INFLUENTIAL OBSERVATIONS

Massachusetts Institute of Technology indicates that
good subset diagnostics can be constructed in this
way. If the computing is overly burdensome in a
particular situation, sampling of p from n or simulated
annealing can provide useful approximations.

Why do this at all? Some have argued that there
are few real examples where clumps occur. Yet, it is
easy to construct simulated examples. The reason we
have few real examples is because we have no micro-
scope with enough resolution to see the problem.
When we do and still find no real examples, then we
can go on to other things.

CONCLUDING REMARKS

Perhaps the most difficult task I have undertaken
(and by no means completed) in recent years is to
develop regression analysis strategies for the guided-
computing project at the Massachusetts Institute of
Technology (Oldford and Peters, 1985). Even with a
vast arsonal of diagnostics, it is very hard to write
down rules that can be used to guide a data analysis.
So much is really subjective and subtle. Guided com-
puting forces us to consider chance as a possible cause
in any diagnostic exploration. It is perhaps a form of
controlled magical thinking (Diaconis, 1985). A great
deal of what we teach in applied statistics is not
written down, let alone in a form suitable for formal
encoding. It is just simply “lore.”

Progress can be made for very restricted problems
detected by diagnostics. However, as soon as we try to
attack influential data and collinearity, or influential
data and model selection, or influential data and
transformations, etc. it gets much harder. Multiplicity
and simultaneity (of problems and analyses) are ad-
ditional important words for statisticans to remember.
They provide an incredible challenge for the future of
diagnostics and statistics.

Comment

Rollin Brant

I strongly agree with the authors’ characterization
of the number of proposals that have been made
regarding outliers and influential points as “bewilder-
ing.” However, these proposals themselves comprise
only a part of a much larger number of methods put
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forward as useful adjuncts to the criticism of regres-
sion models. As a consequence, the conscientious and
up to date investigator finds that model validation can
be both time-consuming and difficult, requiring the
consideration of a myriad of diagnostic quantities and
plots. Most difficult of all is the integration of the
often fragmentary evidence provided by these proce-
dures into a coherent set of recommendations and/or
conclusions. Any attempts at cutting through any
portion of this tangled web must be welcomed by all.
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The authors surely deserve credit for providing a
convenient and compact summary of the currently
available measures. Where their efforts fall short,
however, is in failing to provide guidance in the prac-
tical application of these measures. Two issues are key
in this regard. The first, which is partially addressed
by the authors, is the need for a distillation of the
currently chaotic mass of diagnostics down to a com-
pact and integrated set of procedures. The second,
which has received little direct attention, concerns the
practical implications of diagnostic findings.

With regard to the first issue, the authors propose
that “three measures are sufficient to display the
major characteristics of a data set with reference to
its leverage, influence, and lack of fit.” My concern
here is not with the number, or indeed the particular
choice, but with the lack of adequate substantiation
for this claim, the sole basis for which appears to be
“experience with several data sets.” While I do not
wish to denigrate the role of practical experience in
the shaping of methodology, one wonders whether the
experience referred to has been sufficiently wide rang-
ing, or even in any sense practical. If their rationale
is somewhat unclear, the authors can perhaps be for-
given; current statistical theory provides little guid-
ance in this area, for a number of reasons discussed
below.

A characteristic shared by all diagnostics is their
nonspecificity with regard to the ills they potentially
signify. For instance, a large outlier can stem from
causes ranging from the need to transform variables
through misspecification of the error distribution to
possible defects in data collection and reporting. A
second and associated feature of most measures is the
difficulty of calibrating and/or comparing procedures.
For most statistical procedures, such considerations
are based on operating characteristics under varying
model assumptions. However, the omnibus scope of
diagnostics makes it difficult to represent their aims
in terms of models and loss functions. Moreover,
important anomalies often arise from the behavior of
the predictor variables, regarding which the usual
models have little to say. Consequently, most diagnos-
tics can provide only relative measures, i.e., rankings
of cases and not measurements on scales with more
general relevance. Additionally, there is little formal
basis for comparing competing measures.

Since traditional theory cannot provide the sought
after logical basis for assessment, we must turn to
practical issues to provide such guidance. In particu-
lar, we must consider the role of diagnostics in sug-
gesting remedial measures and/or substantial conclu-
sions in practical situations. Guidance in these
matters is distributed rather sparsely throughout the
current literature. The failure to relate the develop-
ment of diagnostics to the more substantial aims of
investigators has had some unfortunate effects. For

instance, some naive users have come to regard case
deletion as the customary cure for the ills apparently
indicated by diagnostic measures.

Of course, most authors have provided appropriate
cautions regarding the need for further investigation
into the underlying conditions which give rise to di-
agnostic indications before taking such definite ac-
tions. In the same places, however, such illustrative
examples as are provided are usually furnished merely
to illustrate the more mechanical aspects of proce-
dures, and are rarely accompanied by examples of the
type of investigation that should follow the diagnostic
phase. Of course many illustrative examples are ob-
tained “second hand,” and further investigation is
often hampered, although not entirely impossible.

Unfortunately, the authors’ presentation makes lit-
tle progress toward correcting this deficiency. One of
the few substantial recommendations they make in
this connection is to “collect more data.” While it is
certain that in many instances the potential problems
uncovered by diagnostics are not amenable to statis-
tical remedies, it is also certain that statisticians
should have more to offer. Indeed, the mere investi-
gation of diagnostic measures on their own is seldom
as enlightening as it should be. Such measures are
most usefully taken as pointers toward potentially
interesting features of the data. Owing to the variety
of forms these features may take, they are most ap-
propriately examined through graphical exposition,
which has been largely overlooked in the authors’
presentation.

In the illustrative example, all measures seem to
point to case 17. What can be said regarding this case,
aside from recommending further investigation into
the substantial background of the associated obser-
vations? The plot in Figure 1 of x, versus x; clearly
exposes the nature of the peculiarity of case 17, re-
vealing that the remaining cases are concentrated
along the indicated hyperplane. Aside from suggesting
the possibility of some sort of anomaly, the plot makes
clear that any inference regarding the form of the

. regression relationship away from this region is deter-

mined strongly by this case. In short, this plot com-
municates much more usable information than any
purely numerical measure.

This plot is further revealing when one considers
the joint influence of case 17 together with its near
neighbor, case 13. In Table 1, values of the generalized
Cook distance measure (see Cook and Weisberg, 1982,
page 136) for sets of cases are given for the 10 most
influential subsets of sizes 2 and 3, revealing the
overwhelming influence of the rather sparse data in
this region. The authors only touch on the subject of
jointly influential subsets, and summarily dismiss the
issue as being primarily computational. The extent of
the above tabulation, however, points out that merely
calculating influence measures over a catalog of
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F1G. 1. Plot of x4 versus x3 for Moore’s data. Numbers plotted are case numbers.

TABLE 1
Influence measures for influential sets of size 2 and 3

Generalized
Set Cases Cook’s
distance
a. Sets of size 2

1. 3 17 5.42

2. 4 17 2.97

3. 6 17 2.68

4. 8 17 2.48

5. 10 17 2.44

6. 13 17 2.30

7. 14 - 17 2.28

8. 16 17 1.99

9. 17 18 1.90

10. 17 19 1.88

b. Sets of size 3

1. 3 13 17 11.68
2. 4 13 17 9.21
3. 6 13 17 8.40
4. 8 13 17 7.58
5. 10 13 17 7.23
6. 12 13 17 7.22
A 13 14 17 6.83
8. 13 16 17 6.10
9. 13 17 18 5.86
10. 13 17 19 5.66

subsets is not of itself informative, for not all appar-
ently influential subsets will correspond to interesting
behavior in the data. Additionally, the benefits to
be derived from consideration of joint influence go
beyond defeating the masking effect. Such consid-
erations can, in addition, provide clues as to the sub-
stantial relevance of influence, by helping to relate

similarly influential observations. These issues are
considered at greater length in Brant (1986).
Although the literature concerning diagnostics is
extensive, it has yet to fully address certain vital
issues. Perhaps most important is the need for inte-
gration of this and the many other varied aspects of
regression and model fitting into a coherent whole.
Regression methodology has undergone almost explo-
sive growth during the past 10 years, owing in part to
the ever increasing availability of computing equip-
ment. One potentially important development that

- now looms on the horizon are “expert systems” for

regression, which will implement diagnostic, and pos-
sibly remedial, procedures in more or less automated
computer packages.

While some may argue the desirability of such sys-
tems, we can also be sure that they will appear. The
heart of any such system will be a “regression strategy”

- for combining the various relevant methods, and it is

the development of sensible strategies that is a major
research problem. Fortunately, current advances in
software development systems will facilitate experi-
mentation with a variety of proposed strategies. Thus
technological change, while posing new challenges, at
the same time affords statisticians with exciting new
opportunities. It is imperative that statisticians take
up this challenge, for if we fail to do so the job will
only fall to the inexpert.
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