are paratopo-

logical groups and hence conditions (1) through (4) of Theorem 5.2 hold. In

particular, the topology of pg-lim
−→

Gn coincides with any of the topologies
−→
τ ,
←−
τ ,

←→
τ ,
−→←−
τ by Theorems 5.2 and 5.3. �

Definition 5.8. A subset U of a group G is said to be H-invariant for a subgroup
H ⊂ G if xUx−1 = U for all x ∈ H.

Note that, for any subset U ⊂ G, the set
H
√
U = {x ∈ G : xH ⊂ U}

is the largest H-invariant subset of U , where xH = {hxh−1 : h ∈ H} denotes the
conjugacy class of a point x ∈ G.

Definition 5.9. A triple (G,H,L) of paratopological groups L ⊂ H ⊂ G is called
balanced if, for any neighborhood V of e in H and neighborhood U of e in G, the
products V · L

√
U and L

√
U · V are neighborhoods of e in G.
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Definition 5.10. A tower of paratopological groups (Gn)n∈ω is said to be balanced
if each triple (Gn+2, Gn+1, Gn) is balanced for each n ∈ ω.

Theorem 5.11. If a tower of paratopological groups (Gn)n∈ω is balanced, then

semitopological groups
−→
G and

←−
G are paratopological groups and hence conditions

(1)–(4) of Theorem 5.2 hold. In particular, the topology of pg-lim
−→

Gn coincides

with any of the topologies
−→
τ ,
←−
τ ,
←→
τ ,
−→←−
τ .

Proof. Obviously, it suffices to check the continuity of the multiplication at the

neutral element e for semitopological groups
−→
G and

←−
G , respectively.

Let
−→∏

n∈ωUn ∈
−→
Be and

←−∏
n∈ωUn ∈

←−
Be. For each n ∈ ω, take a neighborhood

Wn of e in Gn such that Wn ·Wn ⊂ Un. Let

Zn = Gn−2
√
Wn = {x ∈ Gn : xGn−2 ⊂ Wn}

be the largest Gn−2-invariant subset of Wn, where we assume that Gk = {e} for
k < 0.

Put V0 = U0∩W1, and let V1 be a neighborhood of e in G1 such that V 2
1 ⊂ W1.

Then, for each n ≥ 2, by induction take a neighborhood Vn of e in Gn so that

(f) V 2
n ⊂ Vn−1 · Zn ∩ Zn · Vn−1, and

(g) Vn ⊂ Wn+1.

For each n ∈ ω, since (Gn, Gn−1, Gn−2) is balanced, condition (f) can be satisfied.

Claim 4. For each m ≥ 2, we have( −→∏
n≤m

Vn

)
·
( −→∏
n≤m

Vn

)
⊂
−→∏
n≤m

Un and
( ←−∏
n≤m

Vn

)
·
( ←−∏
n≤m

Vn

)
⊂
←−∏
n≤m

Un.

Indeed, for each nonnegative integer k ≤ m, put
−→∏
k

=
( −→∏
n≤m−k

Vn

)
· V 2

m−k+1 ·
( −→∏
n≤m−k

Vn

)
·
( −→∏
m−k<n<m

Zn+1Vn

)
· Vm

and
←−∏
k

= Vm ·
( ←−∏
m−k<n<m

VnZn+1

)
·
( ←−∏
n≤m−k

Vn

)
· V 2

m−k+1 ·
( ←−∏
n≤m−k

Vn

)
of paratopological group Gm. Next we shall show that

−→∏
k ⊂

−→∏
k+1 and

←−∏
k ⊂

←−∏
k+1 for each k ≤ m.
Then it follows from (f) and (g) that we have

−→∏
k

=
( −→∏
n≤m−k

Vn

)
· V 2

m−k+1 ·
( −→∏
n≤m−k

Vn

)
·
( −→∏
m−k<n<m

Zn+1Vn

)
· Vm

⊂
( −→∏
n≤m−k

Vn

)
· Vm−k · Zm−k+1 ·

( −→∏
n<m−k

Vn

)
· Vm−k ·

( −→∏
m−k<n<m

Zn+1Vn

)
· Vm
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=
( −→∏
n<m−k

Vn

)
· V 2

m−k ·
( −→∏
n<m−k

Vn

)
· Zm−k+1 · Vm−k ·

( −→∏
m−k<n<m

Zn+1Vn

)
· Vm

=
( −→∏
n<m−k

Vn

)
· V 2

m−k ·
( −→∏
n<m−k

Vn

)
·
( −→∏
m−k≤n<m

Zn+1Vn

)
· Vm

=
−→∏
k+1

and

←−∏
k

= Vm ·
( ←−∏
m−k<n<m

VnZn+1

)
·
( ←−∏
n≤m−k

Vn

)
· V 2

m−k+1 ·
( ←−∏
n≤m−k

Vn

)
⊂ Vm ·

( ←−∏
m−k<n<m

VnZn+1

)
· Vm−k ·

( ←−∏
n<m−k

Vn

)
· Zm−k+1 · Vm−k ·

( ←−∏
n≤m−k

Vn

)
= Vm ·

( ←−∏
m−k<n<m

VnZn+1

)
· Vm−k · Zm−k+1 ·

( ←−∏
n<m−k

Vn

)
· V 2

m−k ·
( ←−∏
n<m−k

Vn

)
= Vm ·

( ←−∏
m−k≤n<m

VnZn+1

)
·
( ←−∏
n<m−k

Vn

)
· V 2

m−k ·
( ←−∏
n<m−k

Vn

)
=
←−∏
k+1

.

Therefore, we have

( −→∏
n≤m

Vn

)2

⊂
( −→∏
n≤m−1

Vn

)
· V 2

m ·
( −→∏
n≤m

Vn

)
=
−→∏
1

⊂
−→∏
m

= V0V
2
1 V0 ·

( −→∏
0<n<m

Zn+1Vn

)
· Vm

⊂ U0W1W1 ·
( −→∏
0<n<m

Wn+1W+1

)
·Wm+1

⊂ U0U1 ·
( −→∏
0<n<m

Un+1

)
· Um+1 =

−→∏
n≤m+1

Un
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and ( ←−∏
n≤m

Vn

)2

⊂
( ←−∏
n≤m

Vn

)
· V 2

m ·
( ←−∏
n≤m−1

Vn

)
=
←−∏
1

⊂
←−∏
m

= Vm ·
( ←−∏
0<n<m

VnZn+1

)
· V0V 2

1 V0

⊂ Wm+1 ·
( ←−∏
0<n<m

Wn+1W+1

)
·W1W1U0

⊂ Um+1 ·
( ←−∏
0<n<m

Un+1

)
· U1U0

=
←−∏

n≤m+1

Un.

By Claim 4, it is easy to see that (
−→∏

n∈ωVn) · (
−→∏

n∈ωVn) ⊂
−→∏

n∈ωUn and

(
←−∏

n∈ωVn) · (
←−∏

n∈ωVn) ⊂
←−∏

n∈ωUn.

Therefore, semitopological groups
−→
G and

←−
G are paratopological groups and

hence conditions (1)–(4) of Theorem 5.2 hold. In particular, the topology of

pg-lim
−→

Gn coincides with any of the topologies
−→
τ ,
←−
τ ,
←→
τ ,
−→←−
τ by Theorems 5.2

and 5.3. �

Definition 5.12. A triple (G,H,L) of paratopological groups L ⊂ H ⊂ G is called
bi-balanced if, for each neighborhood V of e in H and U of e in G, the product
L
√
U · V · L

√
U is a neighborhood of e in G.

A tower of paratopological groups (Gn)n∈ω is called bi-balanced if each triple
(Gn+2, Gn+1, Gn) is bi-balanced for each n ∈ ω.

Theorem 5.13. If a tower of paratopological groups (Gn)n∈ω is bi-balanced, then

the identity map
←→
G −→ pg-lim

−→
Gn is a homeomorphism and hence the topology

of pg-lim
−→

Gn coincides with the topology
←→
τ .

Proof. By Theorem 5.3, it suffices to show that
←→
G is a paratopological group.

Therefore, it suffices to check the continuity of multiplication of the neutral el-

ement. Let
←→∏

n∈ωWn ∈
←→
B e. Then we shall find a

←→∏
n∈ωVn ∈

←→
B e such that

(
←→∏

n∈ωVn)
2 ⊂

←→∏
n∈ωWn.
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For each n ∈ ω, there exists a neighborhood Un of e in Gn such that U2
n ⊂ Wn,

and let Zn = Gn−2
√
Un be the largest Gn−2-invariant subset of Un, where we assume

that Gk = {e} for k < 0. Let O0 = W0. By induction for each n ∈ N, since each
set ZnOn−1Zn is a neighborhood of e in Gn, we can take a neighborhood On ⊂ Un

of e in Gn such that O3
n ⊂ ZnOn−1Zn. For each n ∈ ω, put Vn = Gn ∩On+1.

Claim 5. For each m ∈ ω, we have (
←→∏

n<mVn)
2 ⊂

←→∏
n≤mWn.

For m = 0, this inclusion is obvious. Suppose that the inclusion in Claim 5 has
been proved for some m = l ∈ ω. Next, we shall prove it for m = l + 1. For each
nonnegative k < m = l + 1, put

∏
k

=
( ←−∏
k≤n<m

VnZn+1

)
·
(←→∏
n<k

Vn

)
·Ok ·

(←→∏
n<k

Vn

)
·
( −→∏
k≤n<m

Zn+1Vn

)
of paratopological group Gm. Then we have

∏
k+1 ⊂

∏
k. Indeed, we have

∏
k+1

=
( ←−∏
k<n<m

VnZn+1

)
·
(←→∏
n≤k

Vn

)
·Ok+1 ·

(←→∏
n≤k

Vn

)
·
( −→∏
k<n<m

Zn+1Vn

)
⊂

( ←−∏
k<n<m

VnZn+1

)
· Vk ·

(←→∏
n≤k

Vn

)
· Vk ·Ok+1 · Vk ·

(←→∏
n<k

Vn

)
· Vk

·
( −→∏
k<n<m

Zn+1Vn

)
⊂

( ←−∏
k<n<m

VnZn+1

)
· Vk ·

(←→∏
n≤k

Vn

)
·O3

k+1 ·
(←→∏
n<k

Vn

)
· Vk ·

( −→∏
k<n<m

Zn+1Vn

)
⊂

( ←−∏
k<n<m

VnZn+1

)
· Vk ·

(←→∏
n≤k

Vn

)
· Zk+1 ·Ok · Zk+1 ·

(←→∏
n<k

Vn

)
· Vk

·
( −→∏
k<n<m

Zn+1Vn

)
=

( ←−∏
k<n<m

VnZn+1

)
· Vk · Zk+1 ·

(←→∏
n≤k

Vn

)
·Ok ·

(←→∏
n<k

Vn

)
· Zk+1 · Vk

·
( −→∏
k<n<m

Zn+1Vn

)
=

( ←−∏
k≤n<m

VnZn+1

)
·
(←→∏
n≤k

Vn

)
·Ok ·

(←→∏
n<k

Vn

)
·
( −→∏
k≤n<m

Zn+1Vn

)
=

∏
k

.
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Then it follows that(←→∏
n<m

Vn

)2

⊂
(←→∏
n<m

Vn

)
·Om ·

(←→∏
n<m

Vn

)
=

∏
m

⊂
∏
0

=
( ←−∏
n<m

VnZn+1

)
·O0 ·

( −→∏
n<m

Zn+1Vn

)
⊂

( ←−∏
n<m

U2
n+1

)
·O0 ·

( −→∏
n<m

U2
n+1

)
⊂

( ←−∏
n<m

Wn+1

)
·W 2

0 ·
( −→∏
n<m

Wn+1

)
=
←→∏
n<m

Wn.

By Claim 5, it is easy to see that (
←→∏

n∈ωVn)·(
←→∏

n∈ωVn) ⊂
←→∏

n∈ωWn. Therefore,←→
G is a paratopological group. �

Remark 5.14. (1) In [3], the authors proved that the properties of PPTA and
balanced are independent.

(2) It is clear that each balanced triple of paratopological groups is bi-balanced.
The converse implication is not true (see [3, Example 5.3]).
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