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Abstract. The main purpose of this article is to investigate Weyl-almost
periodic solutions and asymptotically Weyl-almost periodic solutions of abstract
Volterra integro-differential equations and inclusions. The class of asymptoti-
cally Weyl-almost periodic functions that we introduce here seems not to have
been considered elsewhere, even in the scalar-valued case. We analyze the Weyl-
almost periodic and asymptotically Weyl-almost periodic properties of con-
volution products and various types of degenerate solution operator families
subgenerated by multivalued linear operators.

1. Introduction and preliminaries

Periodicity and almost periodicity are phenomena that play a crucial role in
various fields of mathematics and other sciences. The notion of an almost periodic
function was introduced by Bohr in the mid 1920s and was later generalized
by many other mathematicians (see, e.g., [15], [19], [29], [31]). The existence of
various types of quasiperiodic solutions of abstract Volterra integro-differential
equations is still a very active research topic.
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As in the abstract, the main aim of this article is to analyze the existence and
uniqueness of Weyl-almost periodic solutions and asymptotically Weyl-almost
periodic solutions of abstract Volterra integro-differential equations and inclu-
sions. This is a very unexplored field in the theory of almost periodic abstract
differential equations in Banach spaces (see, e.g., [7], [15], [19], [34], [39] and the
references cited therein). Our results seem to be new even for abstract nondegen-
erate differential equations whose solutions are governed by strongly continuous
semigroups of operators, while they seem to be completely new for abstract frac-
tional differential equations and abstract (fractional) differential equations with
almost sectorial linear operators (see [26], [32], [37], [38]). In this article, we
go a step further by investigating the Weyl-almost periodic and asymptotically
Weyl-almost periodic properties of various classes of degenerate solution operator
families subgenerated by multivalued linear operators (see [26]), providing also a
great number of illustrative examples and possible applications of our abstract
results. The class of (asymptotically) Weyl C(n)-almost periodic functions was
recently introduced in [25], where the reader can find applications in the qualita-
tive analysis of solutions to abstract Volterra integro-differential equations.

The organization of this article is as follows. After collecting the necessary
material for our further investigations, in Section 2 we consider multivalued linear
operators in Banach spaces and degenerate (a, k)-regularized C-resolvent fam-
ilies subgenerated by multivalued linear operators (see Section 2.1). Stepanov
almost periodic functions and asymptotically Stepanov almost periodic func-
tions are examined in Section 3, while the Weyl-almost periodic functions and
asymptotically Weyl-almost periodic functions are examined in Section 4 (only
Proposition 4.3 is new). Our most important original contributions are given in
Section 4.1, where we introduce the class of asymptotically Weyl-almost peri-
odic functions. To the author’s best knowledge, this class has not yet been
analyzed even in the scalar-valued case (it is worth noting that Abbas [2] has
introduced the class of Weyl-p-pseudoergodic components, which is larger than
the class of Weyl-p-vanishing functions considered here). For the sake of brevity
and better exposition, we focus our attention on the analysis of asymptotically
equi-Weyl-p-almost periodic functions and asymptotically Weyl-p-almost periodic
functions, where 1 ≤ p < ∞ (without any doubt, the case p = 1 is most important
in our analyses). The class of equi-Weyl-p-almost periodic functions is a subclass
of the class of asymptotically Weyl-p-almost periodic functions, whereas any of
these classes extend the well-known class of asymptotically Stepanov p-almost
periodic functions, introduced by Henŕıquez [18]. Section 4 also introduces several
new classes of “asymptotically almost periodic functions” and analyzes relations
between them (we refer the reader to Andres, Bersani, and Grande [5] for an excel-
lent survey of results about various classes of Stepanov and Weyl-almost periodic
functions; see also Andres, Bersani, and Leśniak [6]). Section 5 is devoted to
the study of Weyl-almost periodic and asympotically Weyl-almost periodic prop-
erties of finite and infinite convolution products; for applications, this section
is essential. In Section 6, which is written without proofs of structural results,
we continue our recent research studies [22], [23] of (Stepanov) almost periodic
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properties of abstract Volterra integro-differential equations and inclusions (Weyl-
almost periodicity is now in focus). Finally, Section 7 is reserved for examples and
applications of our established abstract results.

We use standard notation throughout. By X and Y we denote two nontrivial
complex Banach spaces. The symbol L(X,Y ) designates the space consisting
of all continuous linear mappings from X into Y ; L(X) ≡ L(X,X). Denote by
Cb([0,∞) : X), C0([0,∞) : X), and BUC([0,∞) : X) the vector spaces consisting
of all bounded continuous functions from [0,∞) into X, all bounded continuous
functions from [0,∞) into X vanishing at infinity, and all bounded uniformly
continuous functions from [0,∞) into X, respectively. Equipped with the usual
sup-norm, any of these spaces is a Banach one.

Fractional calculus and fractional differential equations are rapidly growing
fields of research (see, e.g., [8], [16], [20], [21], [34], [36], [38]). We note that
the most important special functions employed for seeking solutions of fractional
differential equations are Mittag-Leffler functions and Wright functions. Suppose
that γ ∈ (0, 1). Then the Wright function Φγ(·) is defined by the formula

Φγ(z) :=
∞∑
n=0

(−z)n

n!Γ(1− γ − γn)
, z ∈ C.

It is well known that Φγ(·) is an entire function, as well as that Φγ(t) ≥ 0, t ≥ 0,∫∞
0

trΦγ(t) dt =
Γ(1+r)
Γ(1+γr)

, r > −1, and
∫∞
0

e−ztΦγ(t) dt = Eγ(−z), z ∈ C, where
Eγ(·) denotes the Mittag-Leffler function. (For more details about Mittag-Leffler
and Wright functions, we refer, for example, to the doctoral dissertation of Bazh-
lekova [8] and the references cited therein.)

For any s ∈ R, we denote bsc = sup{l ∈ Z : s ≥ l} and dse = inf{l ∈ Z : s ≤ l}.
If α > 0, then we set gα(t) := tα−1/Γ(α), t > 0.

In this article, we use two different types of fractional derivatives. The Weyl–
Liouville fractional derivative Dγ

t,+u(t) of order γ ∈ (0, 1) is defined for those

continuous functions u : R → X such that t 7→
∫ t

−∞ g1−γ(t− s)u(s) ds, t ∈ R is a
well-defined continuously differentiable mapping, by

Dγ
t,+u(t) :=

d

dt

∫ t

−∞
g1−γ(t− s)u(s) ds, t ∈ R.

Set D1
t,+u(t) := −(d/dt)u(t). (For more details about Weyl–Liouville fractional

derivatives, we refer the reader to Mu, Zhoa, and Peng [30].)
Suppose that α > 0 and that m = dαe. Then the Caputo fractional derivative

Dα
t u(t) is defined for those functions u ∈ Cm−1([0,∞) : X) for which gm−α ∗ (u−∑m−1
k=0 ukgk+1) ∈ Cm([0,∞) : X), by

Dα
t u(t) =

dm

dtm

[
gm−α ∗

(
u−

m−1∑
k=0

ukgk+1

)]
.

Various types of (abstract) fractional differential equations with Caputo deriva-
tives have been investigated in [8], [16], [20], [21], and [26].
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2. Multivalued linear operators

The main aim of this section is to give a brief overview of the theory of multi-
valued linear operators in Banach spaces. In Section 2.1, we consider multivalued
linear operators as subgenerators of various classes of degenerate (a, k)-regularized
C-resolvent families. (For further information regarding the theory of multivalued
linear operators, we refer the reader to monographs by Cross [13] and Favini and
Yagi [17].)

A multivalued map (multimap) A : X → P (Y ) is said to be a multivalued
linear operator (MLO) if and only if the following conditions hold:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of X;
(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y , then we say that A is an MLO in X.
Let us recall that if x, y ∈ D(A) and λ, η ∈ C with |λ| + |η| 6= 0, then λAx +

ηAy = A(λx + ηy). If A is an MLO, then A0 is a linear submanifold of Y and
Ax = f + A0 for any x ∈ D(A) and f ∈ Ax. Put R(A) := {Ax : x ∈ D(A)}.
Then the set A−10 = {x ∈ D(A) : 0 ∈ Ax} is called the kernel of A and it is
denoted by N(A). The inverse A−1 of an MLO is defined by D(A−1) := R(A)
and A−1y := {x ∈ D(A) : y ∈ Ax}. It can be easily shown that A−1 is an MLO
in X, as well as that N(A−1) = A0 and (A−1)−1 = A; A is said to be injective if
and only if A−1 is single-valued.

Let A,B : X → P (Y ) be two MLOs. Then its sum A + B is defined by
D(A+ B) := D(A) ∩D(B) and (A+ B)x := Ax+ Bx, x ∈ D(A+ B). It can be
easily checked that A+ B is an MLO.

LetA : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z is also a complex
Banach space. The product of operators A and B is defined by D(BA) := {x ∈
D(A) : D(B)∩Ax 6= ∅} and BAx := B(D(B)∩Ax). It can be easily proved that
BA : X → P (Z) is an MLO and (BA)−1 = A−1B−1.

It is well known that the class of MLOs is closed under the action of taking
closures. It is said that an MLO operator A : X → P (Y ) is closed if and only if
for any sequences (xn) inD(A) and (yn) in Y such that yn ∈ Axn for all n ∈ N, we
have that limn→∞ xn = x and limn→∞ yn = y imply that x ∈ D(A) and y ∈ Ax.

Let A be an MLO in X, let C ∈ L(X) be injective, and let CA ⊆ AC. Then
the C-resolvent set of A, ρC(A) for short, is defined as the union of those complex
numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);
(ii) (λ−A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ − A)−1C is called the C-resolvent of A (λ ∈ ρC(A)); the
resolvent set of A is defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ−A)−1 (λ ∈ ρ(A)).
The basic properties of C-resolvents of single-valued linear operators continue to
hold in the multivalued linear setting (see [17], [26]).

Concerning the abstract degenerate Volterra integro-differential equations and
abstract degenerate fractional differential equations, the reader may consult the
author’s forthcoming monograph [26]. For fractional powers and interpolation
spaces of MLOs, we refer the interested reader to [17].



68 M. KOSTIĆ

2.1. Degenerate (a, k)-regularized C-resolvent families. Let 0 < τ ≤ ∞,
α > 0, a ∈ L1

loc([0, τ)), a 6= 0, F : [0, τ) → P (Y ), and let A : X → P (Y ),
B : X → P (Y ) be two given mappings (possibly nonlinear). We refer the reader
to [26] for the notions of various types of solutions to the abstract degenerate
inclusion

Bu(t) ⊆ A
∫ t

0

a(t− s)u(s) ds+ F(t), t ∈ [0, τ). (2.1)

In [26], we recently analyzed the following notions of solution operator families
for the abstract Cauchy problem (2.1).

Definition 2.1. Suppose that 0 < τ ≤ ∞, that k ∈ C([0, τ)), that k 6= 0, that
a ∈ L1

loc([0, τ)), that a 6= 0, A : X → P (X) is an MLO, that C1 ∈ L(Y,X), and
that C2 ∈ L(X).

(i) Then it is said that A is a subgenerator of a (local, if τ < ∞) mild
(a, k)-regularized (C1, C2)-existence and uniqueness family (R1(t),
R2(t))t∈[0,τ) ⊆ L(Y,X) × L(X) if and only if the mappings t 7→ R1(t)y,
t ≥ 0 and t 7→ R2(t)x, t ∈ [0, τ) are continuous for every fixed x ∈ X and
y ∈ Y , and the following conditions hold:(∫ t

0

a(t− s)R1(s)y ds,R1(t)y − k(t)C1y
)
∈ A,

t ∈ [0, τ), y ∈ Y (2.2)

and ∫ t

0

a(t− s)R2(s)y ds = R2(t)x− k(t)C2x,

whenever t ∈ [0, τ) and (x, y) ∈ A. (2.3)

(ii) Let (R1(t))t∈[0,τ) ⊆ L(Y,X) be strongly continuous. Then it is said that A
is a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C1-existence
family (R1(t))t∈[0,τ) if and only if (2.2) holds.

(iii) Let (R2(t))t∈[0,τ) ⊆ L(X) be strongly continuous. Then it is said that A is
a subgenerator of a (local, if τ < ∞) mild (a, k)-regularized C2-uniqueness
family (R2(t))t∈[0,τ) if and only if (2.3) holds.

The notion of an (a, k)-regularized C-resolvent family is introduced as follows.

Definition 2.2. Suppose that 0 < τ ≤ ∞, that k ∈ C([0, τ)), that k 6= 0, that
a ∈ L1

loc([0, τ)), that a 6= 0, that A : X → P (X) is an MLO, that C ∈ L(X)
and that CA ⊆ AC. Then it is said that a strongly continuous operator family
(R(t))t∈[0,τ) ⊆ L(X) is an (a, k)-regularized C-resolvent family with a subgenera-
tor A if and only if (R(t))t∈[0,τ) is a mild (a, k)-regularized C-uniqueness family
having A as subgenerator, R(t)C = CR(t), and R(t)A ⊆ AR(t) (t ∈ [0, τ)).

Throughout the article, it will be assumed that any (a, k)-regularized C-
resolvent family is also a mild (a, k)-regularized C-existence family; the condi-
tion 0 ∈ supp(a) will also be assumed to be true.
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We say that an (a, k)-regularized C-resolvent family (R(t))t≥0 is exponen-
tially bounded (bounded) if and only if there exists ω ∈ R (ω = 0) such that
the family {e−ωtR(t) : t ≥ 0} ⊆ L(X) is bounded. If k(t) = gα+1(t), where
α ≥ 0, then we also say that (R(t))t∈[0,τ) is an α-times integrated (a, C)-resolvent
family; a 0-times integrated (a, C)-resolvent family is further abbreviated to
(a, C)-resolvent family. We pay special attention to the case a(t) ≡ 1 (resp.,
a(t) ≡ t) when we say that (R(t))t≥0 is an α-times integrated C-semigroup
(C-semigroup, if α = 0) (resp., an α-times integrated C-cosine function (C-cosine
function, if α = 0)).

By χ(R) we denote the set consisting of all subgenerators of (R(t))t∈[0,τ). It is

clear that for each subgenerator A ∈ χ(R), we have A ∈ χ(R). The set χ(R) can
have infinitely many elements; furthermore, if A ∈ χ(R), then A ⊆ Aint, where
the integral generator of (R(t))t∈[0,τ) is defined by

Aint :=
{
(x, y) ∈ X×X : R(t)x−k(t)Cx =

∫ t

0

a(t−s)R(s)y ds for all t ∈ [0, τ)
}
.

The integral generator Aint of (R(t))t∈[0,τ) is always a closed subgenerator of
(R(t))t∈[0,τ), provided that τ = ∞. Assuming A and B are two subgenerators of
(R(t))t∈[0,τ) and α, β ∈ C with α+β = 1, then C(D(A)) ⊆ D(B), Aint ⊆ C−1AC
and αA+ βB is also a subgenerator of (R(t))t∈[0,τ); furthermore, if C is injective,
then Aint = C−1AC. The notion of integral generator of a mild (a, k)-regularized
C2-uniqueness family (R2(t))t∈[0,τ) is defined similarly. (We direct the reader to
[26] for various characterizations of the above classes of degenerate solution oper-
ator families in terms of vector-valued Laplace transform identities.)

3. Stepanov almost periodic functions and asymptotically Stepanov
almost periodic functions

Let I = R or I = [0,∞), and let f : I → X be continuous. Given ε > 0, we
call τ > 0 an ε-period for f(·) if and only if ‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I. The set
consisting of all ε-periods for f(·) is denoted by ϑ(f, ε). It is said that f(·) is almost
periodic, a.p. for short, if and only if for each ε > 0 the set ϑ(f, ε) is relatively
dense in I, which means that there exists l > 0 such that any subinterval of I of
length l meets ϑ(f, ε). The space consisting of all almost periodic functions from
the interval I into X will be denoted by AP (I : X).

The notion of an asymptotically almost periodic function was introduced by
Fréchet in 1941 (for further information concerning the vector-valued asymp-
totically almost periodic functions, see [10], [15], [31] and the references cited
therein). A function f ∈ Cb([0,∞) : X) is considered asymptotically almost peri-
odic if and only if for every ε > 0 we can find numbers l > 0 and M > 0 such that
every subinterval of [0,∞) of length l contains at least one number τ such that
‖f(t + τ) − f(t)‖ ≤ ε for all t ≥ M . The space consisting of all asymptotically
almost periodic functions from [0,∞) into X is denoted by AAP ([0,∞) : X). For
a function f ∈ C([0,∞) : X), the following statements are equivalent (see [35]).

(i) We have that f ∈ AAP ([0,∞) : X).
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(ii) There exist uniquely determined functions g ∈ AP ([0,∞) : X) and φ ∈
C0([0,∞) : X) such that f = g + φ.

(iii) The set H(f) := {f(·+s) : s ≥ 0} is relatively compact in Cb([0,∞) : X).

Let 1 ≤ p < ∞, let l > 0, and let f, g ∈ Lp
loc(I : X), where I = R or I = [0,∞).

We define the Stepanov “metric” by

Dp
Sl

[
f(·), g(·)

]
:= sup

x∈I

[1
l

∫ x+l

x

∥∥f(t)− g(t)
∥∥p

dt
]1/p

. (3.1)

Then we know that, for every two numbers l1, l2 > 0, there exist two positive real
constants k1, k2 > 0 independent of f, g, such that

k1D
p
Sl1

[
f(·), g(·)

]
≤ Dp

Sl2

[
f(·), g(·)

]
≤ k2D

p
Sl1

[
f(·), g(·)

]
, (3.2)

as well as that (see, e.g., [9, pp. 72–73]) in the scalar-valued case there exists

Dp
W

[
f(·), g(·)

]
:= lim

l→∞
Dp

Sl

[
f(·), g(·)

]
(3.3)

in [0,∞]. The distance appearing in (3.3) is called the Weyl distance of f(·) and
g(·). The Stepanov and Weyl “norms” of f(·) are defined by

‖f‖Sp
l
:= Dp

Sl

[
f(·), 0

]
and ‖f‖W p := Dp

W

[
f(·), 0

]
,

respectively.
Taking into account (3.2), in the rest of this section it will be appropriate to

assume that l1 = l2 = 1. We say that a function f ∈ Lp
loc(I : X) is Stepanov

p-bounded (Sp-bounded) if and only if

‖f‖Sp := sup
t∈I

(∫ t+1

t

∥∥f(s)∥∥p
ds
)1/p

< ∞.

The space Lp
S(I : X) consisting of all Sp-bounded functions becomes a Banach

space when equipped with the above norm. A function f ∈ Lp
S(I : X) is said

to be Stepanov p-almost periodic, Sp-almost periodic for short, if and only if the
function f̂ : I → Lp([0, 1] : X), defined by

f̂(t)(s) := f(t+ s), t ∈ I, s ∈ [0, 1],

is almost periodic (see [4] for more details). It is said that f ∈ Lp
S([0,∞) : X) is

asymptotically Stepanov p-almost periodic (asymptotically Sp-almost periodic) if

and only if f̂ : [0,∞) → Lp([0, 1] : X) is asymptotically almost periodic.
It is a well-known fact that if f(·) is an almost periodic function, then f(·) is

also Sp-almost periodic (resp., asymptotically Sp-almost periodic) for 1 ≤ p < ∞.
The converse statement is false, however.

Denote by APSp(I : X) the space consisting of all Sp-almost periodic functions
I 7→ X. For any Sp-almost periodic function f(·) and for any real number δ ∈
(0, 1), we define the function

fδ(t) :=
1

δ

∫ t+δ

t

f(s) ds, t ∈ I.
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Arguing as in scalar-valued case (see [9]), we can prove that the function fδ(·) is
almost periodic (0 < δ < 1) as well as that ‖fδ − f‖Sp → 0 as δ → 0+. Hereafter
we will also use the Bochner theorem, which asserts that any uniformly continuous
function that is Stepanov p-almost periodic needs to be almost periodic (1 ≤ p <
∞). In the case where the value of p is irrelevant, then we simply say that the
function under our consideration is (asymptotically) Stepanov almost periodic.
In the rest of this section, we will use the following lemma (see, e.g., [9, p. 70] for
the scalar-valued case).

Lemma 3.1. Let −∞ < a < b < ∞, let 1 ≤ p′ < p′′ < ∞, and let f ∈ Lp′′([a, b] :
X). Then f ∈ Lp′([a, b] : X) and[ 1

b− a

∫ b

a

∥∥f(s)∥∥p′
ds
]1/p′

≤
[ 1

b− a

∫ b

a

∥∥f(s)∥∥p′′
ds
]1/p′′

.

4. Weyl-almost periodic functions and asymptotically Weyl-almost
periodic functions

Unless specified otherwise, in this section it will always be assumed that I = R
or I = [0,∞). The pivot Banach space will be denoted by X.

The notion of an (equi-)Weyl-almost periodic function is given as follows (see
also (3.1)).

Definition 4.1. Let 1 ≤ p < ∞ and f ∈ Lp
loc(I : X).

(i) We say that the function f(·) is equi-Weyl-p-almost periodic, f ∈ e −
W p

ap(I : X) for short, if and only if for each ε > 0 we can find two real
numbers l > 0 and L > 0 such that any interval I ′ ⊆ I of length L
contains a point τ ∈ I ′ such that

sup
x∈I

[1
l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p

dt
]1/p

≤ ε,

i.e., Dp
Sl

[
f(·+ τ), f(·)

]
≤ ε.

(ii) We say that the function f(·) is Weyl-p-almost periodic, f ∈ W p
ap(I : X)

for short, if and only if for each ε > 0 we can find a real number L > 0
such that any interval I ′ ⊆ I of length L contains a point τ ∈ I ′ such that

lim
l→∞

sup
x∈I

[1
l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p

dt
]1/p

≤ ε,

i.e., lim
l→∞

Dp
Sl

[
f(·+ τ), f(·)

]
≤ ε.

Let us recall that

APSp(I : X) ⊆ e−W p
ap(I : X) ⊆ W p

ap(I : X)

in the set-theoretical sense and that any of these two inclusions can be strict (see
[5]). For example, the scalar-valued function f : R → C defined by f(x) := χ(0,1/2),
x ∈ R is not Stepanov 1-almost periodic but it is equi-Weyl-almost-1-periodic
(see, e.g., [5, Example 4.27]), and the scalar-valued function f : R → C defined by
f(x) := χ(0,∞), x ∈ R is not equi-Weyl-almost-1-periodic but it is Weyl-almost-1-
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periodic (see, e.g., [6, Example 1]); here, χ(·) denotes the characteristic function.
We also want to point out that the space of scalar-valued functions W p

ap(R : R)
seems to have been first defined and analyzed by Kovanko [28] in 1944 (according
to the information given in the survey paper [5]).

It is well known that for any function f ∈ Lp
loc(I : X), its Stepanov boundedness

is equivalent to its Weyl boundedness, that is,

‖f‖Sp < ∞ iff ‖f‖W p < ∞.

Let 1 ≤ p < ∞ and f ∈ Lp
loc(I : X). Then f ∈ e − W p

ap(I : X) (see [5]) if and
only if for every ε > 0 there exists a trigonometric X-valued polynomial Pε(·)
such that

Dp
W

[
Pε(·), f(·)

]
< ε.

A Bochner-type theorem holds for Weyl-almost periodic functions, as well (see
[11]). (For some other notions of Weyl-almost periodicity, like equi-W p-normality
and W p-normality, we refer the reader to [5, Section 4].)

Theorem 4.2. Let 1 ≤ p < ∞ and let f ∈ W p
ap(I : X) be uniformly continuous.

Then f ∈ AP (I : X).

In the rest of this section, we use abbreviations e−Wap(I : X) andWap(I : X) to
denote the spaces e−W 1

ap(I : X) ⊆ W 1
ap(I : X), respectively. Similarly, we say that

a function is (equi)-Weyl-almost periodic if and only if it is (equi)-Weyl-1-almost
periodic. It can be easily proved that the limit of any uniformly convergent
sequence of bounded continuous functions that are (asymptotically) almost peri-
odic (resp., (asymptotically) Stepanov almost periodic) has again this property.
The following result holds for Weyl-almost periodic functions.

Proposition 4.3. Let (fn) be a uniformly convergent sequence of functions from
e − W p(I : X) ∩ Cb(I : X) (resp., W p(I : X) ∩ Cb(I : X)), where 1 ≤ p < ∞.
If f(·) is the corresponding limit function, then f ∈ e −W p(I : X) ∩ Cb(I : X)
(resp., f ∈ W p(I : X) ∩ Cb(I : X)).

Proof. We will prove the statement of the proposition only for the equi-Weyl-p-
almost periodic functions. It is clear that f ∈ Cb(I : X). Let ε > 0 be given in
advance. Then there exists an integer n0(ε) such that for each n ≥ n0(ε), we have
that ∥∥fn(t)− f(t)

∥∥ ≤ ε, t ∈ I. (4.1)

By definition, we know that there exist two real numbers ln0 > 0 and Ln0 > 0
such that any interval I ′ ⊆ I of length Ln0 contains a point τn0 ∈ I ′ such that

sup
x∈I

[ 1

ln0

∫ x+ln0

x

∥∥fn0(t+ τn0)− fn0(t)
∥∥p

dt
]1/p

≤ ε. (4.2)

Then, for the proof of equi-Weyl-p-almost periodicity of function f(·), we can
choose the same l := ln0 > 0 and L := Ln0 > 0, and the same τ := τn0 from any
subinterval I ′ ⊆ I; strictly speaking, we have∥∥f(t+τ)−f(t)

∥∥ ≤
∥∥f(t+τ)−fn0(t+τ)

∥∥+∥∥fn0(t+τ)−fn0(t)
∥∥+∥∥f(t)−fn0(t)

∥∥
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for all t ∈ I, so that a simple calculation involving (4.1) gives the existence of a
finite constant cp > 0 such that

sup
x∈I

[1
l

∫ x+l

x

∥∥f(t+ τ)− f(t)
∥∥p

dt
]1/p

≤ cp

[
ε+ sup

x∈I

[ 1

ln0

∫ x+ln0

x

∥∥fn0(t+ τ)− fn0(t)
∥∥p

dt
]1/p]

≤ 2cpε.

Then the final result simply follows from (4.2). �

4.1. Asymptotically Weyl-almost periodic functions. For the start, we
need to introduce the following notion. If q ∈ Lp

loc([0,∞) : X), then we define the
function q(·, ·) : [0,∞)× [0,∞) → X by

q(t, s) := q(t+ s), t, s ≥ 0.

Definition 4.4. It is said that q ∈ Lp
loc([0,∞) : X) is Weyl-p-vanishing if and only

if

lim
t→∞

∥∥q(t, ·)∥∥
W p = 0, i.e., lim

t→∞
lim
l→∞

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

= 0. (4.3)

It is clear that for any function q ∈ Lp
loc([0,∞) : X) we can replace the limits

in (4.3). We say that q ∈ Lp
loc([0,∞) : X) is equi-Weyl-p-vanishing if and only if

lim
l→∞

lim
t→∞

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

= 0. (4.4)

Since the second limit in (4.3) always exists in [0,∞] (on account of (3.3)) and
the second limit in (4.4) always exists in [0,∞] (on account of the fact that the

mapping t 7→ supx≥0
1
l

∫ x+l

x
‖q(t + s)p‖ ds1/p, t ≥ 0 is monotonically decreasing),

the condition (4.3) is equivalent with

∀ε > 0 ∃t0(ε) > 0 ∀t ≥ t0(ε) ∃lt > 0 ∀l > lt :

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤ ε, (4.5)

while the condition (4.4) is equivalent with

∀ε > 0 ∃l0(ε) > 0 ∀l ≥ l0(ε) ∃tl > 0 ∀t > tl :

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤ ε. (4.6)

Before proceeding further, we would like to observe that there is a great number
of very simple examples showing that, for a function q ∈ Lp

loc([0,∞) : X), the
situation in which ‖q(t, ·)‖W p 6= ‖q(t′, ·)‖W p for all t 6= t′ can occur. Consider, for
instance, the function q(t) := 2−1(t+ 1)(−1)/2, t ≥ 0 and the case in which p = 1;
then a direct computation yields that ‖q(t, ·)‖W p = (t+ 1)(−1)/2, t ≥ 0.

(1) Assume that q ∈ Lp([0,∞) : X). Then for each ε > 0 there exists t0(ε) > 0

such that
∫∞
t

‖q(s)‖p ds ≤ εp, t ≥ t0(ε). In particular,
∫ t+1

t
‖q(s)‖p ds ≤ εp,

t ≥ t0(ε) and the function q̂ : [0,∞) → Lp([0, 1] : X) belongs to the class
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C0([0,∞) : Lp([0, 1] : X)). The converse statement is not true, however, since
the scalar-valued function q(t) = t(−1)/2p, t > 0 satisfies that q̂ ∈ C0([0,∞) :
Lp([0, 1] : X)) and q /∈ Lp([0,∞) : X).

(2) If q ∈ Lp
loc([0,∞) : X) and q̂ ∈ C0([0,∞) : Lp([0, 1] : X)), then the

computation

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤
[1
l

(∫ x+t+1

x+t

+ · · ·+
∫ x+t+dle

x+t+dle−1

)∥∥q(s)∥∥p
ds
]1/p

≤
(
ε
dle
l

)1/p

≤ 2pε,

holding for any t ≥ 0, shows that the function q(·) is equi-Weyl-p-vanishing, with

l0(ε) = 1 and tl = t0(ε) chosen so that
∫ t+1

t
‖q(s)‖p ds ≤ εp, t ≥ t0(ε) (l > l0(ε)).

As the following simple counterexample shows, the converse statement does not
hold in general.

Example 4.5. Define

q(t) :=
∞∑
n=0

χ[n2,n2+1](t), t ≥ 0.

Since
∫ n2+1

n2 ‖q(s)‖p ds = 1, n ∈ N, it is clear that q̂ /∈ C0([0,∞) : Lp([0, 1] : X)).

On the other hand, the interval [t, t+ l] contains at most
√
t+ l−

√
t+2 squares

of nonnegative integers, so that

1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds ≤ sup
x≥t

1

l

∫ t+l

t

∥∥q(s)∥∥p
ds

≤ 1

l
(
√
t+ l −

√
t+ 2) ≤ 1

l

(
2 +

l
√
t+

√
l

)
, x ≥ 0, t ≥ 0,

so that (4.6) holds with l0(ε) > 0 sufficiently large and tl = l (l ≥ l0(ε)).

(3) If q ∈ Lp
loc([0,∞) : X) and q(·) is equi-Weyl-p-vanishing, then q(·) is

Weyl-p-vanishing. To see this, assume that (4.6) holds with l0(ε) > 0 and put
after that t0(ε) := tl0(ε). Therefore,

sup
x≥0

[ 1

l0(ε)

∫ x+l0(ε)

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤ ε, t ≥ t0(ε). (4.7)

For any fixed t ≥ t0(ε), we set lt := l0(ε). Then it suffices to show that for any
l > lt, we have

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤ 2ε.

This follows from (4.7) and a simple analysis involving the second inequality in
[6, Proposition 1(i)]:

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

≤ 21/p sup
x≥0

[ 1

l0(ε)

∫ x+l0(ε)

x

∥∥q(t+ s)
∥∥p

ds
]1/p

,
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which is valid for any l > lt = l0(ε). Again, the converse statement does not hold
in general, and a Weyl-p-vanishing function need not be equi-Weyl-p-vanishing.

Example 4.6. Define

q(t) :=
∞∑
n=0

√
nχ[n2,n2+1](t), t ≥ 0.

Then it is clear that

1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds ≤ sup
x≥t

1

l

∫ t+l

t

∥∥q(s)∥∥p
ds ≤

√
t+ l

l2
, x ≥ 0, t ≥ 0,

so that (4.5) holds with t0(ε) > 0 chosen so that
√

1/(t+ 1) ≤ ε for t ≥ t0(ε) and
lt = (t+ 1)2. Hence, q(·) is Weyl-p-vanishing. On the other hand, q(·) cannot be
equi-Weyl-p-vanishing because for each number l > 1 there does not exist a finite
limit

lim
t→∞

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds
]1/p

.

To see this, it suffices to observe that for each t > 0 and n ∈ N such that n2 > t,
we have

sup
x≥0

1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds ≥
√
n

l
>

t

l
.

Before proceeding further, we would like to note that an equi-Weyl-p-vanishing
function q(·) need not be bounded as t → +∞ (this, certainly, implies that the
notion of asymptotically equi-Weyl-almost periodicity is very general compared
with the usually considered notion of asymptotically almost periodicity).

Example 4.7. Define

q(t) :=
∞∑
n=0

n1/4pχ[n4,n4+1](t), t ≥ 0.

Then, similarly as in Example 4.5, we can prove that

1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p

ds ≤ sup
x≥t

1

l

∫ t+l

t

∥∥q(s)∥∥p
ds

≤ 1

l

(
2 +

l
√
t+

√
l

)
, x ≥ 0, t ≥ 0,

which implies the required conclusions.

Denote by W p
0 ([0,∞) : X) and e − W p

0 ([0,∞) : X) the sets consisting of
all Weyl-p-vanishing functions and equi-Weyl-p-vanishing functions, respectively.
The symbol Sp

0([0,∞) : X) will be used to denote the set of all functions q ∈
Lp
loc([0,∞) : X) such that q̂ ∈ C0([0,∞) : Lp([0, 1] : X)). By our considerations

in points (1)–(3), Example 4.5, and Example 4.6, we have the following result.
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Theorem 4.8. The inclusions

Lp
(
[0,∞) : X

)
⊆ Sp

0

(
[0,∞) : X

)
⊆ e−W p

0

(
[0,∞) : X

)
⊆ W p

0

(
[0,∞) : X

)
hold, and any of them can be strict.

We introduce the following function spaces:

AAPW p
(
[0,∞) : X

)
:= AP

(
[0,∞) : X

)
+W p

0

(
[0,∞) : X

)
,

e− AAPW p
(
[0,∞) : X

)
:= AP

(
[0,∞) : X

)
+ e−W p

0

(
[0,∞) : X

)
,

AAPSW p
(
[0,∞) : X

)
:= APSp

(
[0,∞) : X

)
+W p

0

(
[0,∞) : X

)
,

e− AAPSW p
(
[0,∞) : X

)
:= APSp

(
[0,∞) : X

)
+ e−W p

0

(
[0,∞) : X

)
,

e−W p
aap

(
[0,∞) : X

)
:= e−W p

ap

(
[0,∞) : X

)
+W p

0

(
[0,∞) : X

)
,

ee−W p
aap

(
[0,∞) : X

)
:= e−W p

ap

(
[0,∞) : X

)
+ e−W p

0

(
[0,∞) : X

)
,

W p
aap

(
[0,∞) : X

)
:= W p

ap

(
[0,∞) : X

)
+W p

0

(
[0,∞) : X

)
,

W p
eaap

(
[0,∞) : X

)
:= W p

ap

(
[0,∞) : X

)
+ e−W p

0

(
[0,∞) : X

)
.

Then it is clear that

AAPW p
(
[0,∞) : X

)
⊆ AAPSW p

(
[0,∞) : X

)
⊆ e−W p

aap

(
[0,∞) : X

)
⊆ W p

aap

(
[0,∞) : X

)
and

e− AAPW p
(
[0,∞) : X

)
⊆ e− AAPSW p

(
[0,∞) : X

)
⊆ ee−W p

aap

(
[0,∞) : X

)
⊆ W p

eaap

(
[0,∞) : X

)
and that any of these inclusions can be strict.

By the analysis contained in [5, Example 4.27], the function f : [0,∞) →
C defined by f(t) := χ(0,1/2)(t), t ≥ 0 is equi-Weyl-almost periodic; since this
function is also in class e − W 1

0 ([0,∞) : X), we have that the sums defining
e−W p

aap([0,∞) : X), ee−W p
aap([0,∞) : X), W p

aap([0,∞) : X), and W p
eaap([0,∞) :

X) cannot be direct. For the first four spaces AAPW p([0,∞) : X), e−AAPW p([0,
∞) : X), AAPSW p([0,∞) : X), and e−AAPSW p([0,∞) : X), the sums in their
definitions are direct, which follows from the following proposition.

Proposition 4.9. Let 1 ≤ p < ∞. Then W p
0 ([0,∞) : X) ∩ APSp([0,∞) : X) =

{0}.

Proof. Assume that q ∈ W p
0 ([0,∞) : X)∩APSp([0,∞) : X). In order to see that

q(t) = 0 for almost everywhere t ≥ 0, it suffices to show that q̂(t) = 0, t ≥ 0
in Lp([0, 1] : X). Since q̂(·) is almost periodic, we only need to prove that any
Bohr–Fourier coefficient of q̂(·) is equal to zero, that is, that

lim
t→∞

(∫ 1

0

∥∥∥1
t

∫ t

0

e−irsq(s+ v) ds
∥∥∥p

dv
)1/p

= 0, r ∈ R. (4.8)
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To see that (4.8) holds good, observe first that(∫ 1

0

∥∥∥1
t

∫ t

0

e−irsq(s+ v) ds
∥∥∥p

dv
)1/p

≤ 1

t

(∫ 1

0

[∫ t

0

∥∥q(s+ v)
∥∥ ds]p dv)1/p

,

which can be further majorized by using Lemma 3.1:

≤ 1

t

(∫ 1

0

tp−1

∫ t

0

∥∥q(s+ v)
∥∥p

ds dv
)1/p

= t(−1)/p
(∫ 1

0

∫ t

0

∥∥q(s+ v)
∥∥p

ds dv
)1/p

.

Hence, we need to prove that

lim
t→∞

1

t

∫ 1

0

∫ t

0

∥∥q(s+ v)
∥∥p

ds dv = lim
t→∞

1

t

∫ 1

0

∫ s+t

s

∥∥q(r)∥∥p
dr dv = 0. (4.9)

Let ε > 0 be given in advance. Since q ∈ W p
0 ([0,∞) : X), we know that there

exist two finite numbers t0(ε) > 0 and l0(ε) > 0 such that, for every l > l0(ε), we
have

sup
x≥0

[1
l

∫ x+l

x

∥∥q(t0(ε) + s
)∥∥p

ds
]1/p

≤ ε. (4.10)

Let T0(ε) > 0 be such that, for each t > T0(ε), we have

t ≥ t0(ε)
2 and t−

√
t ≥ l0(ε). (4.11)

The validity of (4.11) clearly implies by (4.10) that

1

t−
√
t

∫ s+t

s+
√
t

∥∥q(s)∥∥p
ds ≤ ε, s ∈ [0, 1]. (4.12)

Since

1

t

∫ s+t

s

∥∥q(r)∥∥p
dr

=
1

t

(∫ s+1

s

+

∫ s+2

s+1

+ · · ·+
∫ s+d

√
te

s+d
√
te−1

)∥∥q(r)∥∥p
dr

+
1

t

(∫ s+d
√
te+1

s+d
√
te

+ · · ·+
∫ s+t

s+btc

)∥∥q(r)∥∥p
dr

≤ d
√
te
t

‖q‖Sp +
t− btc

t
ε

by Sp-boundedness of q(·) and (4.12), the equation (4.9) holds true. The proof of
the proposition is thereby complete. �

It is very simple to prove that W p
0 ([0,∞) : X) and W p

0 ([0,∞) : X) are vector
spaces, so that the introduced eight function spaces have a linear vector structure.
Disregarding the term ([0,∞) : X), and taking into consideration the previously
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defined spaces AAP and AAPSp, we have the following inclusion diagram of
“asymptotically almost periodic function spaces” (see Theorem 4.8):

AAP ⊆ e− AAPW p ⊆ AAPW p

⊆ ⊆ ⊆

AAPSp ⊆ e− AAPSW p ⊆ AAPSW p

⊆ ⊆

ee−W p
aap ⊆ e−W p

aap

⊆ ⊆
W p

eaap ⊆ W p
aap.

By the foregoing, any inclusion of this diagram can be strict. Furthermore, for any
two function spaces A and B belonging to this diagram and satisfying additionally
that there is no transitive sequence of inclusions connecting either A and B, or
B and A, we have that A \B 6= ∅ and B \ A 6= ∅ (the diagram can be expanded
by constructing the sums of spaces of (equi-)Weyl-almost periodic functions with
Sp
0([0,∞) : X) and the space WpPAA0(R : X) defined below, which will not

be examined here). Abbas [2] introduced the notions of a Weyl-p-pseudo-almost
automorphic function and a Weyl-p-pseudoergodic component.

Definition 4.10. Let p ≥ 1. Then we say that a function q ∈ Lp
loc(R : X) is a

Weyl-p-pseudoergodic component if and only if it satisfies

lim
T→+∞

1

2T

∫ T

−T

[
lim

l→+∞

1

2l

∫ x+l

x−l

∥∥q(t)∥∥p
dt
]1/p

dx = 0. (4.13)

The set of all such functions is denoted by WpPAA0(R : X).

Now we will prove that the class of Weyl-p-vanishing functions (extended by
zero outside [0,∞)) is contained in WpPAA0(R : X).

Proposition 4.11. Let 1 ≤ p < ∞, and let q ∈ Lp
loc([0,∞) : X) be a Weyl-p-

vanishing function. Let qe ∈ Lp
loc(R : X) be given by qe(t) := q(t), t ≥ 0 and

qe(t) := 0, t < 0. Then qe ∈ WpPAA0(R : X).

Proof. We only need to prove that (4.13) holds with q(·) replaced therein with
qe(·), that is, that

lim
T→+∞

1

2T

∫ T

0

[
lim

l→+∞

1

2l

∫ x+l

0

∥∥q(t)∥∥p
dt
]1/p

dx = 0.

Let x ∈ [0, T ] be fixed. It suffices to show that

lim
l→+∞

1

2l

∫ x+l

0

∥∥q(t)∥∥p
dt = 0. (4.14)

To this end, fix a number ε > 0. Owing to the fact that q(·) is Weyl-p-vanishing,
that is, that

lim
t→∞

lim
l→∞

sup
x≥t

[1
l

∫ x+l

x

∥∥q(s)∥∥p
ds
]1/p

= 0,
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we have the existence of numbers l0(ε) > 0 and t0(ε) > 0 such that

1

2l

∫ x+l

x

∥∥q(s)∥∥p
ds ≤ ε, x ≥ t0(ε), l ≥ l0(ε). (4.15)

Then we have

1

2l

∫ x+l

0

∥∥q(t)∥∥p
dt ≤ 1

2l

[∫ x

0

∥∥q(s)∥∥p
ds+

∫ x+l

x

∥∥q(s)∥∥p
ds
]
, l > 0.

If x ≥ t0(ε), then the addend (1/2l)
∫ x+l

x
‖q(s)‖p ds is less than or equal to ε by

(4.15), which clearly implies the existence of a number l1(ε) > 0 such that for
each l ≥ l1(ε), we have

1

2l

∫ x+l

0

∥∥q(t)∥∥p
dt ≤ 2ε.

If x < t0(ε), then we have

1

2l

∫ x+l

x

∥∥q(t)∥∥p
dt ≤ 1

2l

[∫ t0(ε)

x

∥∥q(s)∥∥p
ds+

∫ t0(ε)+l

t0(ε)

∥∥q(s)∥∥p
ds
]

≤ 1

2l

∫ t0(ε)

x

∥∥q(s)∥∥p
ds+ ε, l ≥ l1(ε),

which clearly implies the existence of a number l2(ε) > l1(ε) such that for each
l ≥ l2(ε), we have

1

2l

∫ x+l

0

∥∥q(t)∥∥p
dt ≤ 2ε.

This yields (4.14) and completes the proof of Proposition 4.11. �

We round off the section by introducing the following definition.

Definition 4.12. Let I = R or I = [0,∞), let (R(t))t∈I ⊆ L(X) be a strongly con-
tinuous operator family, and let ⊕ denote any of ((equi-)Weyl, Stepanov, asymp-
totically) almost periodic properties considered above. Then we say that (R(t))t∈I
is ⊕ ((equi-)Weyl, Stepanov, asymptotically) almost periodic if and only if the
mapping t 7→ R(t)x, t ∈ I is ⊕ (asymptotically) almost periodic for all x ∈ X.

5. Weyl-almost periodic and asymptotically Weyl-almost periodic
properties of convolution products

The main aim of this section is to investigate the (asymptotically) Weyl-almost
periodic properties of finite and infinite convolution products. We first state the
following result.
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Proposition 5.1.

(i) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator fam-
ily satisfying that

∫∞
0

‖R(s)‖ ds < ∞. If g : R → X is bounded and
(equi)-Weyl-almost periodic, then the function G(·), given by

G(t) :=

∫ t

−∞
R(t− s)g(s) ds, t ≥ 0, (5.1)

is bounded and (equi)-Weyl-almost periodic, as well.
(ii) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family

satisfying that M =
∑∞

k=0 ‖R(·)‖L∞[k,k+1] < ∞. If g : R → X is equi-
Weyl-almost periodic, then the function G(·), given by (5.1), is bounded
and equi-Weyl-almost periodic, as well.

Proof. We will prove (i) only in the case in which g : R → Y is bounded and
Weyl-almost periodic. It is clear that, for every t ∈ R, we have that G(t) is well
defined and ∥∥G(t)

∥∥ ≤ ‖g‖∞
∫ ∞

0

∥∥R(s)
∥∥ ds.

In particular, G(·) belongs to the space Lp
loc(R : X) with all its translations, so

that (3.3) implies the existence of the limit

lim
l→∞

DSl

[
G(·+ τ), G(·)

]
for any τ ∈ R. Let a number ε > 0 be given in advance. Then we can find two
finite numbers lε > 0 and Lε > 0 such that any subinterval I of R of length Lε

contains a number τ ∈ I such that

sup
x∈R

1

l

∫ x+l

x

∥∥g(t+ τ)− g(t)
∥∥ dt ≤ ε, l ≥ lε. (5.2)

It remains to prove that for any such τ we have

lim
l→∞

DSl

[
G(·+ τ), G(·)

]
≤ ε,

whose validity immediately follows if we prove that

sup
x∈R

1

l

∫ x+l

x

∥∥G(t+ τ)−G(t)
∥∥ dt ≤ Const.ε, l ≥ lε. (5.3)

To see that (5.3) holds, we can argue as follows. Applying Fubini’s theorem and
(5.2), we get that, for every x ∈ R and l ≥ lε,

1

l

∫ x+l

x

∥∥G(t+ τ)−G(t)
∥∥ dt

≤ 1

l

∫ x+l

x

[∫ ∞

0

∥∥R(s)
∥∥∥∥g(t+ τ − s)− g(t− s)

∥∥ ds] dt
≤

∫ ∞

0

[∥∥R(s)
∥∥1
l

∫ x+l

x

∥∥g(t+ τ − s)− g(t− s)
∥∥ dt] ds
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≤ ε

∫ ∞

0

∥∥R(s)
∥∥ ds.

This completes the proof of (i). For the proof of (ii), we first recall that any
equi-Weyl-almost periodic function needs to be Stepanov (Weyl, equivalently)
bounded, so that our assumption M < ∞, taken together with the proof of [27,
Proposition 2.6.11], shows that the function G(·) is well defined and bounded on
the real line. The remaining part of the proof is essentially the same as that in
part (i). �

Remark 5.2. It is not clear how to consider the case in which g : R → Y is
(equi)-Weyl-p-almost periodic for some p > 1.

For any locally integrable function q ∈ L1
loc(R : X) and for any strongly con-

tinuous operator family (R(t))t>0 ⊆ L(X,Y ) satisfying
∫∞
0

‖R(s)‖ ds < ∞, we
formally set

J(t, l) := sup
x≥0

{∫ x+t

0

[1
l

∫ x+t−r+l

x+t−r

∥∥R(v)
∥∥ dv]∥∥q(r)∥∥ dr}, t > 0, l > 0.

Consider the conditions

lim
t→∞

lim
l→∞

J(t, l) = 0 (5.4)

and

lim
l→∞

lim
t→∞

J(t, l) = 0. (5.5)

The main purpose of the following proposition is to investigate the asymp-
totically Weyl-almost periodic properties of finite convolution products (Weyl-p-
vanishing functions and equi-Weyl-p-vanishing functions behave here much better
than Weyl-p-pseudoergodic components).

Proposition 5.3.

(i) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator family
satisfying that

∫∞
0

‖R(s)‖ ds < ∞. If g : R → X is bounded and Weyl-
almost periodic and q ∈ W 1

0 ([0,∞) : X) (resp., q ∈ e −W 1
0 ([0,∞) : X))

satisfies (5.4) (resp., (5.5)), then the function F (·), given by

F (t) :=

∫ t

0

R(t− s)
[
g(s) + q(s)

]
ds, t ≥ 0, (5.6)

is in class W 1
aap([0,∞) : Y ) (resp., W 1

eaap([0,∞) : Y )).
(ii) Let the requirements of part (i) hold with g : R → X being bounded and

equi-Weyl-almost periodic as well as with the function q(·) satisfying the
same conditions as in (i). Then the function F (·), given by (5.6), is in
class e−W 1

aap([0,∞) : X) (resp., ee−W 1
aap([0,∞) : X)).

(iii) Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous operator fam-
ily satisfying that M =

∑∞
k=0 ‖R(·)‖L∞[k,k+1] < ∞. If g : R → X is equi-

Weyl-almost periodic and the function q(·) satisfies the same conditions as
in (i), then the function F (·), given by (5.6), is in class e−W 1

aap([0,∞) :

X) (resp., ee−W 1
aap([0,∞) : X)).
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We will only prove part (i). By Proposition 5.1, G(·) is bounded and Weyl-
almost periodic. Define

F (t) :=

∫ t

0

R(t− s)q(s) ds−
∫ ∞

t

R(s)g(t− s) ds, t ≥ 0. (5.7)

The measurability of integrand functions and the local integrability of convolution
products in (5.7) follow from the proofs of [7, Propositions 1.3.4, 1.3.5]. Since
H(t) = G(t) + F (t) for all t ≥ 0, and∥∥∥∫ ∞

t

R(s)g(t− s) ds
∥∥∥ ≤ ‖g‖∞

∫ ∞

t

∥∥R(s)
∥∥ ds → 0, t → +∞, (5.8)

it suffices to show that the function t → L(t) :=
∫ t

0
R(t−s)q(s) ds, t ≥ 0 is in class

W 1
0 ([0,∞) : X) (resp., e − W 1

0 ([0,∞) : X)), provided that q ∈ W 1
0 ([0,∞) : X)

(resp., q ∈ e − W 1
0 ([0,∞) : X)) satisfies (5.4) (resp., (5.5)). Clearly, for every

x ≥ 0 and l > 0, we have by an elementary argumentation involving Fubini’s
theorem:

1

l

∫ x+t+l

x+t

∥∥q(s)∥∥ ds ≤ 1

l

∫ x+t+l

x+t

[∫ s

0

∥∥R(s− r)
∥∥∥∥q(r)∥∥ dr] ds

≤
∫ x+t

0

[1
l

∫ x+t+l

x+t

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr

+

∫ x+t+l

x+t

[1
l

∫ x+t+l

r

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr.

For the estimation of the second addend, we can use the inequality∫ x+t+l

x+t

[1
l

∫ x+t+l

r

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr

≤
∫ x+t+l

x+t

[∫ ∞

0

∥∥R(v)
∥∥ dv]1

l

∥∥q(r)∥∥ dr
≤

[∫ ∞

0

∥∥R(v)
∥∥ dv] · 1

l

∫ x+t+l

x+t

∥∥q(r)∥∥ dr, x ≥ 0, l > 0;

therefore, since q ∈ W 1
0 ([0,∞) : X) (resp., q ∈ e − W 1

0 ([0,∞) : X)), we have
that the second addend is in the same class, as well, by the uniform integrability
of ‖R(·)‖. For the first addend, it suffices to observe that condition (5.4) (resp.,
(5.5)) holds for q(·).

Example 5.4. It is very simple to prove that (5.5) holds provided that (R(t))t≥0 ⊆
L(X,Y ) is exponentially decaying, as well as that there exists a finite constant
M ≥ 1 such that ∫ t

0

eω(t−s)
∥∥q(s)∥∥ ds ≤ M, t ≥ 0,

where ω < 0 denotes the exponential growth bound of (R(t))t≥0.
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Example 5.5. Assume that there exist two numbers a ∈ (0, 1) and b ∈ (1,∞) sat-
isfying ‖R(t)‖ ≤ Mt−a, t ∈ (0, 1) and ‖R(t)‖ ≤ Mt−b, t ≥ 1, so that Proposition
(5.3)(ii)–(iii) can be applied; here, M ≥ 1 is a finite constant. Since for any l ≥ 1
we have∫ x+t

0

[1
l

∫ x+t−r+l

x+t−r

∥∥R(v)
∥∥ dv]∥∥q(r)∥∥ dr

≤ M

l(1− a)

∫ x+t

0

{
(x+ t− r + 1)1−a − (x+ t− r)1−a

}∥∥q(r)∥∥ dr
+

M

l(b− 1)

∫ x+t

0

{
(x+ t− r + 1)1−b − (x+ t− r + l)1−b

}∥∥q(r)∥∥ dr
≤ M

l(1− a)

∫ x+t

0

(x+ t− r)−a
∥∥q(r)∥∥ dr

+
M(l − 1)

l(b− 1)

∫ x+t

0

(x+ t− r + 1)−b
∥∥q(r)∥∥ dr,

condition (5.5) holds if the following conditions are satisfied.

(i) The mapping t 7→
∫ t

0
(t− r)−a‖q(r)‖ dr, t > 0 is bounded as t → +∞.

(ii) We have limt→+∞
∫ t

0
(t+ 1− r)−b‖q(r)‖ dr = 0.

These conditions hold for a substantially large class of functions q(·).

Example 5.6. Assume now that (R(t))t>0 ⊆ L(X,Y ) is strongly continuous and
satisfies the estimate ‖R(t)‖ ≤ Me−cttβ−1, t > 0 for some finite constants

c, β,M > 0. Dividing the integral
∫ x+t−r+l

x+t−r
into two parts

∫ x+t−r+1

x+t−r
and

∫ x+t−r+l

x+t−r+1
,

for l ≥ 1, and estimating the integrand e−cvvβ−1 on [x + t − r, x + t − r + 1] by
vβ−1 (on [x+ t−r+1, x+ t−r+ l] by e−cv), as was done in the previous example,
it can be easily verified that (5.5) holds if the following conditions are satisfied.

(i) The mapping t 7→
∫ t

0
(t− r)β−1‖q(r)‖ dr, t > 0 is bounded as t → +∞.

(ii) The mapping t 7→
∫ t

0
e−c(t−r)‖q(r)‖ dr, t > 0 is bounded as t → +∞.

We invite the interested reader to find some sufficient conditions ensuring the
asymptotically (Stepanov) almost periodicity of finite convolution products pro-
vided that the function q ∈ W 1

0 ([0,∞) : X) (resp., q ∈ e − W 1
0 ([0,∞) : X))

satisfies some other conditions from (5.4) (resp., (5.5)). It would take too long
to examine the cases in which the function g(·) + q(·) belongs to the classes
AAPW p([0,∞) : X), e − AAPW p([0,∞) : X), AAPSW p([0,∞) : X), or e −
AAPSW p([0,∞) : X).

6. Abstract Volterra integro-differential equations: Weyl-almost
periodicity and asymptotical Weyl-almost periodicity of solutions

We start the work in this section by stating the following proposition (a similar
result can be stated for degenerate operator families subgenerated by a pair of
closed linear operators; see [26] for more details).
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Proposition 6.1. Suppose that abs(|a|) < ∞, that abs(k) < ∞, that 1 ≤
p < ∞, and that A is a subgenerator of a mild, strongly Laplace transformable,
(a, k)-regularized C2-uniqueness family (R2(t))t≥0. Denote by D the set consisting
of all eigenvectors x of operator A corresponding to eigenvalues λ ∈ C of operator
A for which the mapping

fλ,x(t) := L−1
( k̃(z)

1− λã(z)

)
(t)C2x, t ≥ 0

is (equi)-Weyl-p-almost periodic. Then the mapping t 7→ R2(t)x, t ≥ 0 is (equi)-
Weyl-p-almost periodic for all x ∈ span(D).

Let f : [0,∞) → X be Weyl-p-almost periodic. As in the case of Stepanov
almost periodic functions, the Bohr–Fourier coefficients

Pr(f) = lim
t→∞

1

t

∫ t+α

α

e−irsf(s) ds

exist for all r ∈ R, independently of α ∈ R, and the assumption Pr(f) = 0 for
all r ∈ R implies that f(t) = 0 for almost everywhere t ∈ R. In particular, f(·)
satisfies (P1) and the argumentation contained in the proof of [22, Theorem 4.5]
shows that the following result holds true.

Theorem 6.2. Let A be the integral generator of a Weyl-p-almost periodic (a, k)-

regularized C-resolvent family (R(t))t≥0 for some p ∈ [1,∞), let R(C) = D(A) =
X, and let k(0) 6= 0. Denote

R :=
{
r ∈ R : ã(ir) exists

}
.

Suppose that k(t) and |a|(t) satisfy (P1), lim<z→∞ ã(z) = 0 as well as that

P k
r = lim

t→∞

1

t

∫ t

0

e−irsk(s) ds = 0, r ∈ R.

Then we have

(Q): PR
r x ∈ A[ã(ir)PR

r x], r ∈ R, x ∈ X and the mapping

R(t)PR
r x = L−1

( k̃(z)ã(ir)

ã(ir)− ã(z)

)
(t)CPR

r x, t ≥ 0, x ∈ X,

is Weyl-p-almost periodic for all r ∈ R and x ∈ X.

Suppose, in addition, that

R(t)PR
r x = k(t)CPR

r x, t ≥ 0, r ∈ R \ R, x ∈ X.

Then the set D consisting of all eigenvectors of operator A corresponding to
eigenvalues λ ∈ {0} ∪ {ã(ir)−1 : r ∈ R, ã(ir) 6= 0} of operator A is total in X.

Suppose now that α ∈ (0, 2) \ {1} and that r ∈ R \ {0}. Then the function t 7→
Eα((ir)

αtα), t ≥ 0 is bounded and uniformly continuous so that its Weyl-p-almost
periodicity for some p ∈ [1,∞) would imply its almost periodicity (see Theorem
4.2), which is a contradiction (see [23]). Keeping this observation in mind, as
well as the fact that any two Weyl-p-almost periodic functions having the same
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Bohr–Fourier coefficients need to be identical almost everywhere (see [11], [12]),
as in [23] we can deduce the following results.

Theorem 6.3. Let C ∈ L(X) be injective, let 1 ≤ p < ∞, let A be a closed

single-valued linear operator, and let R(C) = X. Suppose that α ∈ (0, 2) \ {1}
and that A generates a Weyl-p-almost periodic (gα, C)-resolvent family (R(t))t≥0.
Then A = 0 ∈ L(X) and R(t) = C, t ≥ 0.

Proposition 6.4. Suppose that (S(t))t≥0 is a bounded C-regularized semigroup
with the integral generator A. If x ∈ X satisfies that the mapping t 7→ S(t)x, t ≥ 0
is Weyl-p-almost periodic for some p ∈ [1,∞), then the mapping t 7→ S(t)Cx,
t ≥ 0 is almost periodic.

Theorem 6.5. Suppose that 1 ≤ p < ∞ and that (S(t))t≥0 is a C-regularized
semigroup with the integral generator A. Then the following holds.

(i) Let x ∈ X satisfy that the mapping t 7→ S(t)x, t ≥ 0 is W p-bounded. Then
the mapping t 7→ S(t)Cx, t ≥ 0 is bounded.

Suppose that the mapping t 7→ S(t)x, t ≥ 0 is W p-bounded for all x ∈ X. Then
we have the following.

(ii) The mapping t 7→ S(t)C2x, t ≥ 0, is bounded and uniformly continuous for
all x ∈ X, and there exists a finite constant M ≥ 0 such that ‖S(t)C‖ ≤
M , t ≥ 0. Therefore, if x ∈ X satisfies that the mapping t 7→ S(t)C2x,
t ≥ 0, is Weyl-p-almost periodic, then it is almost periodic.

(iii) If R(C) is dense in X, then the mapping t 7→ S(t)Cx, t ≥ 0 is bounded
and uniformly continuous for all x ∈ X. Therefore, if x ∈ X satisfies
that the mapping t 7→ S(t)Cx, t ≥ 0, is Weyl-p-almost periodic, then it is
almost periodic.

Due primarily to the fact that it is very difficult to satisfactorily introduce some
Fréchet topologies on the spaces of (asymptotically, equi)-Weyl-almost periodic
functions, we will not consider here (asymptotically, equi)-Weyl-almost periodic
functions depending on two parameters: composition theorems and semilinear
differential Cauchy inclusions. We close the section with the observation that
composition theorems for Weyl-pseudo-almost automorphic functions have been
investigated by Abbas [2].

7. Examples and applications

The main aim of this section is to present some illustrative examples and appli-
cations of our abstract results established in the previous sections. The main
assumption will be that A is a multivalued linear operator on a Banach space X
satisfying the condition examined by Favini and Yagi [17, (P), p. 47]:

(P) There exist finite constants c,M > 0 and β ∈ (0, 1] such that

Ψ := Ψc :=
{
λ ∈ C : <λ ≥ −c

(
|=λ|+ 1

)}
⊆ ρ(A)

and ∥∥R(λ : A)
∥∥ ≤ M

(
1 + |λ|

)−β
, λ ∈ Ψ.
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Suppose now that condition (P) holds and β > θ. Then the degenerate strongly
continuous semigroup (T (t))t>0 ⊆ L(X) generated by A satisfies estimate
‖T (t)‖ ≤ M0e

−cttβ−1, t > 0 for some finite constant M0 > 0 (see [23]). Define

Tγ,ν(t)x := tγν
∫ ∞

0

sνΦγ(s)T (st
γ)x ds, t > 0, x ∈ X,

Sγ(t) := Tγ,0(t), t > 0; Sγ(0) := I,

and, following Wang, Chen, and Xiao [38],

Pγ(t) := γTγ,1(t)/t
γ, t > 0. (7.1)

We start our work by inquiring into the existence and uniqueness of the fol-
lowing abstract Cauchy inclusion of first order

u′(t) ∈ Au(t) + f(t), t ∈ R. (7.2)

Following Zaidman [39], by a mild solution of (7.2) we mean the X-valued con-
tinuous function u(·) given by

t 7→ u(t) :=

∫ t

−∞
T (t− s)f(s) ds, t ∈ R.

In our concrete situation, it is clear that any of two parts of Proposition 5.1
can be applied. If f : R → Y is bounded and Weyl-almost periodic, then there
exists a unique bounded and (equi)-Weyl-almost periodic solution of (7.2); on the
other hand, if f : R → Y is equi-Weyl-almost periodic, then there exists a unique
bounded and equi-Weyl-almost periodic solution of (7.2).

We continue our exposition in this section by investigating the existence and
uniqueness of fractional relaxation inclusions with Weyl–Liouville derivatives of
order γ ∈ (0, 1], thus continuing the work of Mu, Zhoa, and Peng [30] and the
author [24] (for fractional differential equations with delay, the reader may consult
Abbas [1] and the references cited therein).

7.1. Fractional relaxation inclusions with Weyl–Liouville derivatives.
Throughout this section, we assume that γ ∈ (0, 1]. Following the method applied
in the proof of [30, Lemma 6], we say that a continuous function u : R → X is a
mild solution of fractional relaxation inclusion

Dγ
t,+u(t) ∈ Au(t) + f(t), t ∈ R (7.3)

if and only if

u(t) =

∫ t

−∞
(t− s)γ−1Pγ(t− s)f(s) ds, t ∈ R.

Set

Rγ(t) := tγ−1Pγ(t), t > 0.

Then we know by [27] that∥∥Rγ(t)
∥∥ ≤ M1t

γβ−1, t ∈ (0, 1] and
∥∥Rγ(t)

∥∥ ≤ M2t
−1−γ, t ≥ 1,
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as well as the fact that Proposition 5.1 can be applied again, producing the same
final results as in the case of consideration of abstract differential inclusion (7.3).
If f : R → Y is bounded and Weyl-almost periodic, then there exists a unique
bounded and (equi)-Weyl-almost periodic solution of (7.3); on the other hand, if
f : R → Y is equi-Weyl-almost periodic, then there exists a unique bounded and
equi-Weyl-almost periodic solution of (7.3).

7.2. Fractional relaxation inclusions with Caputo derivatives. Suppose
that γ ∈ (0, 1) and that A is a multivalued linear operator on a Banach space X.
Of concern is the fractional relaxation inclusion

(DFP)f,γ :

{
Dγ

t u(t) ∈ Au(t) + f(t), t > 0,

u(0) = x0,

where Dγ
t denotes the Caputo fractional derivative of order γ, x0 ∈ X, and

f : [0,∞) → X is asymptotically (equi)-Weyl almost periodic. By a mild solution
of (DFP)f,γ, we mean any function u ∈ C([0,∞) : X) satisfying that

u(t) = Sγ(t)x0 +

∫ t

0

Rγ(t− s)f(s) ds, t ≥ 0. (7.4)

Let x0 ∈ X be a point of continuity of (T (t))t>0 (see [17] for more details). Then x0

is also a point of continuity of subordinated fractional resolvent family (Sγ(t))t>0,
and since ‖Sγ(t)‖ ≤ M1t

γ(β−1), t > 0 for some finite constantM1 > 0, the mapping
t 7→ Sγ(t)x0, t ≥ 0 is continuous and tending to zero as t tends to +∞. Therefore,
Proposition 5.3 is receptive to applications, giving some sufficient conditions for
the existence of a unique asymptotically Weyl-almost periodic solution of abstract
Cauchy inclusion (DFP)f,γ.

Summa summarum, we can apply Propositions 5.1 and 5.3 in the study of
existence and uniqueness of Weyl-almost periodic solutions of the well-known
Poisson heat equation (see [17]){

∂
∂t
[m(x)v(t, x)] = (∆− b)v(t, x) + f(t, x), t ∈ R, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,

and asymptotically Weyl-almost periodic solutions of the Poisson heat equation
∂
∂t
[m(x)v(t, x)] = (∆− b)v(t, x) + f(t, x), t ≥ 0, x ∈ Ω;

v(t, x) = 0, (t, x) ∈ [0,∞)× ∂Ω,

m(x)v(0, x) = u0(x), x ∈ Ω,

in the space X := Lp(Ω), where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0
almost everywhere x ∈ Ω, m ∈ L∞(Ω) and 1 < p < ∞, as well as their fractional
analogues associated with the use of Weyl–Liouville or Caputo derivatives. Let us
recall that the multivalued linear operator A := AB−1, where A := ∆− b acts on
X with the Dirichlet boundary conditions, and B is the multiplication operator
by the function m(x), satisfies the condition (P) with β = 1/p and some finite
constants c,M > 0; recall also that the condition [17, (3.42)] on m(x) ensures
that one gets the better exponent β in (P), provided that p > 2.
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We close the article with the observation that our results seem to be new even
for strongly continuous semigroups of operators that are degenerate or nondegen-
erate in time, as well as for nondegenerate fractional resolvent families (then the
mild solution of the corresponding abstract Cauchy inclusion (7.4) is obtained
by replacing Sγ(·) and Rγ(·) in this equation with T (·); the use of C-regularized
semigroups is also possible). Our results also seem to be new for semigroups and
fractional resolvent families of linear operators generated by almost sectorial lin-
ear operators (see [26], [32], [37], [38]), so that Proposition 5.3 is applicable in the
analysis of existence and uniqueness of asymptotically Weyl-almost periodic solu-
tions of the following fractional equation with higher order differential operators
in the Hölder space X = Cα(Ω) (see [37] for more details):{

Dγ
t u(t, x) = −

∑
|β|≤2m aβ(t, x)D

βu(t, x)− σu(t, x) + f(t, x), t ≥ 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω.

Some other applications in the analysis of asymptotically Weyl-almost periodic
solutions of abstract Volterra integro-differential equations and inclusions can be
given, for example, to equations considered by Agarwal, de Andrade, and Cuevas
[3], de Andrade and Lizama [14], and Ponce and Warma [33] (see also [23], [26]).
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