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STABILITY OF TAUTOLOGICAL BUNDLES ON THE
HILBERT SCHEME OF TWO POINTS ON A SURFACE

MALTE WANDEL

Abstract. Let (X,H) be a polarized smooth projective surface satisfying
H1(X,OX) = 0, and let F be either a rank 1 torsion-free sheaf or a rank 2
μH -stable vector bundle on X. Assume that c1(F) �= 0. This article shows that

the rank 2—respectively, rank 4—tautological sheaf F [2] associated with F on
the Hilbert square X [2] is μ-stable with respect to a certain polarization.

§0. Introduction

Let X be an algebraic K3 surface with polarization H ∈ PicX , and let

v = (r, c, s) ∈N⊕NS(X)⊕Z. Mukai has shown [M] that in many cases—if v

is carefully chosen—the moduli space ofH-semistable sheaves of rank r, first

Chern class c, and second Chern class s, is again a smooth compact complex

manifold carrying a holomorphic symplectic structure. In fact, all these mod-

uli spaces are deformation-equivalent to Hilbn(X) for some n≥ 0. Now the

natural question arises: What happens if we start with another hyperkähler

manifold (instead of a K3 surface) and study the geometry of moduli spaces

of sheaves on this manifold? Not much is known about this topic, and one

of the fundamental questions is the following: Does there exist a symplec-

tic structure on these moduli spaces? Of course, answering this question in

general will be very complicated. But one could hope to at least find an

example of such a moduli space that does carry such a symplectic struc-

ture. Therefore, we need examples of vector bundles on higher-dimensional

hyperkähler manifolds, and then we have to inquire about the stability of

these bundles. One big class of examples are the so-called tautological bun-

dles on the Hilbert schemes of K3 surfaces. They arise as the images of vec-

tor bundles on a K3 under a Fourier–Mukai transform. We will concentrate

on the case of Hilb2(X), where X is a projective K3-surface. Schlickewei

Received May 23, 2012. Revised May 22, 2013. Accepted May 30, 2013.
First published online February 24, 2014.
2010 Mathematics Subject Classification. Primary 14J60; Secondary 14D20, 14J28,

14F05.

© 2014 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2416410
http://dx.doi.org/10.1215/00277630-2416410
http://www.ams.org/msc/
http://www.ams.org/msc/


80 M. WANDEL

[Sch] has shown that in many cases tautological bundles associated with

line bundles on X are stable with respect to a carefully chosen polariza-

tion on the Hilbert scheme. We will extend this result by showing that, in

fact, every rank 2 tautological sheaf associated with any rank 1 torsion-free

sheaf having nonvanishing first Chern class is stable with respect to some

polarization. Furthermore, we will prove that the rank 4 tautological vector

bundle associated with any stable rank 2 bundle is stable. Again, we assume

that the first Chern class is nontrivial. This provides us with quite a large

variety of stable vector bundles on Hilb2(X). A forthcoming paper [W] will

show that in some cases the component of the moduli space of sheaves on

Hilb2(X) containing the tautological sheaves is smooth and isomorphic to

the moduli space of sheaves on the K3 surface. It is therefore an irreducible

holomorphic symplectic manifold.

In fact, all results concerning the stability of the tautological sheaves are

valid for any smooth projective surface X satisfying h1(X,OX) = 0, so they

will be presented in this generality.

Notation and convention

• In this article, all schemes and varieties will be defined over the field of

complex numbers.

• For a vector bundle E , we write P(E) for Proj(Sym(E∨)) following the

definition in Fulton’s textbook [F, Appendix B5.5]. In this definition,

P(E) is the bundle of lines of E .
• By A�(Y ) we denote the Chow ring of any smooth projective variety Y .

§1. The geometric setup

Let X be a projective surface satisfying h1(X,OX) = 0, and choose a

polarization H . Throughout this text we will consider the following basic

blowup and projections diagram:

D
i

σD

X̃ ×X

π
σ

r1
r2

X [2] ×X

p

q

X
Δ

X ×X

π1 π2

X [2] X

X X
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Here Δ is the diagonal embedding, σ is the blowing-up morphism (we

are blowing up the diagonal), and D � P(NX|X×X) � P(TX) denotes the

exceptional divisor together with the projection σD, the inclusion i, and

OD(1), the dual of the tautological line bundle. It is well known that

N
D|X̃×X

∼= OD(−1) (see, e.g., [H, Chapter II, Theorem 8.24c]). Further-

more, π1, π2, p, and q denote the natural projections onto the particular

factors, and r1 and r2 are the compositions of π1 and π2 with σ. Last but

not least, we have the flat 2-to-1 covering π.

We will continue with some considerations concerning the Picard groups

of the varieties we are looking at. Note that by the assumption that h1(X,

OX) = 0, a line bundle is uniquely determined by its first Chern class. For

the same reason, this holds true for X ×X and X̃ ×X . We will therefore

often use the same notation for a line bundle as for the corresponding classes

in the Chow ring and cohomology.

We have Pic(X ×X)∼= (PicX)�2. Here we apply [H, Exercise III, 12.6b]

since h1(X,OX) = 0. And accordingly, we have Pic(X̃ ×X)∼= (PicX)�2 ⊕
ZD. We will write an element of Pic(X̃ ×X) as g ⊗ 1 + 1 ⊗ h + aD for

some g,h ∈ PicX and a ∈ Z, and we denote the corresponding line bundle

by L(g,h,a).

Furthermore, it is well known that PicX [2] ∼= PicX ⊕ Zδ, where δ is a

class such that 2δ is the exceptional divisor in X [2] coming from the blowup

of the diagonal in the quotient (X ×X)/S2. We will denote the line bundle

corresponding to δ by Lδ. Thus, we can write every element in Pic(X [2])

as LX ⊗L⊗a
δ for some LX ∈ PicX and a ∈ Z. Note that with this notation

we have π�LX = L(l,l,0) for a line bundle LX on X with first Chern class l.

Furthermore, we have the relations π�δ =D and π�D = 2δ.

Next let us summarize the most important facts about the Chow rings

of the varieties involved in the upper diagram. We will follow very closely

[F, Sections 6.7 and 15.4], especially [F, Lemma 15.4]. On D = P(TX) we

have the short exact sequence: 0→OD(−1)→ σ�
DNX|X×X →Q→ 0, where

Q is the universal quotient line bundle. We have NX|X×X � TX , and by

comparing Chern classes, we can see that Q�OD(1)⊗ σ�
Dω

∨
X :

(1) 0→OD(−1)→ σ�
DTX →OD(1)⊗ σ�

Dω
∨
X → 0.

Let ξ denote the first Chern class of OD(1). By [F, Remark 3.2.4 and The-

orem 3.3] we have

A∗(D)∼=A∗(X)[ξ]/
(
ξ2 + c1(TX)ξ + c2(TX)

)
.
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Furthermore, [F, Proposition 6.7e] describes the structure of A∗(X̃ ×X).

We gather the most important identities in this ring in the following lemma.

Lemma 1.1. Let α,β, γ ∈ A∗(X). In A∗(X̃ ×X) we have the following

identities:

(a)

i�
(
ξ · σ�

D(α)
)
= σ�Δ�(α) + i�σ

�
D(α · ωX),

(b)

i�i�λ=−ξ · λ for all λ ∈A∗(D),

(c)

i�σ
�
Dα · σ�(β ⊗ γ) = i�σ

�
D(α · β · γ),

(d)

i�σ
�
D(α) · i�σ�

D(β) =−σ�Δ�(α · β)− i�σ
�
D(α · β · ωX).

Proof.

(a) This follows from the general formula in [F, Proposition 6.7.a]. Note

that in this case the excess normal bundle is just the universal quotient

bundle denoted by Q above. We have c1(Q) = c1(OD(1) ⊗ σ�
Dω

∨
X) =

ξ − σ�
DωX .

(b) This is the self-intersection formula in [F, Corollary 6.3]:

i�i�λ= c1(ND|X̃×X
) · λ= c1

(
OD(−1)

)
· λ=−ξ · λ.

(c) We have α · β · γ = α ·Δ�(β ⊗ γ). Applying σ�
D, we get

σ�
D(α · β · γ) = σ�

D

(
α ·Δ�(β ⊗ γ)

)

= σ�
Dα · σ�

DΔ
�(β ⊗ γ) = σ�

Dα · i�σ�(β ⊗ γ).

Now we apply i� and use the projection formula.

(d) We use the projection formula and then (b) to find

i�σ
�
D(α) · i�σ�

D(β) = i�
(
i�i�σ

�
D(α) · σ�

D(β)
)

=−i�
(
ξ · σ�

D(α) · σ�
D(β)

)
=−i�

(
ξ · σ�

D(α · β)
)
.

Now we apply (a) and we are done.
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Corollary 1.2. We have

(a)

i�D =−ξ,

where we denote i�[D] ∈A3(X̃ ×X) simply by D;

(b)

D2 =−i�ξ =−σ�Δ− i�σ
�
D(ωX),

where Δ also denotes the cohomology class of the diagonal in X ×X;

(c)

(σ�Δ)2 = σ�Δ�

(
c2(TX)

)
.

Proof. (a) Apply (b) of the lemma to λ= [D].

(b) We use (a), and for the second equality we apply (a) of the lemma to

α= [X] to get

D2 = i�i
�D = i�(−ξ) =−σ�Δ− i�σ

�
D(ωX).

(c) In a very similar manner to the proof of (b) in the lemma, we use the

self-intersection formula:

(σ�Δ)2 = σ�(Δ2) = σ�Δ�Δ
�Δ= σ�Δ�Δ

�Δ�[X]

= σ�Δ�

(
c2(NX|X×X)

)
= σ�Δ�

(
c2(TX)

)
.

Let us finish this section by determining the canonical line bundles of D

and X̃ ×X . On X̃ ×X , we have a short exact sequence

0→T
X̃×X

→ σ�TX×X → i�
(
OD(1)⊗ σ�

Dω
∨
X

)
→ 0.

We immediately see that c1(TX̃×X
) = r�1c1(TX) + r�2c1(TX)−D, and there-

fore, that ω
X̃×X

= L(ωX ,ωX ,1).

Next, on D we have the exact sequence

0→TD → i�T
X̃×X

→OD(−1)→ 0.

Again, we derive c1(TD) = 2σ�
Dc1(TX) + 2ξ, so ωD � σ�

D(ω
∨
X)⊗2 ⊗OD(−2).
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§2. Tautological bundles

Now let F be a vector bundle on X of rank r with first Chern class f .

Recall that in X [2] ×X there is the universal subscheme Ξ consisting of

pairs (ξ,x) such that x ∈ ξ. We define the tautological bundle associated

with F to be the image of F under the Fourier−Mukai transform with the

structure sheaf of the universal subscheme as kernel:

F [2] :=Rp�(q
�F ⊗OΞ).

Since we are considering only the case of the second Hilbert scheme, we can

simplify this definition. Indeed, the universal subscheme Ξ is isomorphic

to the blowup X̃ ×X of X ×X along the diagonal. (A detailed discussion

of this fact can be found in [EGL, Section 1]). Via this isomorphism, p

restricted to Ξ corresponds to the 2-to-1 cover π, and q corresponds to the

morphism r1 = σ ◦ π1. Thus, we end up with the much simpler formula

F [2] = π�r
�
1F .

Remark. We see immediately that this process is, in fact, an exact func-

tor, and we do not need to derive the pushforward along the finite mor-

phism π.

Now F [2] is, of course, a vector bundle on X [2] of rank 2r, and we have

the following formula for its dual.

Lemma 2.1. Let F be a vector bundle on X. Then

(2) (F [2])∨ �F∨[2] ⊗Lδ.

Proof. Using the Grothendieck−Verdier duality, we have

F [2]∨=HomO
X[2]

(π�r
�
1F ,OX [2])� π�HomO

˜X×X
(r�1F ,L(ωX ,ωX ,1) ⊗ π�ω∨

X [2])

� π�HomO
˜X×X

(r�1F ,L(0,0,1))� π�(r
�
1F∨ ⊗ π�Lδ)

�F∨[2] ⊗Lδ.

Note that we use here the fact that in the identification Pic(X [2])∼=Pic(X)⊕
Zδ, we have ωX [2] � ωX .
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The pullback π�F [2] of a tautological sheaf fits into a basic exact sequence

as follows:

(3) 0→ π�F [2] → r�1F ⊕ r�2F → i�σ
�
DF → 0.

This sequence was already used by Danila [D] and Schlickewei [Sch] to study

tautological sheaves, and they provide a basic proof of its existence. Fur-

thermore, note that the exactness of this sequence is a special case of a more

general result due to Scala (see [Sc]). We want to deduce a simple formula

for the first Chern class of π�F [2]. We start with a definition.

Definition 2.2. Let Y be a smooth projective variety, and let E be a

sheaf on Y with dimSuppE ≤ d. Let Zi be the irreducible components of

the support of E of dimension d, and denote by ri the generic rank of E
on Zi. We define the d-cycle associated with E to be Zd(E) :=

∑
i ri[Zi].

Proposition 2.3. Let Y be a smooth projective variety, let i : W ↪→ Y

be a closed subscheme of dimension d, and let E be a sheaf on W . We have

ch(i�E) = Zd(i�E) + terms of higher codimension (TOHC).

Proof. This follows from the generalized Grothendieck−Riemann−Roch

theorem as stated in [F, Section 18.3]. By [F, Example 18.3.11], we have

τY (i�E) = Zd(i�E) +TOHC.

Now we use [F, Theorem 18.3] to proceed:

τY (i�E) = ch(i�E)∩ τY (OY ) =
(
chd(i�E) +TOHC

)
∩

(
[Y ] + TOHC

)

= chd(i�E) +TOHC.

For the first inequality, we use [F, Theorem 18.3(2)], and for the second, [F,

Theorem 18.3(5)]. Note that since Y is smooth, i�E admits a locally free

resolution.

Corollary 2.4. We have

c1(π
�F [2]) = r�1f + r�2f − rD.

In the following we will analyze conditions such that F [2] is stable. In

order for this to be possible, we will from now on assume that we are given
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a polarization H of X and that F is μH -stable. More precisely, for every

subsheaf E ⊆ F of rank 0< rE < r, we have

c1(E) ·H
rE

<
c1(F) ·H

r
.

Next, we have to fix a polarization on X [2]. This is done as follows. For

N ∈N we defineHN :=NH−δ. (Recall that we always use the identification

Pic(X [2]) ∼= PicX ⊕ Zδ.) This divisor is ample for all sufficiently large N ,

say, N ≥N0.

Now let us assume that there is a destabilizing subsheaf E ′ ⊆F [2]. Pulling

back both sheaves via π, we get an inclusion of sheaves on X̃ ×X :

π�E ′ =: E ⊆ π�F [2].

Since the slope of a vector bundle is just multiplied by 2 under the finite

pullback π�, E is also a destabilizing subsheaf of π�F [2] with respect to the

polarization H̃N = π�HN of X̃ ×X . Therefore, we will, in fact, consider

destabilizing subbundles of π�F [2] which come from X [2].

As a first step toward any considerations about the stability of a vector

bundle π�F [2], we first have to calculate the slope of a sheaf E with respect

to the given polarization. It is defined as

μ
H̃N

(E) := c1(E)H̃N
3

rE
,

considered as a number by integrating against the fundamental class of

X̃ ×X . Thus, we first calculate the expansion of H̃N
3
:

H̃N
3
= (NH ⊗ 1 + 1⊗NH −D)3

= (NH ⊗ 1 + 1⊗NH)3 − 3(NH ⊗ 1 + 1⊗NH)2D+O(N)

= 3N3(H2 ⊗H +H ⊗H2)− 3N2(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)D

+O(N).

Now let E be a sheaf on X̃ ×X . We write its first Chern class as c1(E) =
g⊗ 1 + 1⊗ h+ aD, with g,h ∈ PicX and a ∈ Z.
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Lemma 2.5. Let F be a sheaf on X of rank r, and let E be a sheaf on

X̃ ×X of rank rE . We have the following expansions for the slopes of E and

π�F [2]:

μ
H̃N

(E) = 1

rE

{
3H2

(
H.(g+ h)

)
N3 + 12aH2N2

}
+O(N),(4)

μ
H̃N

(π�F [2]) =
3H2(H.f)

r
N3 − 6H2N2 +O(N).(5)

Proof. First, note that (5) is just the special case of setting g = h =

f , a = −r, and rE = 2r in (4). Next, from Lemma 1.1(c) we deduce that

σ�(Ai(X ×X)) · i�σ�
D(A

j(X)) = 0 for i+ j > 4. Thus, half of the terms in

our computation vanish, and we are left with

H̃N
3
c1(E) = 3N3(H2 ⊗H +H ⊗H2)(g⊗ 1 + 1⊗ h)

− 3N2(H2 ⊗ 1 + 2H ⊗H + 1⊗H2)D · aD+O(N).

Finally, note that by Lemma 1.1 and Corollary 1.2, we have

(H2 ⊗ 1)D2 =−(H2 ⊗ 1)σ�Δ− (H2 ⊗ 1)i�σ
�
DωX

=−H2 − i�σ
�
D(H

2 · ωX︸ ︷︷ ︸
=0

)

=−H2,

and similarly for the terms with H ⊗H and 1⊗H .

§3. Destabilizing line subbundles of tautological bundles

In this section we will show that, for N ≥N0, there exist no HN -destabi-

lizing line subbundles L′ ⊆ F [2] in the case F �� OX . We assume that L′

is such a destabilizing line subbundle. The pullback L = π�L′ of such a

line bundle is a destabilizing line subbundle of the pullback π�F [2] with

respect to H̃N . Composing this inclusion with the one from the basic exact

sequence (3), we find that L⊆ r�1F ⊕ r�2F . We will proceed by showing that

Hom
X̃×X

(L, r�iF) = 0 for i = 1,2. The situation is completely symmetric;

thus we will focus on Hom
X̃×X

(L, r�1F). We write the first Chern class of

L as c1(L) = g ⊗ 1 + 1 ⊗ h + aD, with g = c1(G) and h = c1(H) for some

line bundles G and H on X . In fact, since L is coming from X [2], this class

is invariant under the S2-action; that is, g = h. But for later use we will
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proceed in this generality and denote the line bundle class with first Chern

class equal to g ⊗ 1 + 1⊗ h+ aD simply by L(g,h,a). We have the following

central result.

Proposition 3.1. For all g,h ∈ PicX and for all a ∈ Z, we have

(6) Hom
X̃×X

(L(g,h,a), r
�
1F)⊆HomX(G,F)h

2(X,H⊗ωX).

Proof. Consider the defining exact sequence of the structure sheaf of the

exceptional divisor D:

0→L(0,0,−1) →O
X̃×X

→OD → 0.

Tensoring this sequence with L(0,0,a), we have

(7) 0→L(0,0,a−1) →L(0,0,a) →OD(−a)→ 0,

so we see immediately that σ�L(0,0,a) is contained in OX×X for all a ∈ Z.

Thus, we find that r1�(r
�
2H∨⊗L(0,0,−a))� π1�(π

�
2H∨⊗σ�L(0,0,−a)) is a sub-

sheaf of π1�π
�
2H∨ �H0(H∨)⊗OX �Oh2(X,H⊗ωX)

X . Now using the projection

formula and adjunction, we get

Hom
X̃×X

(L(g,h,a), r
�
1F)∼=Hom

X̃×X
(r�1G, r�1F ⊗L(0,−h,−a))

∼=HomX

(
G, r1�(r�1F ⊗L(0,−h,−a))

)

∼=HomX

(
G,F ⊗ r1�(r

�
2H∨ ⊗L(0,0,−a))

)
.

Together with the inclusion above, we are done.

Corollary 3.2. Let F be a μH -stable vector bundle on X of rank r and

first Chern class c1(F) = f . Then r�1F contains no line subbundles L(g,h,a)

satisfying

(8) H.(g+ h)≥ H.f

r
,

except the case r = 1, h= 0, and g = f .

Proof. Let L(g,h,a) be a line subbundle of r�1F satisfying the hypothesis of

the corollary. We will show that HomX(G,F)h
2(X,H⊗ωX) = 0, which yields a

contradiction to Proposition 3.1.

If H.h > 0, we have 0 = h0(X,H∨) = h2(X,H⊗ ωX), and we are done.
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If H.h≤ 0, we see that

(9) H.g ≥H.(g+ h)≥ H.f

r
,

so if G �� F by the stability of F , we have HomX(G,F) = 0.

If G �F , we must have r = 1 and equalities everywhere in (9), so H.h= 0.

But then again, h2(X,H⊗ωX) = 0 for all such H but the trivial line bundle,

that is, h= 0.

Now that we have an explicit description for possible homomorphisms

from a line bundle to π�F [2], let us take a closer look at the destabilizing

condition for line subbundles in π�F [2].

Lemma 3.3. For sufficiently large N , a line subbundle L(g,h,a) in π�F [2]

is HN -destabilizing if

rH.(g+ h)>H.f or rH.(g+ h) =H.f and a≥ 0.

Proof. Equation (4) in Lemma 2.5 computes the expansion of the slope

of L(g,h,a) as

μ
H̃N

(L(g,h,a)) = 3H2
(
H.(g+ h)

)
N3 + 12aH2N2 +O(N).

And we also derived the expansion of μ
H̃N

(π�F [2]) in equation (5) in Lem-

ma 2.5:

μ
H̃N

(π�F [2]) =
3H2(H.f)

r
N3 − 6H2N2 +O(N).

Thus, L(g,h,a) is destabilizing if either rH.(g+h)>H.f or rH.(g+h) =H.f

and 2a >−1. Since a ∈ Z, we can replace the last inequality by a≥ 0.

Theorem 3.4. Let F be a μH -stable vector bundle on X of rank r and

first Chern class c1(F) = f . Assume that F �� OX . Then for sufficiently

large N , the tautological vector bundle F [2] on X [2] has no μHN
-destabilizing

line subbundles.

Proof. As explained before, we are reduced to considering an S2-equivari-

ant destabilizing line subbundle L(g,g,a) of π
�F [2]. The destabilizing condi-

tion yields H.g ≥H.f/2r, so by Corollary 3.2, such a line subbundle cannot

exist.
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§4. The cases r = 1 and r = 2

From Theorem 3.4 we deduce the following.

Corollary 4.1. Let F be a line bundle on X not isomorphic to OX .

Then for sufficiently large N , bundle F [2] is a μHN
-stable rank 2 vector

bundle on X [2].

Proof. Since F [2] has rank 2, we have only to consider torsion-free desta-

bilizing subsheaves of rank 1. If E is such a subsheaf, we can embed it into

its reflexive hull E∨∨. This is a reflexive rank 1 sheaf, that is, a line bundle.

Since F [2] is locally free, it is also reflexive. Now E∨∨ is a subbundle of

F [2], and the first Chern classes of E∨∨ and E coincide. Therefore, E∨∨ is

destabilizing. This gives a contradiction to Theorem 3.4.

We can generalize this result to arbitrary torsion-free rank 1 sheaves on

X with nonvanishing first Chern class, as follows.

Theorem 4.2. Let F be a torsion-free rank 1 sheaf on X satisfying

c1(F) �= 0. Then for sufficiently large N , F [2] is a μHN
-stable rank 2 torsion-

free sheaf on X [2].

Proof. Every torsion-free rank 1 sheaf F on a surface can be written as

F �L⊗IZ for some line bundle L and an ideal sheaf IZ of a 0-dimensional

subscheme Z ⊂X . We thus have an injection F ⊆L, and of course, c1(F) =

c1(L). In particular, the line bundle L is not trivial.

Now since (−)[2] is an exact functor, we see (cf. [Sc, Lemma 23]) that

F [2] is also torsion-free. Furthermore, we have an injection F [2] ⊆L[2]. But

c1(F [2]) = c1(L[2]) because the cokernel of the inclusion F [2] ↪→L[2] is O[2]
Z ,

which is supported in codimension 2. Thus, the stability of F [2] follows

immediately.

Now we want to consider the case r = rkF = 2. We have seen before that

F [2] cannot contain destabilizing line subbundles. In this section we will

prove that in most cases, in fact, F [2] does not contain any destabilizing

subsheaves. We start with a technical lemma.

Lemma 4.3. Let (Y,O(1)) be a polarized smooth projective variety, and

let H be a pure sheaf on Y . The maximal destabilizing subsheaf of H is

saturated.
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Proof. Denote by H′ the maximal destabilizing subsheaf. Its saturation

H′
sat in H is a subsheaf of H of the same rank containing H′. Therefore,

μ(H′
sat)≥ μ(H′). By the maximality of H′, we must have H′

sat �H′.

Theorem 4.4. Let F be a rank 2 μH -stable vector bundle on X, and

assume that f = c1(F) �= 0. Then for sufficiently large N , F [2] is a μHN
-

stable rank 4 vector bundle on X [2].

Proof. Let E be the maximal destabilizing subsheaf of π�F [2]. It is semi-

stable and S2-linearized. Similar to the proof of Corollary 4.1, one can show

that E is reflexive, and by Lemma 4.3, we see that it is saturated. By The-

orem 3.4, E cannot have rank 1. Let us first consider the case rkE = 3, and

let us have a look at the corresponding short exact sequence on X̃ ×X ,

0→E → π�F [2] →Q→ 0,

where Q is the corresponding destabilizing quotient. Let us write c1(E) =
e⊗ 1 + 1⊗ e+ aD. Using (2), we see that the dual of this sequence is the

following:

0→HomO
˜X×X

(Q,O
X̃×X

)
︸ ︷︷ ︸

=:Q′

→ π�(F∨[2])⊗L(0,0,1)

→E∨ →Ext1O
˜X×X

(Q,O
X̃×X

)→ 0.

Since E is saturated, thenQ is torsion-free, and so the support of Ext1O
˜X×X

(Q,

O
X̃×X

) has codimension at least 2, so it is vanishing first Chern class. We

compute

c1(Q′) = c1
(
π�

(
(F∨)[2]

))
+ c1(L(0,0,1)) · rk

(
π�

(
(F∨)[2]

))
− c1(E∨)

= (e− f)⊗ 1 + 1⊗ (e− f) + (a+ 2)D.

Now we may assume that Q′ is reflexive, that is, locally free. (If necessary,

we replace Q′ by its reflexive hull, which still gives a subsheaf of π�(F∨[2])⊗
L(0,0,1) with the same first Chern class.) More precisely, Q′ �L(e−f,e−f,a+2).

We have an inclusion Q′ ⊗ L(0,0,−1) ↪→ π�F∨[2]. Now, by Lemma 2.5, the

destabilizing condition on E implies that

4H.e≥ 3H.f.
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Thus, 2H.(e − f) ≥ −(H.f/2), and since Q′ ⊗ L(0,0,−1) ⊂ r�1F∨, then by

Corollary 3.2 we get a contradiction.

Finally, assume that the maximal destabilizing subsheaf of π�F [2] is a

rank 2 sheaf E . Again, its first Chern class can be written as c1(E) = e⊗
1 + 1 ⊗ e + aD with e ∈ PicX and a ∈ Z, and by the fundamental exact

sequence (3) we get an injective S2-equivariant homomorphism E ↪→ r�1F ⊕
r�2F . We will denote its composition with the projection onto the first factor

by β : E → r�1F . Now we distinguish three cases.

(a) rank kerβ = 0

Thus, kerβ is a torsion subsheaf of E , so it is trivial since E is torsion-free.

Thus, β is an isomorphism away from an effective divisor j : Y ↪→ X̃ ×X .

Thus, cokerβ can be written as j�K for some sheaf K on Y . Let Y =
⋃

i Yi

be the decomposition into irreducible components; then, by Proposition 2.3,

we can write its first Chern class as c1(cokerβ) =
∑

i(Yi · rkKi), where Ki

is the restriction of K to Yi. On the other hand, we can compute the first

Chern class of cokerβ directly:

c1(cokerβ) = c1(r
�
1F)− c1(E) = f ⊗ 1− e⊗ 1− 1⊗ e− aD.

Now Y is effective. Thus, if rkKi �= 0 for some i, we must have (f − e)⊗ 1−
1⊗ e− aD effective. Evaluating against the polarization H̃N yields 2H.e <

H.f . Together with the destabilizing condition on E—which implies that

2.He≥H.f—we get a contradiction. If rkKi = 0 ∀i, that is, if c1(cokerβ) =
0, then we must have f = 0, which we excluded.

(b) rank kerβ = 2

This says that on an open subset β has to vanish, which by symmetry

contradicts the fact that E injects into r�1F ⊕ r�2F .

(c) rank kerβ = 1

Now imβ is a rank 1 quotient sheaf of E , and we write its first Chern class

c1(imβ) = g⊗ 1 + 1⊗ h+ bD. The semistability of E yields

H.e≤H.(g+ h).

At the same time, imβ is a rank 1 subsheaf of r�1F . Denote by imβ∨∨ its

reflexive hull. This is a reflexive rank 1 sheaf and thus a line bundle. And

it has the same first Chern class as imβ, so imβ∨∨ = L(g,h,b). The destabi-

lizing condition on E implies that 2H.e≥H.f . Putting things together, we
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find a line subbundle L(g,h,b) in r�1F satisfying 2H.(g + h)≥H.f . This is a

contradiction to Corollary 3.2.

§5. The case of the trivial line bundle

In the previous section we explicitly excluded the case F �OX . In fact,

we have the following result.

Proposition 5.1. The tautological vector bundle O[2]
X associated with the

trivial line bundle OX is not μHN
-stable for sufficiently large N .

Proof. By [D, Théorème 1], we have H0(O[2]
X ) ∼= C. Thus, the structure

sheaf OX [2] is a line subbundle of O[2]
X . We compare the slopes in order to

show that OX [2] is destabilizing. By Lemma 2.5, we have

μ
H̃N

(π�OX [2]) = 0,

μ
H̃N

(π�O[2]
X ) =−6H2N2 +O(N).

Thus, we see that for sufficiently large N , the subbundle OX [2] is destabi-

lizing.
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