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Abstract. Let G be a compact Abelian group, let µ be the corresponding
Haar measure, and let Ĝ be the Pontryagin dual of G. Furthermore, let Cp
denote the Schatten class of operators on some separable infinite-dimensional
Hilbert space, and let Lp(G; Cp) denote the corresponding Bochner space. If
G 3 θ 7→ Aθ is the mapping belonging to Lp(G; Cp), then∑

k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥p
p
≤

∫
G

‖Aθ‖pp dθ, p ≥ 2,

∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥p
p
≤

(∫
G

‖Aθ‖qp dθ
)p/q

, p ≥ 2,

∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥q
p
≤

(∫
G

‖Aθ‖pp dθ
)q/p

, p ≤ 2.

If G is a finite group, then the previous equations comprise several general-
izations of Clarkson–McCarthy inequalities obtained earlier (e.g., G = Zn or
G = Zn

2 ), as well as the original inequalities, for G = Z2. We also obtain other
related inequalities.

1. Introduction

While investigating uniformly convex spaces, Clarkson [5] proved the following
inequalities for Lp-norms:
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2
(
‖f‖pp + ‖g‖pp

)
≤ ‖f + g‖pp + ‖f − g‖pp ≤ 2p−1

(
‖f‖pp + ‖g‖pp

)
, p ≥ 2,

2
(
‖f‖pp + ‖g‖pp

)
≥ ‖f + g‖pp + ‖f − g‖pp ≥ 2p−1

(
‖f‖pp + ‖g‖pp

)
, p ≤ 2,

(1.1)

‖f + g‖pp + ‖f − g‖pp ≤ 2
(
‖f‖qp + ‖g‖qp

)p/q
, p ≥ 2, q = p/(p− 1), (1.2)

‖f + g‖qp + ‖f − g‖qp ≤ 2q−1
(
‖f‖pp + ‖g‖pp

)q/p
, p ≤ 2, q = p/(p− 1). (1.3)

McCarthy [19] later generalized these inequalities to Schatten classes of operators.
He replaced measurable functions f and g by compact operators A and B, and
the Lp-norm by the Cp-norm defined as

‖A‖p =
(
tr
(
|A|p

))1/p
.

The inequalities he obtained were exactly (1.1), (1.2), and (1.3). In an operator
framework, these are usually referred to as Clarkson–McCarthy inequalities. In
what follows, we will use the abbreviation CMC.

There are many generalizations of CMC inequalities. Among others, Bhatia
and Kittaneh [3, Theorem 2] proved the following inequalities for n-tuples of
operators:

n
n−1∑
j=0

‖Aj‖pp ≤
n−1∑
k=0

∥∥∥n−1∑
j=0

ωk
jAj

∥∥∥p

p
≤ np−1

n−1∑
j=0

‖Aj‖pp, (1.4)

for p ≥ 2, and the corresponding reversed inequalities for p ≤ 2, where ωj = e2πij/n

is the jth degree of the nth root of unity. They also proved the stronger inequality

n−p/2
∣∣∣∣∣∣∣∣∣ n−1∑

k=0

∣∣∣n−1∑
j=0

ωk
jAj

∣∣∣p∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣(n−1∑
j=0

|Aj|2
)p/2∣∣∣∣∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣∣∣∣∣ n−1∑
k=0

∣∣∣n−1∑
j=0

ωk
jAj

∣∣∣p∣∣∣∣∣∣∣∣∣ (1.5)

for all unitarily invariant norms ||| · ||| and the same complex numbers ωj.
After this work there were several further generalizations. Hirzallah and Kit-

taneh [12] replaced t 7→ tp/2 by an arbitrary convex (concave) function f and
obtained ∣∣∣∣∣∣∣∣∣ n−1∑

k=0

f
( 1
n

∣∣∣n−1∑
j=0

ωk
jAj

∣∣∣2)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣f((n−1∑
j=0

|Aj|2
)1/2)∣∣∣∣∣∣∣∣∣

≤ 1

n

∣∣∣∣∣∣∣∣∣ n−1∑
k=0

f
(∣∣∣n−1∑

j=0

ωk
jAj

∣∣∣2)∣∣∣∣∣∣∣∣∣, (1.6)

for any convex f : [0,+∞) → [0,+∞) with f(0) = 0 and any unitarily invariant
norm.

The aim of this article is to generalize the preceding three inequalities to the
framework of compact Abelian groups as stated in the Abstract. The most tech-
nical part of the article is Theorem 3.1, which establishes the Parseval identity for
operator-valued abstract Fourier series. Otherwise, we mainly follow the argument
from [12, Section 3].

It is worth mentioning that the other approach from [3] can be further extended,
as was done in [15] and [9], to obtain more general results. It seems that the results
in the present article do not imply the results of [15] and [9].
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This article is organized as follows. In Section 2, we quote known results con-
cerning abstract harmonic analysis on compact Abelian groups, unitarily invariant
norms, and Bochner integrals. We also derive some minor auxiliary statements.
Section 3 is devoted to the main results. In Section 4, we obtain a number of corol-
laries by varying the group G. For instance, choosing G = Zn we obtain (1.4),
(1.5) and (1.6), choosing G = Z2 we obtain classic CMC inequalities, choosing
G = Zn

2 we obtain a generalization of some results from [14] and [11], whereas for
other choices of G we get completely new results. Finally, in the last section we
list problems that naturally arise from this work.

2. Preliminaries

Compact Abelian groups. Let us recall some basic facts regarding abstract
harmonic analysis on compact Abelian groups. (For more details, the reader is
referred to [6] or [8].)

For any locally compact Abelian topological group there is a left (and also
right) invariant regular Borel measure µ which is unique up to multiplication by
a positive scalar. This measure is known as the Haar measure. If, moreover, G is
compact, then µ is finite and usually normalized such that µ(G) = 1.

Haar measures exist for non-Abelian locally compact groups as well. In this
case, it is only left invariant. However, the further theory cannot be applied to
non-Abelian groups. In what follows, G will always be Abelian.

A character on G is a continuous homomorphism k : G → T = {z ∈ C |
|z| = 1}. It is well known that the set of all characters on G equipped with

open-compact topology, denoted by Ĝ, is also a topological group. The group Ĝ
is called the Pontryagin dual of G. The topology on Ĝ is discrete if and only if
G is compact.

Throughout this article, G will always denote the compact Abelian group. The
elements of G will be denoted by small Greek letters θ, ϕ, and so on. Since its
Pontryagin dual Ĝ is a discrete group, its elements will be denoted by k, j, m, n,
and so on, and integration with the corresponding Haar measure will be denoted
by the

∑
symbol.

For a function f ∈ L1(G), the abstract Fourier coefficient of f is given by

f̂ : Ĝ→ C, f̂(k) :=

∫
G

k(θ)f(θ) dµ(θ). (2.1)

The abstract Fourier series of f is∑
k∈Ĝ

f̂(k)k(θ), (2.2)

whereas for finite ∆ ⊆ Ĝ, the sum

S∆(f) =
∑
k∈∆

f̂(k)k(θ)

is called the partial sum of the expansion (2.2).
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We will use the notation ∆ → Ĝ for the usual summation over arbitrary
families. Namely, S∆(f) → f means, for instance, that for each ε > 0 there is a

finite ∆ε ⊆ Ĝ such that d(S∆(f), f) < ε for all ∆ ⊇ ∆ε. Any convergence that
appears in this note is a convergence within a certain metric space. Hence, we
will always be able to choose a sequence ∆n ⊆ ∆n+1 such that S∆nf → f .

We will use the following facts.

Proposition 2.1. Let f ∈ L2(G). Then

(1) For k1, k2 ∈ Ĝ, we have
∫
G
k1(θ)k2(θ) dµ(θ) = 0 if k1 6= k2. If k1 = k2,

then this integral is equal to 1.
(2) The Fourier series converges to f in L2-norm as ∆ → Ĝ; that is, for any

ε > 0, there is a finite ∆ε ⊆ Ĝ such that ‖S∆(f)− f‖L2(G) < ε whenever
∆ ⊇ ∆ε.

(3) Parseval’s identity ‖f̂‖L2(Ĝ) = ‖f‖L2(G) holds, that is,∑
k∈Ĝ

∣∣f̂(k)∣∣2 = ∑
k∈Ĝ

∣∣∣∫
G

k(θ)f(θ) dµ(θ)
∣∣∣2 = ∫

G

∣∣f(θ)∣∣2 dθ. (2.3)

(Note that L2(G) ⊆ L1(G), due to µ(G) < +∞.)

Proof. Part (1) is proved in [8, Proposition 4.4]. Parts (2) and (3) are proved in
[8, Corollary 4.7] (see also [6, Sections 2.7.2, 2.7.3, 2.9.1]). �

Unitarily invariant norms. Let B(H) be the space of all bounded linear oper-
ators on a separable complex Hilbert space H. The absolute value of an operator
A ∈ B(H) is defined by |A| = (A∗A)1/2, and the singular values of A, denoted by
sj(A), are defined as eigenvalues of |A| arranged in nonincreasing order counting
multiplicity, that is, sj(A) = λj(|A|).

A unitarily invariant norm, denoted by ||| · |||, is a norm defined on a norm
ideal J|||·||| in B(H) satisfying the property that |||UAV ||| = |||A||| for all operators
A ∈ J|||·||| and all unitary operators U , V ∈ B(H). We also assume that ||| · ||| is
normalized, that is, |||A||| = ‖A‖ for all rank 1 operators (‖ · ‖ stands for usual
operator norm). We will abbreviate J|||·||| to J when there is no risk of ambiguity.
Each unitarily invariant norm ||| · ||| is a symmetric gauge function of the singular
values, and J|||·||| is a Banach space contained in the ideal of compact operators.
The only exception are norms equivalent to the usual operator norm which are
defined on the whole B(H).

Among all unitarily invariant norms, the most examined are Schatten norms

‖A‖p =
(
tr |A|p

)1/p
=

(+∞∑
j=1

spj(A)
)1/p

, (2.4)

where tr is the usual trace functional and 1 ≤ p < +∞. The corresponding ideals
will be denoted by Cp. We retain the definition of Cp for 0 < p < 1, though, for
p < 1, ‖ · ‖p defined by (2.4) is not a norm but a quasinorm. Some results in this
article are valid for p < 1, for example, Theorem 3.4 and its corollaries.



30 D. J. KEČKIĆ

The other examples are Ky Fan norms

‖A‖(n) =
n∑

j=1

sj(A).

The importance of the latter is contained in part (2) of the following proposition
where other basic properties of unitarily invariant norms are listed.

Proposition 2.2. We have the following.

(1) For any unitarily invariant norm ||| · ||| we have ‖A‖ ≤ |||A||| ≤ ‖A‖1, where
‖ · ‖ is the usual operator norm and ‖ · ‖1 is the Schatten 1-norm.

(2) The inequality |||A||| ≤ |||B||| holds for all unitarily invariant norms if and
only if ‖A‖(n) ≤ ‖B‖(n) for all n. This is known as the Ky Fan dominance
property. The inequality |||A||| ≤ |||B||| for all unitarily invariant norms
should be understood as follows: If B ∈ J|||·|||, then A ∈ J|||·||| and the
inequality holds.

(3) The Ky Fan norms can be computed as

‖A‖(n) =
n∑

j=1

sj(A) = max
n∑

j=1

∣∣〈Aϕj, ψj〉
∣∣,

where max is taken over all orthonormal systems ϕj and all orthonormal
systems ψj. The maximum is attained if |A|ϕj = sj(A)ϕj and ψj = U∗ϕj,
where A = U |A| is the polar decomposition of A.

(4) If 0 ≤ A ≤ B, then
∑n

j=1 sj(A) ≤
∑n

j=1 sj(B) for all n, and therefore

|||A||| ≤ |||B||| for all unitarily invariant norms.

Proof. The proofs of parts (1), (2), and (3) can be found in [10, Chapter III, Sec-
tion 3], [10, Chapter III, Section 4], and [10, Chapter III, Section 3], respectively.
Finally, (4) is an immediate consequence of (3). �

Proposition 2.3. Let An be an increasing sequence of positive operators from
J|||·|||, and let ‖An‖ ≤ C. Then An weakly converges to some A ∈ J|||·||| and |||An||| →
|||A|||.

Proof. For each ξ we have 〈Anξ, ξ〉 ≤ C‖ξ‖2. Therefore, the sequence 〈Anξ, ξ〉
is increasing and bounded and hence convergent. By the polarization identity,
the sequence 〈Anξ, η〉 is convergent for each ξ, η. Thus, An weakly converges to
some A.

By Proposition 2.2(4), the sequence |||An||| is nondecreasing. Hence, the limit
can be replaced by a supremum. By the same argument, supn |||An||| ≤ |||A|||.
The opposite inequality follows from the lower semicontinuity of ||| · |||, that is,
|||A||| ≤ lim inf |||An||| (see [20, Theorem 2.7]; see also [10, Theorem III.5.1.] and
[20, Theorem 2.16]). �

We will deal with convex functions ϕ : [0,+∞) → [0,+∞), that is, those
functions which satisfy ϕ(tx+ (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y) for t ∈ [0, 1]. Note
that these functions must be nondecreasing. Although such a function is never
operator monotone (i.e., A ≤ B does not imply ϕ(A) ≤ ϕ(B)) and not necessarily
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operator convex (i.e., ϕ(λA+(1−λ)B) ≤ λϕ(A)+ (1−λ)ϕ(B) need not be true
in general), many scalar-valued inequalities can be extended to unitarily invariant
norms.

Lemma 2.4. Let ϕ : [0,+∞) → [0,+∞) be a convex function with ϕ(0) = 0.

(1) If |||A||| ≤ |||B||| in any unitarily invariant norm, then also |||ϕ(A)||| ≤
|||ϕ(B)||| in any unitarily invariant norm. In particular, the conclusion fol-
lows for positive A and B such that A ≤ B.

(2) If A, B are any two positive operators and 0 ≤ λ ≤ 1, then∣∣∣∣∣∣ϕ(λA+ (1− λ)B
)∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣λϕ(A) + (1− λ)ϕ(B)

∣∣∣∣∣∣
in any unitarily invariant norm.

(3) If An is a sequence of positive operators, then∣∣∣∣∣∣∣∣∣ +∞∑
n=1

ϕ(An)
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ϕ(+∞∑

n=1

An

)∣∣∣∣∣∣∣∣∣
in any unitarily invariant norm. The preceding inequality is reversed if ϕ :
[0,+∞) → [0,+∞) is a concave function with ϕ(0) = 0, ϕ(+∞) = +∞.

Proof. (1) Let sj(A) and sj(B) be the singular values of A and B, respectively.
We have from Proposition 2.2(2) for all Ky Fan norms ‖A‖(n) ≤ ‖B‖(n), that is,

n∑
j=1

sj(A) ≤
n∑

j=1

sj(B).

Since ϕ is convex and nondecreasing, by the elementary Karamata inequality (see
[13, p. 148]) we have

n∑
j=1

ϕ
(
sj(A)

)
≤

n∑
j=1

ϕ
(
sj(B)

)
, that is,

∥∥ϕ(A)∥∥
(n)

≤
∥∥ϕ(B)

∥∥
(n)
.

Now the result follows from the Ky Fan dominance property (see Proposition
2.2(2)).

(2) This is [2, Theorem 2.3].
(3) For finite sums and convex ϕ, this was proved in [16, Corollary 3.6] (see

also [21, Theorem 4.4], [1, Section 6.1]). Let us prove this for infinite sums. For
any n ∈ N we have A1 + · · · + An ≤

∑+∞
n=1An, which, by Lemma 2.4(1) implies

that ∣∣∣∣∣∣ϕ(A1 + · · ·+ An)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ϕ(+∞∑

n=1

An

)∣∣∣∣∣∣∣∣∣.
Hence, by the finite case,∣∣∣∣∣∣∣∣∣ n∑

k=1

ϕ(Ak)
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ϕ( n∑

k=1

Ak

)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ϕ(+∞∑
n=1

An

)∣∣∣∣∣∣∣∣∣.
The result for convex ϕ follows by taking a limit n→ +∞ according to Proposi-
tion 2.3.
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Let ϕ : [0,+∞) → [0,+∞) be a concave function with ϕ(0) = 0, ϕ(+∞) =
+∞. Then it has the inverse function ϕ−1 : [0,+∞) → [0,+∞) which is convex,
with ϕ−1(0) = 0. Let Bn = ϕ(An). By the result for convex functions, we have∣∣∣∣∣∣∣∣∣ϕ−1

(+∞∑
n=1

Bn

)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ n∑
k=1

ϕ−1(Bn)
∣∣∣∣∣∣∣∣∣, that is,

∣∣∣∣∣∣∣∣∣ϕ−1
(+∞∑
n=1

ϕ(An)
)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ n∑

k=1

An

∣∣∣∣∣∣∣∣∣.
Apply Lemma 2.4(1) to the previous inequality and ϕ to obtain the conclusion.

�

Bochner spaces. Let (Ω, µ) be a measurable space, and let X be a Banach
space. The Bochner space Lp(Ω;X) is defined as the set of strongly measurable
functions f : Ω → X such that

‖f‖Lp(Ω;X) :=
(∫

Ω

∥∥f(t)∥∥p

X
dµ(t)

)1/p

< +∞,

after identification of µ-almost everywhere equal functions. Here, strong mea-
surability is equivalent to weak measurability (i.e., the measurability of scalar
functions t 7→ Λ(f(t)) for all Λ ∈ X∗) and separability of the image of f . The
Bochner integral is linear and additive with respect to disjoint unions. Also,

T

∫
Ω

f(t) dµ(t) =

∫
Ω

Tf(t) dµ(t) (2.5)

holds for all f ∈ Lp(Ω;X) and all bounded linear T : X → Y .
Jensen’s inequality for unitarily invariant norms, Proposition 2.4(2), can be

extended to Bochner integrals using the same argument as in [2, Theorem 2.3].

Proposition 2.5. Let ||| · ||| be some unitarily invariant norm, let J be the corre-
sponding ideal, and let L1(Ω; J) be the Bochner space, where (Ω;µ) is a measurable
space such that µ(Ω) = 1. For all A : Ω → J , A ∈ L1(Ω; J) such that A(t) ≥ 0
for almost all t ∈ Ω (i.e., A(t) is a positive operator), and all convex functions
ϕ : [0,+∞) → [0,+∞), the following inequality holds:∣∣∣∣∣∣∣∣∣ϕ(∫

Ω

A(t) dµ(t)
)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ ∫

Ω

ϕ
(
A(t)

)
dµ(t)

∣∣∣∣∣∣∣∣∣. (2.6)

If ϕ : [0,+∞) → [0,+∞) is concave with ϕ(0) = 0, ϕ(+∞) = +∞, then the
inequality (2.6) is reversed.

Proof. Denote X =
∫
Ω
A(t) dµ(t), and let sn be the eigenvalues of X arranged

in nonincreasing order counting possible multiplicities, and let ξn be the corre-
sponding unit eigenvectors. Then ϕ(sk) are eigenvalues of ϕ(X) with respect to
the same eigenvectors and

ϕ(sk) = ϕ
(
〈Xξk, ξk〉

)
= ϕ

(∫
Ω

〈
A(t)ξk, ξk

〉
dµ(t)

)
≤

∫
Ω

ϕ
(〈
A(t)ξk, ξk

〉)
dµ(t)
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by the scalar version of Jensen’s inequality. The convexity of ϕ also implies that
ϕ(〈Aξ, ξ〉) ≤ 〈ϕ(A)ξ, ξ〉 for any positive A and any unit vector ξ. Indeed, if
EA denotes the spectral measure for A, then 〈EAξ, ξ〉 is a probabilistic (scalar)
measure, and hence

ϕ
(
〈Aξ, ξ〉

)
= ϕ

(∫ +∞

0

λ d
(〈
EA(λ)ξ, ξ

〉))
≤

∫ +∞

0

ϕ(λ) d
(〈
EA(λ)ξ, ξ

〉)
=

〈
ϕ(A)ξ, ξ

〉
.

Therefore,
n∑

k=1

ϕ(sk) ≤
n∑

k=1

∫
Ω

〈
ϕ
(
A(t)

)
ξk, ξk

〉
dµ(t) =

n∑
k=1

〈∫
Ω

ϕ
(
A(t)

)
dµ(t)ξk, ξk

〉
.

By Proposition 2.2(3), we obtain

n∑
k=1

ϕ(sk) ≤
n∑

k=1

sk

(∫
Ω

ϕ
(
A(t)

)
dµ(t)

)
,

that is, ∥∥∥ϕ(∫
Ω

A(t) dµ(t)
)∥∥∥

(n)
≤

∥∥∥∫
Ω

ϕ
(
A(t)

)
dµ(t)

∥∥∥
(n)
,

for all n. The result follows from the Ky Fan dominance property (Proposi-
tion 2.2(2)).

If ϕ is concave, then ϕ−1 is convex, and applying the previously proved inequal-
ity to ϕ−1 and ϕ(A(t)) we obtain∣∣∣∣∣∣∣∣∣ϕ−1

(∫
Ω

ϕ
(
A(t)

)
dµ(t)

)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ ∫
Ω

ϕ−1
(
ϕ
(
A(t)

))
dµ(t)

∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣ ∫
Ω

A(t) dµ(t)
∣∣∣∣∣∣∣∣∣.

Apply Proposition 2.4(1) to obtain the conclusion. �

3. Main results

First, we establish Parseval’s identity for functions in Bochner spaces, which is
the key technical tool in this article.

Theorem 3.1. Let G be a compact Abelian group, let Ĝ be its Pontryagin dual,
and let |||·||| be a unitarily invariant norm on an ideal J . For A = {Aθ} ∈ L2(G; J)

and k ∈ Ĝ, the operators

Bk =

∫
G

k(θ)Aθ dµ(θ) (3.1)

are well defined, and also ∑
k∈Ĝ

|Bk|2 =
∫
G

|Aθ|2 dµ(θ), (3.2)

where the series on the left-hand side converges strongly.
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Proof. Since µ(G) < +∞, we have L2(G; J) ⊆ L1(G; J). Therefore, as |k(θ)| = 1
we have ∫

G

∣∣∣∣∣∣k(θ)Aθ

∣∣∣∣∣∣ dµ(θ) = ∫
G

|||Aθ||| dµ(θ) < +∞,

and the Bk’s are well defined.
Next, for ξ ∈ H and Xθ = Aθ −

∑
k∈∆Bkk(θ) we have〈∫

G

X∗
θXθ dµ(θ)ξ, ξ

〉
=

∫
G

〈Xθξ,Xθξ〉 dµ(θ) ≥ 0,

that is,
∫
G
X∗

θXθ dµ(θ) ≥ 0. (Here we apply (2.5) to T : J → C, T (X) = 〈Xξ, ξ〉.)
Hence ∫

G

(
Aθ −

∑
k∈∆

Bkk(θ)
)∗(

Aθ −
∑
k∈∆

Bkk(θ)
)
dµ(θ) ≥ 0.

By expanding the left-hand side (which is correct, since ∆ is finite) and taking
into account Proposition 2.1(1) as well as (3.1), we obtain∑

k∈∆

B∗
kBk ≤

∫
G

A∗
θAθ dµ(θ). (3.3)

(Alternatively, we can invoke the Bessel inequality for Hilbert C∗-modules to get
(3.3).) In particular,

sup
∆⊆Ĝ

∆ finite

∑
k∈∆

〈B∗
kBkξ, ξ〉 < +∞. (3.4)

We establish the first conclusion, that the series in (3.2) converges weakly, and
even more strongly, due to its monotonicity.

Next, let us compute the difference between
∫
|Aθ|2 and the partial sum of∑

k∈Ĝ |Bk|2. For finite ∆ ⊆ Ĝ, let (S∆A)θ =
∑

k∈∆Bkk(θ) be the partial sum of
the abstract Fourier series of Aθ. Then we have∑

k∈∆

B∗
kBk =

∑
k∈∆

∫
G

k(θ)A∗
θBk dµ(θ) =

∫
G

A∗
θ(S∆A)θ dµ(θ), (3.5)

once again invoking (2.5), and hence∫
G

|Aθ|2 dµ(θ)−
∑
k∈∆

|Bk|2 =
∫
G

A∗
θ

(
Aθ − (S∆A)θ

)
dµ(θ).

Choose unit vectors ξ, η ∈ H to get〈(∫
G

|Aθ|2 dµ(θ)−
∑
k∈∆

|Bk|2
)
ξ, η

〉
=

∫
G

〈(
Aθ − (S∆A)θ

)
ξ, Aθη

〉
dµ(θ). (3.6)

We will prove that the right-hand side of (3.6) tends to zero for a suitable sequence

of finite ∆n ⊆ Ĝ.
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Set fA,ξ,η(θ) = 〈A(θ)ξ, η〉. Then we have〈
(S∆A)θξ, η

〉
=

∑
k∈∆

〈Bkξ, η〉k(θ)

=
∑
k∈∆

(∫
G

k(ϕ)fA,ξ,η(ϕ) dµ(ϕ)
)

=
∑
k∈∆

f̂A,ξ,η(k)k(θ).

As |〈Aθξ, η〉| ≤ ‖Aθ‖ ‖ξ‖ ‖η‖ ≤ |||Aθ||| ‖ξ‖ ‖η‖, the function fA,ξ,η belongs to L
2(G).

Therefore, by Proposition 2.1((2)), the functions θ 7→ f∆
A,ξ,η(θ) =

∑
k∈∆ f̂A,ξ,η(k)×

k(θ) converge to fA,ξ,η in L2-norm when ∆ increases. Moreover, we can choose a
sequence of finite sets ∆n ⊆ ∆n+1 such that〈

(S∆nA)θξ, η
〉
→ 〈Aθξ, η〉 (3.7)

for almost all θ ∈ G. To show that we can pass the limit on the right-hand side of
(3.6) to the integrand, we show that the family of functions θ 7→ 〈(Aθ − (S∆A)θ)ξ,
Aθη〉 is uniformly integrable.

Let ε > 0 be arbitrary. By (3.4) there is a finite set ∆ε ⊆ Ĝ such that∑
k/∈∆ε

〈B∗
kBkξ, ξ〉 <

ε2

4M
, (3.8)

where

M =

∫
G

‖Aθ‖2 dµ(θ) ≤
∫
G

|||Aθ|||2 dµ(θ) < +∞.

Let p be the cardinality of ∆ε. The function θ 7→ ‖Aθ‖2+pM1/2‖Aθ‖ is integrable.
Therefore, there is δ > 0 such that∫

E

(
‖Aθ‖2 + pM1/2‖Aθ‖

)
dµ(θ) <

ε

2
, (3.9)

for all E ⊆ G such that µ(E) < δ.
For ∆ε and Eδ for which (3.9) holds, we have that for each ∆∣∣∣∫

Eδ

〈(
Aθ − (S∆A)θ

)
ξ, Aθη

〉
dµ(θ)

∣∣∣
≤

∫
E

∣∣∣〈(Aθ −
∑
k∈∆

Bkk(θ)
)
ξ, Aθη

〉∣∣∣ dµ(θ)
≤

∫
Eδ

∣∣∣〈(Aθ −
∑

k∈∆∩∆0

Bkk(θ)
)
ξ, Aθη

〉∣∣∣ dµ(θ)
+

∫
Eδ

∣∣∣〈 ∑
k∈∆\∆0

Bkk(θ)ξ, Aθη
〉∣∣∣ dµ(θ)

= S1 + S2.
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Since

‖Bk‖ ≤
∫
G

∥∥Aθk(θ)
∥∥ dµ(θ) ≤ (∫

G

‖Aθ‖2 dµ(θ)
)1/2

=M1/2,

we can estimate the first summand S1 as

S1 ≤
∫
Eδ

(∣∣〈Aθξ, Aθη〉
∣∣+ ∑

k∈∆∩∆ε

∣∣〈Bkk(θ)ξ, Aθη
〉∣∣) dµ(θ)

≤
∫
Eδ

(
‖Aθξ‖‖Aθη‖+

∑
k∈∆ε

‖Bkξ‖‖Aθη‖
)
dµ(θ)

≤
∫
Eδ

(
‖Aθ‖2 + pM1/2‖Aθ‖

)
dµ(θ) <

ε

2

for unit vectors ξ, η ∈ H by (3.9)
Let us estimate the second summand S2. We have

S2 ≤
∫
Eδ

∣∣∣〈 ∑
k∈∆\∆ε

Bkk(θ)ξ, Aθη
〉∣∣∣ dµ(θ)

≤
∫
G

∥∥∥ ∑
k∈∆\∆ε

Bkk(θ)ξ
∥∥∥‖Aθ‖ dµ(θ)

≤
(∫

G

∥∥∥ ∑
k∈∆\∆ε

Bkk(θ)ξ
∥∥∥2

dµ(θ)
)1/2(∫

G

‖Aθ‖2 dµ(θ)
)1/2

≤M1/2
(∫

G

〈 ∑
k∈∆\∆ε

Bkk(θ)ξ,
∑

j∈∆\∆ε

Bjj(θ)ξ
〉
dµ(θ)

)1/2

=M1/2
(∫

G

∑
k,j∈∆\∆ε

〈B∗
jBkξ, ξ〉k(θ)j(θ) dµ(θ)

)1/2

≤M1/2
(∑
k/∈∆ε

〈B∗
kBkξ, ξ〉

)1/2

< M1/2
( ε2

4M

)1/2

=
ε

2
,

where we use Proposition 2.1(1) and (3.8).
Thus ∣∣∣∫

E

〈(
Aθ − (S∆A)θ

)
ξ, Aθη

〉
dµ(θ)

∣∣∣ < ε,

whenever µ(E) < δ, where δ does not depend on ∆. This ensures that θ 7→
〈(Aθ − (S∆A)θ)ξ, Aθη〉 is uniformly integrable, and by Vitali’s convergence theo-

rem, we can pass the limit as ∆ → Ĝ to the integrand on the right-hand side of
(3.6). By (3.7) we obtain (3.2), where the series converges in the weak operator
topology. The entries of the sum are positive, hence partial sums are increasing.
Therefore, the convergence is, moreover, strong. �

Remark 3.2. We have L2(G; J) ⊆ L2(G;B(H)). A careful reading of the proof
shows that we use only the following properties of B(H): (i) it is a C∗ algebra,
(ii) it is closed under weak and strong limits, and (iii) it has a unit. Therefore,
equality (3.2) holds for Aθ ∈ L2(G;A), where A is an arbitrary W ∗-algebra.
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Also, L2(G;A) can be regarded as a Hilbert W ∗-module with right multiplica-
tion Aθ · X = AθX and the A-valued inner product 〈Aθ, Bθ〉 =

∫
G
A∗

θBθ dµ(θ).

The idea of proving (3.2) by showing that {k(θ) · I | k ∈ Ĝ}⊥ = {0}, where I
is the unit of A, is misleading. Namely, there are examples of subspaces of some
Hilbert modules with trivial orthogonal complement and that are not dense.

Using the operator-valued Parseval’s identity, we are able to derive continuous
counterparts of CMC inequalities.

Theorem 3.3. Let ϕ : [0,+∞) → [0,+∞) be a convex function such that ϕ(0) =
0, and let Aθ, θ ∈ G be such that the functions θ 7→ Aθ and θ 7→ ϕ(|Aθ|2) belong
to L1(G; J), J = J|||·||| arbitrary. Then it holds that∣∣∣∣∣∣∣∣∣∑

k∈Ĝ

ϕ
(∣∣∣∫

G

k(θ)Aθ dθ
∣∣∣2)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ ∫

G

ϕ
(
|Aθ|2

)
dθ

∣∣∣∣∣∣∣∣∣. (3.10)

If ϕ : [0,+∞) → [0,+∞) is a concave function, ϕ(0) = 0, ϕ(+∞) = +∞, then
the inequality is reversed.

Proof. By (3.2) and (2.6), we have∣∣∣∣∣∣∣∣∣ϕ(∑
k∈Ĝ

∣∣∣∫
G

k(θ)Aθ dθ
∣∣∣2)∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣ϕ(∫

G

|Aθ|2 dθ
)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ ∫

G

ϕ
(
|Aθ|2

)
dθ

∣∣∣∣∣∣∣∣∣. (3.11)

Also by (3.2), the operator ϕ(
∑

k∈Ĝ |
∫
G
Aθ dθ|2) belongs to J . By Proposition

2.4(3), we have∣∣∣∣∣∣∣∣∣∑
k∈Ĝ

ϕ
(∣∣∣∫

G

k(θ)Aθ dθ
∣∣∣2)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣ϕ(∑

k∈Ĝ

∣∣∣∫
G

k(θ)Aθ dθ
∣∣∣2)∣∣∣∣∣∣∣∣∣. (3.12)

The conclusion (3.10) follows from (3.11) and (3.12). If ϕ is concave, note that
the inequality in (3.11) is reversed due to Proposition 2.5, and in (3.12) by Propo-
sition 2.4(3). �

Theorem 3.4. Let 1 ≤ p < +∞, and let the function θ 7→ Aθ belong to L
p(G; Cp).

Then for p ≥ 2 we have∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥p

p
≤

∫
G

‖Aθ‖pp dθ, (3.13)

whereas for 0 < p ≤ 2 the inequality is reversed.

Proof. Put ϕ(t) = tp/2, p ≥ 2, which is a convex function, for p ≥ 2 and |||A||| =
‖A‖1 = tr(|A|) in (3.10). We obtain

tr
(∑
k∈Ĝ

∣∣∣∫
G

k(θ)Aθ dθ
∣∣∣p) ≤ tr

(∫
G

|Aθ|p dθ
)
. (3.14)

The trace tr is a bounded (with respect to ‖ · ‖1) linear functional. Hence, by
(2.5) the right-hand side of (3.14) is equal to∫

G

tr |Aθ|p dθ =
∫
G

‖Aθ‖pp dθ.
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The left-hand side of (3.14) can be replaced by the sum over a finite set ∆ ⊆ Ĝ.
Then by linearity of tr we get∑

k∈∆

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥p

p
≤

∫
G

‖Aθ‖pp dθ,

which leads to (3.13) by taking a supremum over all finite ∆ ⊆ Ĝ.
For 0 < p ≤ 2, the function ϕ(t) = tp/2 is concave, ϕ(0) = 0 and ϕ(+∞) = +∞,

so by the same argument we obtain the reversed inequality. �

Formula (3.13) is a generalization of the right inequality in (1.4), which we will
prove in the next section. Concerning the left inequality in (1.4), it follows from
the right inequality by the substitution Bn =

∑n−1
j=0 ω

k
jAj. This is possible due to

the fact that Zn is self-dual in the sense of Pontryagin. Nothing similar can be
said for the general compact Abelian group G. It need not be isomorphic to its
dual group Ĝ in general.

Nevertheless, a partial substitution for the left inequality in (1.4) might be the
following.

Theorem 3.5. Let ϕ : [0,+∞) → [0,+∞) be a convex function ϕ(0) = 0, and

let αk, k ∈ Ĝ be a family of positive reals such that∑
k∈Ĝ

αk = 1. (3.15)

If Aθ ∈ L1(G; Cp) for some p ≥ 2, then∥∥∥∫
G

|Aθ| dθ
∥∥∥p

p
≤

∑
k∈Ĝ

α
1−p/2
k

∥∥∥∫
G

k(θ)Aθ dθ
∥∥∥p

p
, (3.16)

provided that the term on the right-hand side is finite.

Proof. For ∆ ⊆ Ĝ, let ν(∆) =
∑

k∈∆ αk. Then ν is a measure with ν(Ĝ) = 1. By
(2.6), we have∣∣∣∣∣∣∣∣∣ϕ(∑

k∈Ĝ

|Bk|2
)∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣ϕ(∑

k∈Ĝ

αk
1

αk

|Bk|2
)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∑

k∈Ĝ

αkϕ
( 1

αk

|Bk|2
)∣∣∣∣∣∣∣∣∣,

where Bk =
∫
G
k(θ)Aθ dθ for any unitarily invariant norm. It follows by (3.2) that∣∣∣∣∣∣∣∣∣ϕ(∫
G

|Aθ|2 dθ
)∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣∣ϕ(∑

k∈Ĝ

|Bk|2
)∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∑

k∈Ĝ

αkϕ
( 1

αk

|Bk|2
)∣∣∣∣∣∣∣∣∣.

Once again, take ϕ(t) = tp/2, p ≥ 2, and |||A||| = ‖A‖1 = tr(|A|). We obtain

tr
(∫

G

|Aθ|2 dθ
)p/2

≤ tr
(∑
k∈Ĝ

αk

( 1

αk

|Bk|2
)p/2)

=
∑
k∈Ĝ

α
1−p/2
k ‖Bk‖pp. (3.17)

Indeed, the right-hand sides of (3.16) and (3.17) coincide and hence they are finite.
This ensures that the series in the middle term in (3.17) converges in ‖ · ‖1-norm.
Therefore the trace, as a bounded functional, commutes with the summation.
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However, as f(t) = t2 is convex, by (2.6), we have∥∥∥(∫
G

|Aθ| dθ
)2∥∥∥

1
=

∥∥∥f(∫
G

|Aθ| dθ
)∥∥∥

1
≤

∥∥∥∫
G

f
(
|Aθ|

)
dθ

∥∥∥ =
∥∥∥∫

G

|Aθ|2 dθ
∥∥∥
1
.

Now, as ϕ(t) = tp/2 is convex, it follows from Lemma 2.4(1) that

tr
(∫

G

|Aθ| dθ
)p

=
∥∥∥(∫

G

|Aθ| dθ
)p∥∥∥

1
=

∥∥∥ϕ((∫
G

|Aθ| dθ
)2)∥∥∥

1

≤
∥∥∥ϕ(∫

G

|Aθ|2 dθ
)∥∥∥

1
=

∥∥∥(∫
G

|Aθ|2 dθ
)p/2∥∥∥

1

= tr
(∫

G

|Aθ|2 dθ
)p/2

. (3.18)

From (3.17) and (3.18), we get (3.16) �

In the next two theorems, we prove the counterparts of Clarkson inequalities
(1.2) and (1.3) using complex interpolation, which is a standard procedure. These
results hold only for p ≥ 1.

Theorem 3.6. For all 1 ≤ p ≤ 2 and Aθ ∈ Lp(G; Cp), there holds∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dµ(θ)
∥∥∥q

p
≤

(∫
G

‖Aθ‖pp
)q/p

, (3.19)

where q is conjugate to p, that is, q = p/(p− 1).

Proof. The proof can be obtained using complex interpolation as it was done in
[7] and later repeated in [3]. Therefore, we only give an outline.

First, prove the inequality∣∣∣tr∑
k∈∆

YkBk

∣∣∣ ≤ (∑
k∈∆

‖Yk‖pq
)1/p(∫

G

‖Aθ‖pp dµ(θ)
)1/p

, (3.20)

where Yk ∈ Cq, Bk =
∫
G
k(θ)Aθ dµ(θ), and ∆ ⊆ Ĝ is finite. (We choose a finite

subset of Ĝ to avoid complications with convergence until the end of the proof.)
Indeed, consider the function f(z) defined for 1/2 ≤ <z ≤ 1 by

f(z) = tr
∑
k∈∆

Yk(z)Bk(z),

where

Yk(z) = ‖Yk‖(p+q)z−q
q Vk|Yk|q−qz, Yk = Vk|Yk|,

Bk(z) =

∫
G

k(θ)Aθ(z) dµ(θ), Aθ(z) = |Aθ|pzWθ, Aθ = |Aθ|Wθ.

Then estimate ∣∣tr(Yk(1 + it)Aθ(1 + it)
)∣∣ ≤ ‖Yk‖pq‖Aθ‖pp,

and hence ∣∣f(1 + it)
∣∣ ≤ (∑

k∈∆

‖Yk‖pq
)(∫

G

‖Aθ‖pp dµ(θ)
)
. (3.21)
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Also, ∣∣f(1/2 + it)
∣∣ ≤ ∑

k∈∆

∥∥Yk(1/2 + it)
∥∥
2

∥∥Bk(1/2 + it)
∥∥
2

≤
(∑
k∈∆

∥∥Yk(1/2 + it)
∥∥2

2

)1/2(∑
k∈∆

∥∥Bk(1/2 + it)
∥∥2

2

)1/2

.

However, by (3.13) with p = 2 we obtain∑
k∈∆

∥∥Bk(1/2 + it)
∥∥2

2
≤

∫
G

∥∥Aθ(1/2 + it)
∥∥2

2
dµ(θ) =

∫
G

‖Aθ‖pp dµ(θ),

which yields (note that ‖Yk(1/2 + it)‖2 = ‖Yk‖p/2q ) that∣∣f(1/2 + it)
∣∣ ≤ (∑

k∈∆

‖Yk‖pq
)1/2(∫

G

‖Aθ‖pp dµ(θ)
)1/2

. (3.22)

From (3.21) and (3.22) we get (3.20) using the three-lines theorem (see [10, Chap-
ter III, Section 13] or [20, Theorem 2.9]), since the left-hand side of (3.20) is equal
to f(1/p). Once (3.20) is proved, set Yk = ‖Bk‖q−p

p |Bk|p−1U∗
k , where Bk = Uk|Bk|,

and the conclusion follows by passing to the limit ∆ → Ĝ. �

Theorem 3.7. For all p ≥ 2 and Aθ ∈ Lq(G; Cp), there holds∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dµ(θ)
∥∥∥p

p
≤

(∫
G

‖Aθ‖qp
)p/q

, (3.23)

where q is conjugate to p, that is, q = p/(p− 1).

Proof. The proof is very similar to that of Theorem 3.6. Therefore, we only high-
light the differences. First, we prove the inequality∣∣∣tr∑

k∈∆

YkBk

∣∣∣ ≤ (∑
k∈∆

‖Yk‖qq
)1/q(∫

G

‖Aθ‖qp dµ(θ)
)1/q

, (3.24)

where Yk ∈ Cq, Bk =
∫
G
k(θ)Aθ dµ(θ), and ∆ ⊆ Ĝ is finite.

Consider the function f(z) (slightly different from that of Theorem 3.6) defined
in the same strip 1/2 ≤ <z ≤ 1 by

f(z) = tr
∑
k∈∆

Yk(z)Bk(z),

where
Yk(z) = Vk|Yk|qz, Yk = Vk|Yk|,

Bk(z) =

∫
G

k(θ)Aθ(z) dµ(θ),

Aθ(z) = ‖Aθ‖(p+q)z−p
p |Aθ|p−pzWθ, Aθ = |Aθ|Wθ.

Then use the same estimates for z = 1 + it and z = 1/2 + it, and finally use
the three-lines theorem for z = 1/q ∈ (1/2, 1). Once (3.24) is proved, set Yk =
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|Bk|p−1U∗
k , where Bk = Uk|Bk|, and the conclusion follows by passing to the limit

∆ → Ĝ. �

4. Corollaries

Varying the group G, from Theorems 3.3, 3.4, 3.5, 3.6, and 3.7, we obtain
different earlier published results, as well as some new ones. For G = Zn we get
results from [3, Theorems 2, 4] and [12, Corollary 3.2 and following Remark].

Corollary 4.1. Let n ∈ N, let ωj = e2πij/n, and let Aj ∈ Cp, j = 1, 2, . . . , n.
Then

n

n−1∑
j=0

‖Aj‖pp ≤
n−1∑
k=0

∥∥∥n−1∑
j=0

ωk
jAj

∥∥∥p

p
≤ np−1

n−1∑
j=0

‖Aj‖pp, (4.1)

for p ≥ 2. For 0 < p ≤ 2 the inequalities are reversed. We have

n−1∑
k=0

∥∥∥n−1∑
j=0

ωk
jAj

∥∥∥q

p
≤ n

(n−1∑
j=0

‖Aj‖pp
)q/p

, (4.2)

for 1 ≤ p ≤ 2, q = p/(p− 1), and

n−1∑
k=0

∥∥∥n−1∑
j=0

ωk
jAj

∥∥∥p

p
≤ n

(n−1∑
j=0

‖Aj‖qp
)p/q

, (4.3)

for p ≥ 2 and q = p/(p− 1).

Proof. Consider G = Zn. Its Haar measure is the counting measure divided by n,
and the Pontryagin dual is also Zn. Indeed, since Zn = {1, a, . . . , an−1} for some
generator a, any homomorphism k : Zn → T is determined by k(a). From an = 1
we deduce that k(a)n = 1. Hence kj(a) = ωj for some j = 0, 1, . . . , n − 1. Then
kj(a

l) = ωl
j. Hence (3.13), (3.19), and (3.23) are reduced to

n−1∑
j=0

∥∥∥ 1
n

n−1∑
l=0

(ωj)
lAl

∥∥∥p

p
≤ 1

n

n−1∑
j=0

‖Aj‖pp,

n−1∑
j=0

∥∥∥ 1
n

n−1∑
l=0

(ωj)
lAl

∥∥∥q

p
≤

( 1
n

n−1∑
j=0

‖Aj‖pp
)q/p

,

n−1∑
j=0

∥∥∥ 1
n

n−1∑
l=0

(ωj)
lAl

∥∥∥p

p
≤

( 1
n

n−1∑
j=0

‖Aj‖qp
)p/q

.

These inequalities are equivalent to the right inequalities in (4.1), (4.2), and (4.3).
Indeed, complex conjugation is the automorphism of the group {1, ωj, ω

2
j , . . . ,

ωn−1
j } and it only affects the corresponding sums by permutation of Aj.
The left inequality in (4.1) can be obtained either from the right inequality by

substitutions Bk =
∑n−1

j=0 ω
k
jAj or by Theorem 3.5, choosing αk = 1/k. �

Remark 4.2. Inequalities (4.1) and (4.2) were proved in [3] and [12], as well as
the inequality (1.6) which is the consequence of (3.10).
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Remark 4.3. Note that all constants that appear in any CMC inequality become
1 if we normalize the Haar measure.

Remark 4.4. As a special case of the preceding Corollary, if G = Z2, then we
obtain the original CMC inequalities (1.1), (1.2), and (1.3).

For G = Zn
2 , we get the following result concerning Littlewood matrices. They

are defined inductively as

L1 =

[
1 1
1 −1

]
, Ln+1 =

[
Ln Ln

Ln −Ln

]
. (4.4)

Corollary 4.5. Let n ∈ N, let Aj ∈ Cp for 1 ≤ j ≤ 2n, and let εij be the entries
of the Littlewood matrix Ln. Then

2n∑
i=1

∥∥∥ 2n∑
j=1

εijAj

∥∥∥p

p
≤ 2n(p−1)

2n∑
j=1

‖Aj‖pp, p ≥ 2, (4.5)

2n∑
i=1

∥∥∥ 2n∑
j=1

εijAj

∥∥∥q

p
≤ 2n

( 2n∑
j=1

‖Aj‖pp
)q/p

, 1 ≤ p ≤ 2, q =
p

p− 1
, (4.6)

2n∑
i=1

∥∥∥ 2n∑
j=1

εijAj

∥∥∥p

p
≤ 2n

( 2n∑
j=1

‖Aj‖qp
)p/q

, p ≥ 2, q =
p

p− 1
. (4.7)

Proof. Consider the group Zn
2 . It has n generators, say, a1, a2, . . . , an, all of them

of order 2. Therefore,

Zn
2 =

{
am1
1 am2

2 . . . amn
n

∣∣ (m1, . . . ,mn) ∈ {0, 1}n
}
.

Any character k : Zn
2 → T is determined by k(aj), 1 ≤ j ≤ n. It has to be

k(aj) = ±1, since k(aj)
2 = k(a2j) = k(1) = 1. Therefore, there are 2n distinct

characters on Zn
2 .

Let us show that the rows of the Littlewood matrix are exactly the images
k(a), a ∈ Zn

2 , in the lexicographic order, namely, in the order

am1
1 am2

2 . . . amn
n ≤ a

m′
1

1 a
m′

2
2 . . . am

′
n

n iff

m1 < m′
1 or m1 = m′

1 ∧m2 < m′
2, . . . .

For n = 1, Z1
2 = {a01, a11} there are exactly two characters k1 ≡ 1 and k2(a

0
1) = 1,

k2(a
1
1) = −1. This corresponds to the rows of L1 (see (4.4)).

Let the statement be true for some n ∈ N. Then the first 2n elements of Zn+1
2

are a01a
m2
2 . . . a

mn+1

n+1 , whereas the other 2n elements are a11a
m2
2 . . . a

mn+1

n+1 . Divide
characters on Zn+1

2 into two slots. Let the first consist of those k for which k(a1) =
1, and let the second consist of those k for which k(a1) = −1.

For k ∈ Ẑn+1
2 in the first slot, there is a unique k′ ∈ Ẑn

2 such that

k(a01a
m2
2 . . . a

mn+1

n+1 ) = k(a11a
m2
2 . . . a

mn+1

n+1 ) = k′(am2
2 . . . a

mn+1

n+1 ).

If the ith row of Ln corresponds to k′, then two copies of this row correspond to
k, and these two copies make exactly the ith row of Ln+1.
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For k ∈ Ẑn+1
2 in the second slot, there is a unique k′ ∈ Ẑn

2 such that

k(a01a
m2
2 . . . a

mn+1

n+1 ) = k′(am2
2 . . . a

mn+1

n+1 ),

k(a11a
m2
2 . . . a

mn+1

n+1 ) = −k′(am2
2 . . . a

mn+1

n+1 ).

If the ith row of Ln corresponds to k′, then two copies of this row with the second
copy multiplied by −1 correspond to k, and these two copies make exactly the
(2n + i)th row of Ln+1.

Thus it is proved that the εij’s are values of the ith character in Zn
2 , that is,

εij = ki(bj), where Zn
2 = {b1, . . . , b2n}, Ẑn

2 = {k1, . . . , k2n}. Hence
2n∑
j=1

εijAj =
2n∑
j=1

ki(bj)Aj = 2n
∫
Zn

ki(b)Ab dµ(b),

since the Haar measure on Zn
2 is the counting measure, divided by 2n. Therefore,

(4.5) becomes∑
k∈Ẑn

2

∥∥∥2n ∫
Zn
2

ki(b)Ab dµ(b)
∥∥∥p

p
≤ 2n(p−1)2n

∫
Zn
2

‖Ab‖pp dµ(b),

which is equivalent to (3.13). Similarly, (4.6) becomes

2n∑
i=1

∥∥∥2n ∫
Zn
2

ki(b)Ab dµ(b)
∥∥∥q

p
≤ 2n

(
2n

∫
Zn
2

‖Ab‖pp dµ(b)
)q/p

,

which is equivalent to (3.19). Finally, (4.7) becomes

2n∑
i=1

∥∥∥2n ∫
Zn
2

ki(b)Ab dµ(b)
∥∥∥p

p
≤ 2n

(
2n

∫
Zn
2

‖Ab‖qp dµ(b)
)q/p

,

which is equivalent to (3.23) �

Remark 4.6. A related result was given in [14, p. 164] (see also [18, Theorem 3.3]).
It was proved that( 2n∑

i=1

∥∥∥ 2n∑
j=1

εijfj

∥∥∥v

p

)1/v

≤ 2nc(u,v;p)
( 2n∑

j=1

‖fj‖up
)1/u

(4.8)

for various choices of u, v, and p, and for fi ∈ Lp—the standard Lebesgue space.
It was later generalized in [11, Theorem 2.4] and [18, Corollary 4.2] for fi from
the Lebesgue–Bochner space.

Corollary 4.4 is an expansion of (4.8) to Cp spaces for some choices of u, v.
Namely, for u = v = p ≥ 2, for u = p ≤ 2, v = q = p/(p− 1) and for v = p ≥ 2,
u = q = p/(p − 1). The constants in these cases match. We conjecture that the
same can be done for other choices of u, v, p (see Problem 5.1.)

For G = T, we get the following.



44 D. J. KEČKIĆ

Corollary 4.7. For all Aθ ∈ Lp((0, 2π); Cp) we have

+∞∑
k=−∞

∥∥∥∫ 2π

0

e−ikθAθ dθ
∥∥∥p

p
≤ (2π)p−1

∫ 2π

0

‖Aθ‖pp dθ

≤
+∞∑

k=−∞

α
1−p/2
k

∥∥∥∫ 2π

0

e−ikθAθ dθ
∥∥∥p

p
,

for any sequence αk > 0, k ∈ Z, such that
∑+∞

k=−∞ αk = 1. We have

+∞∑
k=−∞

∥∥∥∫ 2π

0

e−ikθAθ dθ
∥∥∥p

p
≤ 2π

(∫ 2π

0

‖Aθ‖qp dθ
)p/q

,

for p ≥ 2 and q = p/(p− 1), whereas for 1 ≤ p ≤ 2 and q = p/(p− 1), we have

+∞∑
k=−∞

∥∥∥∫ 2π

0

e−ikθAθ dθ
∥∥∥q

p
≤ 2π

(∫ 2π

0

‖Aθ‖pp dθ
)q/p

.

Proof. Consider G = T = {z ∈ C | |z| = 1}. Its Pontryagin dual is Ĝ ∼= Z, and
the corresponding Haar measure is dθ/2π, that is, the usual Lebesgue measure
normalized by the factor 2π. Characters on G are mappings θ 7→ ekθ for all k ∈ Z.
Hence, the result immediately follows from Theorems 3.4, 3.5, 3.6, and 3.7. �

Remark 4.8. The preceding corollary also estimates the Fourier coefficients for
functions in Bochner spaces Lp(T; Cp). More precisely, let lr(Cp) denote the space
of all sequences Bk ∈ Cp, k ∈ Z such that

∑
k∈Z ‖Bk‖rp < +∞, and let F stand for

the mapping which Aθ maps to Bk = (1/2π)
∫ 2π

0
e−ikθAθ dθ. Then Corollary 4.7

establishes norm estimates

‖F‖Lp((0,2π);Cp)→lp(Cp), ‖F‖Lq((0,2π);Cp)→lp(Cp) ≤ 1, p ≥ 2, q = p/(p− 1),

‖F‖Lp((0,2π);Cp)→lq(Cp), p ≤ 2, q = p/(p− 2).

5. Problems

We list some questions that naturally arise from the results of this article.

Problem 5.1. Do Boas–Koskela type inequalities (see [4] and [17]), that is,(∑
k∈Ĝ

∥∥∥∫
G

k(θ)Aθ dµ(θ)
∥∥∥r

p

)1/r

≤
(∫

G

‖Aθ‖sp dµ(θ)
)1/s

for s ≤ p ≤ r and r/(r − 1) ≤ s ≤ r, hold? If the answer is positive, it is likely
that the Kato inequality (4.8) might be extended to Cp classes for all choices of
u, v, and p.

Problem 5.2. Can we prove that the inequalities in Theorems 3.4, 3.6, and 3.7 are
sharp? Recall that the inequalities (4.8) are sharp for fi in Lebesgue spaces and
Lebesgue–Bochner spaces. This suggests, since the constants match, that (3.13),
(3.19), and (3.23) are also sharp.
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Problem 5.3. Is it possible to get convergence in ||| · |||-norm in Theorem 3.1? We
do have strong convergence. If this convergence is in the norm of J = B(H), then
this would lead to the conclusion that functions k(θ)I make a basis for Hilbert
module L2(G;B(H)). See Remark 3.2.

Problem 5.4. What can be done if G is not assumed to be compact? Some classical
results on Fourier transforms may be useful. Namely, for any p > 2, there is
f ∈ Lp(Rn) such that its Fourier transform is not a function, but a tempered
distribution. For 1 ≤ p ≤ 2, however, the Fourier transform is a bounded operator
from Lp(Rn) to Lq(Rn), where q = p/(p − 1) with norm equal to 1. For any
locally compact group, this is known as the Hausdorff–Young inequality (see [8,
Proposition 4.28]), and is usually proved by Riesz–Thorin theorem. This would
suggest that (in the case where G need not be compact) only inequality (3.19)
might be generalized.
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