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Abstract. Let ϕ : Rn × [0,∞) → [0,∞) satisfy that ϕ(x, ·), for any given
x ∈ Rn, is an Orlicz function and that ϕ(·, t) is a Muckenhoupt A∞ weight
uniformly in t ∈ (0,∞). The weak Musielak–Orlicz Hardy space WH ϕ(Rn) is
defined to be the set of all tempered distributions such that their grand maxi-
mal functions belong to the weak Musielak–Orlicz space WLϕ(Rn). For param-
eter ρ ∈ (0,∞) and measurable function f on Rn, the parametric Marcinkiewicz
integral µρ

Ω related to the Littlewood–Paley g-function is defined by setting,
for all x ∈ Rn,

µρ
Ω(f)(x) :=

(∫ ∞

0

∣∣∣ ∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
f(y)dy

∣∣∣2 dt

t2ρ+1

)1/2

,

where Ω is homogeneous of degree zero satisfying the cancellation condition.
In this article, we discuss the boundedness of the parametric Marcinkiewicz

integral µρ
Ω with rough kernel from weak Musielak–Orlicz Hardy space

WH ϕ(Rn) to weak Musielak–Orlicz space WLϕ(Rn). These results are new
even for the classical weighted weak Hardy space of Quek and Yang, and prob-
ably new for the classical weak Hardy space of Fefferman and Soria.

1. Introduction

Suppose that Sn−1 is the unit sphere in Rn (n ≥ 2) equipped with normalized
Lebesgue measure dσ. A function Ω(x) defined on Rn is said to be in Lq(Sn−1)
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with q ≥ 1 if Ω(x) satisfies the following conditions:

Ω(λx) = Ω(x) for any x ∈ Rn and λ ∈ (0,∞), (1.1)∫
Sn−1

Ω(x) dσ(x′) = 0, (1.2)∫
Sn−1

∣∣Ω(x)∣∣q dσ(x′) <∞, (1.3)

where x′ := x/|x| for any x 6= 0. For parameter ρ ∈ (0,∞) and measurable
function f on Rn, the parametric Marcinkiewicz integral µρΩ is defined by setting,
for all x ∈ Rn,

µρΩ(f)(x) :=
(∫ ∞

0

∣∣∣∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
f(y)dy

∣∣∣2 dt

t2ρ+1

)1/2

.

The Marcinkiewicz integral µ1
Ω was introduced by Stein [23] in 1958. He showed

that if Ω ∈ Lipα(S
n−1) with α ∈ (0, 1], then µ1

Ω is bounded on Lp(Rn) with
p ∈ (1, 2] and bounded from L1(Rn) to weak L1(Rn). In 1960, Hörmander [7]
proved that if Ω ∈ Lipα(S

n−1) with α ∈ (0, 1], then µρΩ is bounded on Lp(Rn)
provided that p ∈ (1,∞) and ρ ∈ (0,∞). Note that all the results mentioned
above hold true depending on some smoothness condition of Ω. However, in 2009,
Shi and Jiang [22] obtained the following celebrated result that µρΩ is bounded on
Lpω(Rn) without any smoothness condition of Ω, where ω ∈ Ap and Ap denotes
the Muckenhoupt weight class.

Theorem A ([22, Theorem 1.1]). Let ρ ∈ (0,∞), let p, q ∈ (1,∞), let q′ :=
q/(q − 1), and let Ω ∈ Lq(Sn−1). If ωq

′ ∈ Ap, then µ
ρ
Ω is bounded on Lpω(Rn).

On the other hand, in the past four decades, there has been tremendous interest
in developing the theory of Hardy spaces. Hardy space first appeared in complex
analysis in the study of analytic functions on the unit disk, and its theory was
one-dimensional. The higher dimensional Euclidean theory of Hardy spaces was
developed by Fefferman and Stein [4] who proved a variety of characterizations
for them. As everyone knows, many important operators are better behaved on
Hardy space Hp(Rn) than on Lebesgue space Lp(Rn) in the range p ∈ (0, 1].
For example, when p ∈ (0, 1], the Riesz transforms are bounded on Hardy space
Hp(Rn), but not on the corresponding Lebesgue space Lp(Rn). Therefore, one
can consider Hp(Rn) to be a very natural replacement for Lp(Rn) when p ∈ (0, 1].
Moreover, when studying the endpoint estimate for various important operators,
the weak Hardy space WH p(Rn) naturally appears and proves to be a good
substitute of Hardy space Hp(Rn) with p ∈ (0, 1]. For instance, if δ ∈ (0, 1], T
is a δ-Calderón–Zygmund operator and T ∗(1) = 0, where T ∗ denotes the adjoint
operator, of T , it is known that T is bounded on Hp(Rn) for any p ∈ (n/(n+ δ), 1]

(see [1]), but T may be not bounded on H
n

n+δ (Rn); however, Liu [18] proved that

T is bounded from H
n

n+δ (Rn) to WH
n

n+δ (Rn).
Recently, Ky [12] introduced a new Musielak–Orlicz Hardy space Hϕ(Rn),

which unifies the classical Hardy space (see [4]), the weighted Hardy space (see
[24]), the Orlicz Hardy space (see [8]–[11]), and the weighted Orlicz Hardy space.
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Its spatial and time variables may not be separable. Later, Liang, Yang, and
Jiang [16] further introduced a weak Musielak–Orlicz Hardy space WH ϕ(Rn),
which covers the weak Hardy space (see [5]), the weighted weak Hardy space (see
[21]), the weak Orlicz Hardy space, and the weighted weak Orlicz Hardy space
as special cases. Various equivalent characterizations of WH ϕ(Rn) by means of
maximal functions, atoms, molecules, and Littlewood–Paley functions, and the
boundedness of Calderón–Zygmund operators in the critical case were obtained
in [16]. Apart from interesting theoretical considerations, the motivation behind
the study of Musielak–Orlicz-type space comes from applications to elasticity,
fluid dynamics, image processing, nonlinear PDEs, and the calculus of variation
(see, e.g., [2]; more Musielak–Orlicz-type spaces are referred to in [3], [6], [15],
[19], [20]).

Motivated by the above facts, a natural and interesting question arises, namely,
whether the parametric Marcinkiewicz integral µρΩ is bounded from weak Mu-
sielak–Orlicz Hardy space WH ϕ(Rn) to weak Musielak–Orlicz space WLϕ(Rn)
under a weaker smoothness condition assumed on Ω. In this article, we give an
affirmative answer to this problem. What is worth mentioning here is that our
results are new even for classical weighted weak Hardy space and probably new
for classical weak Hardy space.

This article is organized as follows. In Section 2, we recall some notions con-
cerning Muckenhoupt weight, growth function, and weak Musielak–Orlicz Hardy
space. Then we present the boundedness of µρΩ from WH ϕ(Rn) to WLϕ(Rn) (see
Theorems 2.7, 2.8, and 2.10 and Corollary 2.9 below). In Section 3, with the help
of some auxiliary lemmas and the atomic decomposition theory of WH ϕ(Rn), we
present the proofs of our main results.

Finally, we adopt the following notational conventions. Let Z+ := {1, 2, . . .}
and N := {0} ∪ Z+. For any β := (β1, . . . , βn) ∈ Nn, let |β| := β1 + · · · + βn
and ∂β := ( ∂

∂x1
)β1 · · · ( ∂

∂xn
)βn . Throughout this article, the letter C will denote a

positive constant that may vary from line to line but will remain independent of
the main variables. The symbol P . Q stands for the inequality P ≤ CQ. If P .
Q . P , then we will write P ∼ Q. For any sets E,F ⊂ Rn, we use E{ to denote
the set Rn \ E, |E| its n-dimensional Lebesgue measure, χE its characteristic
function, and E + F the algebraic sum {x + y : x ∈ E, y ∈ F}. For any s ∈ R,
bsc denotes the unique integer such that s− 1 < bsc ≤ s. If there are no special
instructions, any space X (Rn) is denoted simply by X . For instance, L2(Rn) is
simply denoted by L2. For any set E ⊂ Rn, t ∈ [0,∞), and measurable function
ϕ(·, t), let ϕ(E, t) :=

∫
E
ϕ(x, t) dx and let {|f | > t} := {x ∈ Rn : |f(x)| > t}.

For any x ∈ Rn, r ∈ (0,∞), and α ∈ (0,∞), we use B(x, r) to denote the ball
{y ∈ Rn : |y − x| < r} and αB(x, r) to denote B(x, αr), as usual.

2. Notions and main results

In this section, we first recall the definition of the weak Musielak–Orlicz Hardy
space WH ϕ, and then we present the boundedness of the parametric Marcinkie-
wicz integral µρΩ from weak Musielak–Orlicz Hardy spaceWH ϕ to weak Musielak–
Orlicz space WLϕ.
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Recall that a nonnegative function ϕ on Rn× [0,∞) is called a Musielak–Orlicz
function if, for any x ∈ Rn, ϕ(x, ·) is an Orlicz function on [0,∞) and, for any
t ∈ [0,∞), ϕ(·, t) is measurable on Rn. Here a function φ : [0,∞) → [0,∞)
is called an Orlicz function if it is nondecreasing, φ(0) = 0, φ(t) > 0 for any
t ∈ (0,∞), and limt→∞ φ(t) = ∞.

Given a Musielak–Orlicz function ϕ on Rn× [0,∞), ϕ is said to be of uniformly
lower- (resp., upper -) type p with p ∈ R if there exists a positive constant C := Cϕ
such that, for any x ∈ Rn, t ∈ [0,∞), and s ∈ (0, 1] (resp., s ∈ [1,∞)),

ϕ(x, st) ≤ Cspϕ(x, t).

The critical uniformly lower-type index of ϕ is defined by

i(ϕ) := sup{p ∈ R : ϕ is of uniformly lower-type p}. (2.1)

Observe that i(ϕ) may not be attainable, namely, ϕ may not be of uniformly
lower-type i(ϕ) (see [14, p. 415] for more details).

Definition 2.1.

(i) Let q ∈ [1,∞). A locally integrable function ϕ(·, t) : Rn → [0,∞) is said
to satisfy the uniformly Muckenhoupt condition Aq, denoted by ϕ ∈ Aq,
if there exists a positive constant C such that, for any ball B ⊂ Rn and
t ∈ (0,∞), when q = 1,

1

|B|

∫
B

ϕ(x, t) dx
{
ess sup
x∈B

[
ϕ(x, t)

]−1} ≤ C

and, when q ∈ (1,∞),

1

|B|

∫
B

ϕ(x, t) dx
{ 1

|B|

∫
B

[
ϕ(x, t)

]− 1
q−1 dx

}q−1

≤ C.

(ii) Let q ∈ (1,∞]. A locally integrable function ϕ(·, t) : Rn → [0,∞) is said to
satisfy the uniformly reverse Hölder condition RHq, denoted by ϕ ∈ RHq,
if there exists a positive constant C such that, for any ball B ⊂ Rn and
t ∈ (0,∞), when q ∈ (1,∞),{ 1

|B|

∫
B

ϕ(x, t) dx
}−1{ 1

|B|

∫
B

[
ϕ(x, t)

]q
dx

}1/q

≤ C

and, when q = ∞,{ 1

|B|

∫
B

ϕ(x, t) dx
}−1

ess sup
x∈B

ϕ(x, t) ≤ C.

Define A∞ :=
⋃
q∈[1,∞) Aq. It is well known that if ϕ ∈ Aq with q ∈ (1,∞], then

ϕε ∈ Aεq+1−ε ⊂ Aq for any ε ∈ (0, 1] and ϕη ∈ Aq for some η ∈ (1,∞). Also, if
ϕ ∈ Aq with q ∈ (1,∞), then ϕ ∈ Ar for any r ∈ (q,∞) and ϕ ∈ Ad for some
d ∈ (1, q). Thus, the critical weight index of ϕ ∈ A∞ is defined as follows:

q(ϕ) := inf
{
q ∈ [1,∞) : ϕ ∈ Aq

}
. (2.2)

For the uniformly Muckenhoupt (resp., reverse Hölder) condition, we have the
following property as the classical case.
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Lemma 2.2 ([12, Lemma 4.5]). Let ϕ ∈ Aq with q ∈ [1,∞). Then there exists a
positive constant C such that, for any ball B ⊂ Rn, λ ∈ (1,∞), and t ∈ (0,∞),

ϕ(λB, t) ≤ Cλnqϕ(B, t).

Lemma 2.3 ([13, Lemma 3.5]). Let r ∈ (1,∞). Then ϕr ∈ A∞ if and only if
ϕ ∈ RHr.

Definition 2.4 ([12, Definition 2.1]). A function ϕ : Rn× [0,∞) → [0,∞) is called
a growth function if the following conditions are satisfied:

(i) ϕ is a Musielak–Orlicz function;
(ii) ϕ ∈ A∞;
(iii) ϕ is of uniformly lower-type p for some p ∈ (0, 1] and of uniformly upper-

type 1.

Throughout this paper, we always assume that ϕ is a growth function.
Recall that the weak Musielak–Orlicz space WLϕ is defined to be the space of

all measurable functions f such that, for some λ ∈ (0,∞),

sup
t∈(0,∞)

ϕ
({

|f | > t
}
,
t

λ

)
<∞

equipped with the quasinorm

‖f‖WLϕ := inf
{
λ ∈ (0,∞) : sup

t∈(0,∞)

ϕ
({

|f | > t
}
,
t

λ

)
≤ 1

}
.

In what follows, we denote by S the space of all Schwartz functions and by S ′

its dual space (namely, the space of all tempered distributions). For any m ∈ N,
let Sm be the space of all ψ ∈ S satisfying ‖ψ‖Sm ≤ 1, where

‖ψ‖Sm := sup
α∈Nn

|α|≤m+1

sup
x∈Rn

(
1 + |x|

)(m+2)(n+1)∣∣∂αψ(x)∣∣.
Then, for any m ∈ N and f ∈ S ′, the nontangential grand maximal function f ∗

m

of f is defined by setting, for all x ∈ Rn,

f ∗
m(x) := sup

ψ∈Sm

sup
|y−x|<t
t∈(0,∞)

∣∣f ∗ ψt(y)
∣∣, (2.3)

where, for any t ∈ (0,∞), ψt(·) := t−nψ( ·
t
). When

m = m(ϕ) :=
⌊
n
(q(ϕ)
i(ϕ)

− 1
)⌋
, (2.4)

we denote f ∗
m simply by f ∗, where q(ϕ) and i(ϕ) are as in (2.2) and (2.1), respec-

tively.

Definition 2.5 ([16, Definition 2.3]). Let ϕ be a growth function as in Defini-
tion 2.4. The weak Musielak–Orlicz Hardy space WH ϕ is defined as the space of
all f ∈ S ′ such that f ∗ ∈ WLϕ endowed with the quasinorm

‖f‖WHϕ := ‖f ∗‖WLϕ .
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Remark 2.6. Let ω be a classic Muckenhoupt weight, and let φ be an Orlicz
function.

(i) If ϕ(x, t) := ω(x)φ(t) for all (x, t) ∈ Rn × [0,∞), then WH ϕ goes back to
weighted weak Orlicz Hardy space WH φ

ω, and particularly, when ω ≡ 1,
the corresponding unweighted space is also obtained.

(ii) If ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0,∞) with p ∈ (0, 1], then WH ϕ

goes back to weighted weak Hardy space WH p
ω, and particularly, when

ω ≡ 1, the corresponding unweighted space is also obtained.

Before stating our main results, we recall some notions about Ω. For any q ∈
[1,∞) and α ∈ (0, 1], a function Ω ∈ Lq(Sn−1) is said to satisfy the Lq,α-Dini
condition if ∫ 1

0

ωq(δ)

δ1+α
dδ <∞,

where

ωq(δ) := sup
‖γ‖<δ

(∫
Sn−1

∣∣Ω(γx′)− Ω(x′)
∣∣q dσ(x′))1/q

and γ denotes a rotation on Sn−1 with ‖γ‖ := supy′∈Sn−1 |γy′−y′|. For any α, β ∈
(0, 1] with β < α, it is trivial to see that if Ω satisfies the Lq,α-Dini condition,
then it also satisfies the Lq,β-Dini condition. We thus denote by Dinqα(S

n−1) the
class of all functions which satisfy the Lq,β-Dini conditions for all β < α. For any
α ∈ (0, 1], we define

Din∞
α (Sn−1) :=

⋂
q≥1

Dinqα(S
n−1).

A routine computation gives rise to

Dinrα(S
n−1) ⊂ Dinqα(S

n−1) if 1 ≤ q < r ≤ ∞,

and

Dinqα(S
n−1) ⊂ Dinqβ(S

n−1) if 0 < β < α ≤ 1.

The main results of this article are as follows, the proofs of which are given in
Section 3.

Theorem 2.7. Let ρ ∈ (0,∞), let α ∈ (0, 1], let β := min{1/2, α}, and let ϕ
be a growth function as in Definition 2.4 with p ∈ (n/(n+ β), 1). Suppose that
Ω ∈ Lr(Sn−1)∩Din1

α(S
n−1) with r ∈ (1,∞]. If q and ϕ satisfy one of the following

conditions:

(i) r ∈ (1, 1/p] and ϕr
′ ∈ Apβ/[n(1−p)],

(ii) r ∈ (1/p,∞] and ϕ1/(1−p) ∈ Apβ/[n(1−p)],

then µρΩ is bounded from WH ϕ to WLϕ.

Theorem 2.8. Let ρ ∈ (0,∞), let α ∈ (0, 1], let β := min{1/2, α}, and let ϕ
be a growth function as in Definition 2.4 with p ∈ (n/(n+ β), 1]. Suppose that
Ω ∈ Dinqα(S

n−1) with q ∈ (1,∞). If ϕq
′ ∈ A(p+pβ/n−1/q)q′, then µ

ρ
Ω is bounded from

WH ϕ to WLϕ.
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Corollary 2.9. Let ρ ∈ (0,∞), let α ∈ (0, 1], let β := min{1/2, α}, and let ϕ
be a growth function as in Definition 2.4 with p ∈ (n/(n+ β), 1]. Suppose that
Ω ∈ Din∞

α (Sn−1). If ϕ ∈ Ap(1+β/n), then µ
ρ
Ω is bounded from WH ϕ to WLϕ.

Theorem 2.10. Let ρ ∈ (0,∞), let Ω ∈ Lq(Sn−1) with q ∈ (1,∞], and let ϕ be
a growth function as in Definition 2.4 with p := 1 and ϕq

′ ∈ A1. If there exists a
positive constant C such that, for any y, h ∈ Rn and M , t ∈ (0,∞),∫

|x|≥M |y|

∣∣∣Ω(x− y)

|x− y|n
− Ω(x)

|x|n
∣∣∣ϕ(x+ h, t) dx ≤ C

M
ϕ(y + h, t), (2.5)

then µρΩ is bounded from WH ϕ to WLϕ.

Remark 2.11.

(i) It is worth noting that Corollary 2.9 can be regarded as the limit case of
Theorem 2.8 by letting q → ∞.

(ii) Theorems 2.7 and 2.8 and Corollary 2.9 jointly answer the question: When
Ω ∈ Dinqα(S

n−1) with q = 1, q ∈ (1,∞) or q = ∞, respectively, what kind
of additional conditions on ϕ and Ω can we use to deduce the boundedness
of µρΩ from WH ϕ to WLϕ?

(iii) Let ω be a classic Muckenhoupt weight, and let φ be an Orlicz function.
(a) When ϕ(x, t) := ω(x)φ(t) for all (x, t) ∈ Rn×[0,∞), we have WH ϕ =

WH φ
ω. In this case, Theorems 2.7, 2.8, and 2.10 and Corollary 2.9 hold

true for weighted weak Orlicz Hardy space. Even when ω ≡ 1, the
corresponding unweighted results are also new.

(b) When ϕ(x, t) := ω(x)tp for all (x, t) ∈ Rn × [0,∞), we have WH ϕ =
WH p

ω. In this case, Theorems 2.7, 2.8, and 2.10 and Corollary 2.9 are
new for weighted weak Hardy space. Even when ω ≡ 1, the corre-
sponding unweighted results are probably new.

3. Proofs of main results

To show our main results, we need some auxiliary notions and lemmas.

Definition 3.1 ([12, Definition 2.4]). Let ϕ be a growth function as in Defini-
tion 2.4.

(i) A triplet (ϕ, q, s) is said to be admissible if q ∈ (q(ϕ),∞] and s ∈
[m(ϕ),∞) ∩ N, where q(ϕ) and m(ϕ) are as in (2.2) and (2.4), respec-
tively.

(ii) For an admissible triplet (ϕ, q, s), a measurable function a is called a
(ϕ, q, s)-atom if there exists some ball B ⊂ Rn such that the following
conditions are satisfied:
(a) a is supported in B;
(b) ‖a‖Lq

ϕ(B) ≤ ‖χB‖−1
Lϕ , where

‖a‖Lq
ϕ(B) :=

{
supt∈(0,∞)[

1
ϕ(B,t)

∫
B
|a(x)|qϕ(x, t) dx]1/q, q ∈ [1,∞),

‖a‖L∞ , q = ∞,
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and

‖χB‖Lϕ := inf
{
λ ∈ (0,∞) : ϕ(B, λ−1) ≤ 1

}
;

(c)
∫
Rn a(x)x

γ dx = 0 for any γ ∈ Nn with |γ| ≤ s.

Definition 3.2 ([16, Definition 3.2]). For an admissible triplet (ϕ, q, s) as in Def-
inition 3.1, the weak atomic Musielak–Orlicz Hardy space WH ϕ,q,s

at is defined as
the space of all f ∈ S ′ satisfying that there exist a sequence of (ϕ, q, s)-atoms,
{ai,j}i∈Z,j∈Z+ , associated with balls {Bi,j}i∈Z,j∈Z+ , and a positive constant C such
that

∑
j∈Z+

χBi,j
(x) ≤ C for any x ∈ Rn and i ∈ Z, and f =

∑
i∈Z

∑
j∈Z+

λi,jai,j

in S ′, where λi,j := C̃2i‖χBi,j
‖Lϕ for any i ∈ Z and j ∈ Z+, and C̃ is a positive

constant independent of f .
Moreover, define

‖f‖WHϕ,q,s
at

:= inf
{
inf

{
λ ∈ (0,∞) : sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
≤ 1

}}
,

where the first infimum is taken over all decompositions of f , as above.

Lemma 3.3 ([16, Theorem 3.5]). Let (ϕ, q, s) be an admissible triplet as in Def-
inition 3.1. Then

WH ϕ = WH ϕ,q,s
at

with equivalent quasinorms.

Lemma 3.4. For any α ∈ (0, 1] and q ∈ [1,∞), suppose that Ω satisfies the
Lq,α-Dini condition. Let ρ ∈ (0,∞), let β := min{1/2, α}, and let b be a multiple
of a (ϕ,∞, s)-atom associated with some ball B(x0, r) ⊂ Rn.

(i) If q = 1, then there exists a positive constant C independent of b such
that, for any R ∈ [2r,∞),∫

R≤|x−x0|<2R

∣∣µρΩ(b)(x)∣∣ dx ≤ C‖b‖L∞Rn
( r
R

)n+β
.

(ii) If q ∈ (1,∞), then there exists a positive constant C independent of b such
that, for any R ∈ [2r,∞) and t ∈ (0,∞),∫

R≤|x−x0|<2R

∣∣µρΩ(b)(x)∣∣ϕ(x, t) dx
≤ C‖b‖L∞

[
ϕq

′(
B(x0, 2R), t

)]1/q′
Rn/q

( r
R

)n+β
.

Proof. The proof of this lemma, the details of which we omit, can be completed
by the method analogous to that used in the proof of [17, Lemma 4.4]. �

Proof of Theorem 2.7. We need only consider the case r ∈ (1,∞), since the case
r = ∞ can be derived from the case r = 2. Indeed, when r = ∞, a routine
computation gives rise to 2 > 1/p. If Theorem 2.7 holds true for r = 2, then by
Ω ∈ L∞(Sn−1) ⊂ L2(Sn−1), 2 > 1/p, and ϕ1/(1−p) ∈ Apβ/[n(1−p)], we know that
Theorem 2.7 holds true for q = ∞. We now turn to the proof of Theorem 2.7
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under case r ∈ (1,∞). We claim that, in either Theorem 2.7(i) or Theorem 2.7(ii),
there exists some d ∈ (1, pβ/[n(1− p)]) such that

ϕr
′ ∈ Ad and ϕ1/(1−p) ∈ Ad. (3.1)

We only prove (3.1) under case (ii) since the proof under case (i) is similar. By
ϕ1/(1−p) ∈ Apβ/n(1−p), we see that there exists some d ∈ (1, pβ/[n(1− p)]) such

that ϕ1/(1−p) ∈ Ad. On the other hand, note that r′ < 1/(1− p). Then ϕr
′ ∈ Ad,

as claimed.
Let (ϕ,∞, s) be an admissible triplet as in Definition 3.1. By Lemma 3.3, we

know that, for any f ∈ WH ϕ = WH ϕ,∞,s
at , there exists a sequence of multiples of

(ϕ,∞, s)-atoms, {bi,j}i∈Z,j∈Z+ , associated with balls {Bi,j}i∈Z,j∈Z+ , such that

f =
∑
i∈Z

∑
j∈Z+

bi,j in S ′,

∑
j∈Z+

χBi,j
(x) . 1 for any x ∈ Rn and i ∈ Z, ‖bi,j‖L∞ . 2i for any i ∈ Z and

j ∈ Z+, and

‖f‖WHϕ ∼ inf
{
λ ∈ (0,∞) : sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
≤ 1

}
.

Thus, our problem reduces to proving that, for any γ, λ ∈ (0,∞) and f ∈ WH ϕ,

ϕ
({∣∣µρΩ(f)∣∣ > γ

}
,
γ

λ

)
. sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
.

To show this inequality, we may assume without loss of generality that there
exists i0 ∈ Z such that γ = 2i0 . Let us write

f =

i0−1∑
i=−∞

∑
j∈Z+

bi,j +
∞∑
i=i0

∑
j∈Z+

bi,j =: F1 + F2.

We estimate F1 first. From Theorem A with Ω ∈ Lr(Sn−1) and ϕr
′ ∈ Ad (see

(3.1)), Minkowski’s inequality,
∑

j∈Z+
χBi,j

(x) . 1 for any x ∈ Rn and i ∈ Z, and
the uniformly upper-type 1 property of ϕ, we deduce that, for any λ ∈ (0,∞),

ϕ
({∣∣µρΩ(F1)

∣∣ > 2i0
}
,
2i0

λ

)
=

∫
{|µρΩ(F1)|>2i0}

ϕ
(
x,

2i0

λ

)
dx

≤ 2−di0
∫
Rn

∣∣µρΩ(F1)(x)
∣∣dϕ(x, 2i0

λ

)
dx

. 2−di0
∫
Rn

∣∣F1(x)
∣∣dϕ(x, 2i0

λ

)
dx

. 2−di0
{ i0−1∑
i=−∞

[∫
Rn

∣∣∣∑
j∈Z+

bi,j(x)
∣∣∣dϕ(x, 2i0

λ

)
dx

]1/d}d
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. 2−di0
{ i0−1∑
i=−∞

2i
[∑
j∈Z+

ϕ
(
Bi,j,

2i0

λ

)]1/d}d
. 2−di0

{ i0−1∑
i=−∞

2i
[
2i0−i

∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)]1/d}d
. 2(1−d)i0

( i0−1∑
i=−∞

2(1−1/d)i
)d

sup
i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
∼ sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
, (3.2)

which is desired.
Next let us deal with F2. Denote the center of Bi,j by xi,j and the radius by

ri,j. Set

Ai0 :=
∞⋃
i=i0

⋃
j∈Z+

B̃i,j,

where B̃i,j := B(xi,j, 2(3/2)
(i−i0)/(n+β)ri,j). To show that

ϕ
({∣∣µρΩ(F2)

∣∣ > 2i0
}
,
2i0

λ

)
. sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
,

we cut {|µρΩ(F2)| > 2i0} into Ai0 and {x ∈ (Ai0)
{ : |µρΩ(F2)(x)| > 2i0}.

For Ai0 , from Lemma 2.2 with ϕ ∈ Ap(1+β/n) (since ϕ
1/(1−p) ∈ Apβ/[n(1−p)]), and

the uniformly lower-type p property of ϕ, it follows that, for any λ ∈ (0,∞),

ϕ
(
Ai0 ,

2i0

λ

)
≤

∞∑
i=i0

∑
j∈Z+

ϕ
(
B̃i,j,

2i0

λ

)
.

∞∑
i=i0

∑
j∈Z+

(3
2

)(i−i0)p
ϕ
(
Bi,j,

2i0

λ

)
.

∞∑
i=i0

∑
j∈Z+

(3
4

)(i−i0)p
ϕ
(
Bi,j,

2i

λ

)
. sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
, (3.3)

which is also desired.
It remains to estimate (Ai0)

{. Applying the inequality ‖ · ‖`1 ≤ ‖ · ‖`p with
p ∈ (0, 1), we conclude that, for any λ ∈ (0,∞),

ϕ
({
x ∈ (Ai0)

{ :
∣∣µρΩ(F2)(x)

∣∣ > 2i0
}
,
2i0

λ

)
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≤ 2−i0p
∫
(Ai0

){

∣∣µρΩ(F2)(x)
∣∣pϕ(x, 2i0

λ

)
dx

≤ 2−i0p
∞∑
i=i0

∑
j∈Z+

∫
(B̃i,j){

∣∣µρΩ(bi,j)(x)∣∣pϕ(x, 2i0λ )
dx. (3.4)

Below, we will give the estimate of integral

I :=

∫
(B̃i,j){

∣∣µρΩ(bi,j)(x)∣∣pϕ(x, 2i0λ )
dx.

For any k ∈ N, let

Ek := (2k+1B̃i,j) \ (2kB̃i,j).

It follows from Hölder’s inequality that, for any λ ∈ (0,∞),

I ≤
∞∑
k=0

[∫
Ek

∣∣µρΩ(bi,j)(x)∣∣ dx]p{∫
Ek

[
ϕ
(
x,

2i0

λ

)] 1
1−p

dx
}1−p

.

On the one hand, by Lemma 2.3 with ϕ1/(1−p) ∈ Ad ⊂ A∞ (see (3.1)), we have
ϕ ∈ RH1/(1−p). Thus, thanks to Lemma 2.2 with ϕ1/(1−p) ∈ Ad, and ϕ ∈ RH1/(1−p),
it follows that, for any λ ∈ (0,∞),{∫

Ek

[
ϕ
(
x,

2i0

λ

)] 1
1−p

dx
}1−p

≤
[
ϕ

1
1−p

(
2k+1B̃i,j,

2i0

λ

)]1−p
.

[
ϕ

1
1−p

(
Bi,j,

2i0

λ

)]1−p[
2k
(3
2

) i−i0
n+β

]nd(1−p)
. (ri,j)

−npϕ
(
Bi,j,

2i0

λ

)[
2k
(3
2

) i−i0
n+β

]nd(1−p)
.

On the other hand, since d < pβ/[n(1− p)], we may choose an α̃ ∈ (0, α) such that

d < pβ̃/[n(1− p)], where β̃ := min{1/2, α̃}. By the assumption Ω ∈ Din1
α(S

n−1),
we know that Ω satisfies the L1,α̃-Dini condition. Then Lemma 3.4(i) yields that∫

Ek

∣∣µρΩ(bi,j)(x)∣∣ dx . 2i(ri,j)
n
[
2k
(3
2

) i−i0
n+β

]−β̃
.

The above three inequalities give us that, for any λ ∈ (0,∞),

I . 2ipϕ
(
Bi,j,

2i0

λ

) ∞∑
k=0

[
2k
(3
2

) i−i0
n+β

]nd−ndp−pβ̃
.

Substituting this inequality into (3.4) and using the uniformly lower-type p prop-
erty of ϕ, we obtain that, for any λ ∈ (0,∞),

ϕ
({
x ∈ (Ai0)

{ :
∣∣µρΩ(F2)(x)

∣∣ > 2i0
}
,
2i0

λ

)
. 2−i0p

∞∑
i=i0

∑
j∈Z+

2ipϕ
(
Bi,j,

2i0

λ

) ∞∑
k=0

[
2k
(3
2

) i−i0
n+β

]nd−ndp−pβ̃
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. sup
i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)} ∞∑
i=i0

∞∑
k=0

[
2k
(3
2

) i−i0
n+β

]nd−ndp−pβ̃
∼ sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
, (3.5)

where the last ∼ is due to d < pβ̃/[n(1− p)].
Finally, combining (3.2), (3.3), and (3.5), we obtain the desired inequality. This

finishes the proof of Theorem 2.7. �

Proof of Theorem 2.8. We need only consider the case p < 1. The proof of the
case p = 1 is similar and easier. Once we prove Lemma 3.4(ii), the proof of this
theorem is quite similar to that of Theorem 2.7, the major change being the
substitution of

I ≤
∞∑
k=0

[∫
Ek

∣∣µρΩ(bi,j)(x)∣∣ϕ(x, 2i0λ )
dx

]p[∫
Ek

ϕ
(
x,

2i0

λ

)
dx

]1−p
for

I ≤
∞∑
k=0

[∫
Ek

∣∣µρΩ(bi,j)(x)∣∣ dx]p{∫
Ek

[
ϕ
(
x,

2i0

λ

)] 1
1−p

dx
}1−p

.

But to limit the length of this article, we leave the details to the interested
reader. �

Proof of Corollary 2.9. By ϕ ∈ Ap(1+β/n), we see that there exists some d ∈
(1,∞) such that ϕd ∈ Ap(1+β/n). For any q ∈ (1,∞), by p > n/(n+ β), some
tedious manipulation yields that (p + pβ/n − 1/q)q′ > p(1 + β/n) and hence
ϕd ∈ A(p+pβ/n−1/q)q′ . Thus, we may choose q := d/(d− 1) such that

ϕq
′
= ϕd ∈ A(p+β/n−1/q)q′

and hence Corollary 2.9 follows from Theorem 2.8. �

Proof of Theorem 2.10. Since the proof of Theorem 2.10 is similar to that of
Theorem 2.7, we use the same notation as in the proof of Theorem 2.7. Rather
than give a completed proof, we just point out the necessary modifications with
respect to the estimate of (Ai0)

{. Reset

Ai0 :=
∞⋃
i=i0

⋃
j∈Z+

B̃i,j,

where B̃i,j := B(xi,j, 2(3/2)
(i−i0)/nri,j). For any λ ∈ (0,∞), we have

ϕ
({
x ∈ (Ai0)

{ :
∣∣µρΩ(F2)(x)

∣∣ > 2i0
}
,
2i0

λ

)
≤ 2−i0

∫
(Ai0

){

∣∣µρΩ(F2)(x)
∣∣ϕ(x, 2i0

λ

)
dx
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≤ 2−i0
∞∑
i=i0

∑
j∈Z+

∫
(B̃i,j){

∣∣µρΩ(bi,j)(x)∣∣ϕ(x, 2i0λ )
dx

=: 2−i0
∞∑
i=i0

∑
j∈Z+

I.

For any λ ∈ (0,∞), let us write

I ≤
∫
(B̃i,j){

(∫ |x−xi,j |+ri,j

0

∣∣∣∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
bi,j(y)dy

∣∣∣2 dt

t2ρ+1

)1/2

ϕ
(
x,

2i0

λ

)
dx

+

∫
(B̃i,j){

(∫ ∞

|x−xi,j |+ri,j
· · ·

)1/2

ϕ
(
x,

2i0

λ

)
dx =: I1 + I2.

Below, we will first estimate I1 and then estimate I2.

For I1, noting that x ∈ (B̃i,j)
{ and y ∈ Bi,j, we know that

|x− y| ∼ |x− xi,j| ∼ |x− xi,j|+ ri,j,

which, together with the mean value theorem, implies that∣∣∣ 1

|x− y|2ρ
− 1

(|x− xi,j|+ ri,j)2ρ

∣∣∣ . ri,j
|x− y|2ρ+1

.

From Minkowski’s inequality for integrals, the above inequality, and Hölder’s
inequality, it follows that, for any λ ∈ (0,∞),

I1 ≤
∫
(B̃i,j){

[∫
Bi,j

∣∣∣ Ω(x− y)

|x− y|n−ρ
bi,j(y)

∣∣∣(∫ |x−xi,j |+ri,j

|x−y|

dt

t2ρ+1

)1/2

dy
]
ϕ
(
x,

2i0

λ

)
dx

. 2i(ri,j)
1/2

∫
(B̃i,j){

(∫
Bi,j

|Ω(x− y)|
|x− y|n+1/2

dy
)
ϕ
(
x,

2i0

λ

)
dx

∼ 2i(ri,j)
1/2

∞∑
k=0

∫
Bi,j

[∫
Ek

|Ω(x− y)|
|x− y|n+1/2

ϕ
(
x,

2i0

λ

)
dx

]
dy

. 2i(ri,j)
1/2

∞∑
k=0

∫
Bi,j

(∫
Ek

|Ω(x− y)|q

|x− y|n+1/2
dx

)1/q

×
(∫

Ek

1

|x− y|n+1/2

[
ϕ
(
x,

2i0

λ

)]q′
dx

)1/q′

dy.

On the one hand, x ∈ Ek and y ∈ Bi,j imply that θri,j < |x− y| < 5θri,j, where
θ := 2k(3/2)(i−i0)/n. Therefore, we have(∫

Ek

|Ω(x− y)|q

|x− y|n+1/2
dx

)1/q

≤
(∫

θri,j<|z|<5θri,j

|Ω(z)|q

|z|n+1/2
dz

)1/q

=
(∫

Sn−1

∫ 5θri,j

θri,j

|Ω(z′)|q

un+1/2
un−1 du dσ(z′)

)1/q

∼ (θri,j)
−1/2q.
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On the other hand, according to Lemmas 2.2 and 2.3 with ϕq
′ ∈ A1, it follows

that, for any λ ∈ (0,∞),(∫
Ek

1

|x− y|n+1/2

[
ϕ
(
x,

2i0

λ

)]q′
dx

)1/q′

∼ (θri,j)
−n/q′−1/2q′

{∫
Ek

[
ϕ
(
x,

2i0

λ

)]q′
dx

}1/q′

. (θri,j)
−n/q′−1/2q′

[
ϕq

′
(
4θBi,j,

2i0

λ

)]1/q′
. (θri,j)

−n/q′−1/2q′θn/q
′
[
ϕq

′
(
Bi,j,

2i0

λ

)]1/q′
. (θri,j)

−n/q′−1/2q′θn/q
′
(ri,j)

−n/qϕ
(
Bi,j,

2i0

λ

)
.

If we plug the above two inequalities back into I1, we obtain that, for any λ ∈
(0,∞),

I1 . 2i(ri,j)
1/2

∞∑
k=0

∫
Bi,j

(θri,j)
−1/2q(θri,j)

−n/q′−1/2q′θn/q
′
(ri,j)

−n/qϕ
(
Bi,j,

2i0

λ

)
dy

∼ 2i
∞∑
k=0

θ−1/2ϕ
(
Bi,j,

2i0

λ

)
∼ 2i

(2
3

) i−i0
2n
ϕ
(
Bi,j,

2i0

λ

)
.

For I2, it is apparent from t > |x−xi,j|+ ri,j that Bi,j ⊂ {y ∈ Rn : |x−y| ≤ t}.
From this, the vanishing moments of bi,j, and Minkowski’s inequality for integrals,
it follows that, for any λ ∈ (0,∞),

I2 =

∫
(B̃i,j){

(∫ ∞

|x−xi,j |+ri,j

∣∣∣∫
|x−y|≤t

Ω(x− y)

|x− y|n−ρ
bi,j(y)dy

∣∣∣2 dt

t2ρ+1

)1/2

ϕ
(
x,

2i0

λ

)
dx

≤
∫
(B̃i,j){

[∫
Bi,j

∣∣∣ Ω(x− y)

|x− y|n−ρ
− Ω(x− xi,j)

|x− xi,j|n−ρ
∣∣∣∣∣bi,j(y)∣∣(∫ ∞

|x−xi,j |

dt

t2ρ+1

)1/2

dy
]

× ϕ
(
x,

2i0

λ

)
dx

= C

∫
(B̃i,j){

(∫
Bi,j

∣∣∣ Ω(x− y)

|x− y|n−ρ|x− xi,j|ρ
− Ω(x− xi,j)

|x− xi,j|n
∣∣∣∣∣bi,j(y)∣∣ dy)

× ϕ
(
x,

2i0

λ

)
dx

≤ C

∫
(B̃i,j){

(∫
Bi,j

∣∣∣ Ω(x− y)

|x− y|n−ρ|x− xi,j|ρ
− Ω(x− y)

|x− y|n
∣∣∣∣∣bi,j(y)∣∣ dy)

× ϕ
(
x,

2i0

λ

)
dx

+ C

∫
(B̃i,j){

(∫
Bi,j

∣∣∣Ω(x− y)

|x− y|n
− Ω(x− xi,j)

|x− xi,j|n
∣∣∣∣∣bi,j(y)∣∣ dy)ϕ(x, 2i0

λ

)
dx

=: C(I21 + I22).
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On the one hand, the mean value theorem yields that, for any x ∈ (B̃i,j)
{ and

y ∈ Bi,j,∣∣∣ 1

|x− xi,j|ρ
− 1

|x− y|ρ
∣∣∣ ∼ |y − xi,j|

|x− y|ρ+1
.

|y − xi,j|1/2

|x− y|ρ+1/2
.

(ri,j)
1/2

|x− y|ρ+1/2
,

which, together with the same argument as that used in I1, implies that, for any
λ ∈ (0,∞),

I21 . 2i
∫
(B̃i,j){

(∫
Bi,j

|Ω(x− y)|
|x− y|n−ρ

∣∣∣ 1

|x− xi,j|ρ
− 1

|x− y|ρ
∣∣∣ dy)ϕ(x, 2i0

λ

)
dx

. 2i(ri,j)
1/2

∫
(B̃i,j){

(∫
Bi,j

|Ω(x− y)|
|x− y|n+1/2

dy
)
ϕ
(
x,

2i0

λ

)
dx

. 2i
(2
3

) i−i0
2n
ϕ
(
Bi,j,

2i0

λ

)
.

On the other hand, the condition (2.5) gives that, for any λ ∈ (0,∞),

I22 . 2i
∫
|y−xi,j |<ri,j

∫
|x−xi,j |>(3/2)(i−i0)/nri,j

∣∣∣Ω(x− y)

|x− y|n
− Ω(x− xi,j)

|x− xi,j|n
∣∣∣

× ϕ
(
x,

2i0

λ

)
dx dy

∼ 2i
∫
|y|<ri,j

∫
|x|>(3/2)(i−i0)/nri,j

∣∣∣Ω(x− y)

|x− y|n
− Ω(x)

|x|n
∣∣∣ϕ(x+ xi,j,

2i0

λ

)
dx dy

. 2i
∫
|y|<ri,j

(2
3

) i−i0
n
ϕ
(
y + xi,j,

2i0

λ

)
dy . 2i

(2
3

) i−i0
2n
ϕ
(
Bi,j,

2i0

λ

)
.

Collecting the estimates of I1, I21, and I22, we obtain that, for any λ ∈ (0,∞),

I . I1 + I21 + I22 . 2i
(2
3

) i−i0
2n
ϕ
(
Bi,j,

2i0

λ

)
and hence

ϕ
({
x ∈ (Ai0)

{ :
∣∣µρΩ(F2)(x)

∣∣ > 2i0
}
,
2i0

λ

)
≤ 2−i0

∞∑
i=i0

∑
j∈Z+

I

. 2−i0
∞∑
i=i0

∑
j∈Z+

2i
(2
3

) i−i0
2n
ϕ
(
Bi,j,

2i0

λ

)
. sup

i∈Z

{∑
j∈Z+

ϕ
(
Bi,j,

2i

λ

)}
,

where the last . is due to the uniformly lower-type 1 property of ϕ. The proof is
completed. �

Remark 3.5. We should point out that if ϕ is a growth function of uniformly
lower-type 1 and of uniformly upper-type 1, then WH ϕ = WH 1

ϕ(·,1) and WLϕ =
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WL1
ϕ(·,1). In fact, there exists a positive constant C such that, for any x ∈ Rn and

t ∈ (0,∞),

C−1tϕ(x, 1) = C−1tϕ(x, t/t) ≤ ϕ(x, t) ≤ Ctϕ(x, 1),

which implies that

sup
t∈(0,∞)

ϕ
({

|f | > t
}
, t
)
∼ sup

t∈(0,∞)

ϕ
({

|f | > t
}
, 1
)
t.

Hence, we have WLϕ = WL1
ϕ(·,1). Analogously, WH ϕ = WH 1

ϕ(·,1).
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