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Comment

Peter McCullagh

Hastie and Tibshirani are to be congratulated for
presenting the theory and methodology of generalized
additive models in a form that keeps incidental math-
ematical details at an acceptably low level. I have little
to add and my single comment is therefore brief.

The whole thrust of the authors’ development seems
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Rejoinder

Trevor Hastie and Robert Tibshirani

1. THE GENERAL PROBLEM

In Section 5 of the paper, we motivated the local
scoring and local likelihood estimation procedures as
empirical methods for maximizing E(I(n(X), Y)). In
the two procedures, the maximization problem is ap-
proached in different ways. In the local likelihood
method, an estimate of E((I(n(X), Y)|X = x))
is constructed (for each x) and this has the form
(1/kn)- Y jen, Un(x;), y;) given in (26) of the paper. As
Brillinger notes (his Section 2), one can generalize

this and hence include robust estimates and many -

others.
~ On the other hand, the local scoring procedure
maximizes E(l(n(X), Y)) by estimating the quanti-
ties in the update expressions (22) and (36). Note,
however, that this procedure is not expressible as a
maximation of the kind that Brillinger describes,
i.e.,, a maximization of a function of the form
¥ p(Y:| 7)) W,o:(X). However, it is possible to write
down a finite sample justification of local scoring (to
answer a question of Brillinger’s) based on the notion
of penalized likelihood. This justification applies only
in the special case in which the local scoring algorithm
uses linear smoothers. Recall that a linear smoother
is one for which the result of smoothing a vector z can
be written simply as z = Sz, for some matrix S, called
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to be based implicitly on the following assumption,
here reduced to the bare essentials: zero interaction is
fundamentally more plausible than componentwise
linearity in the covariates. Has there been any attempt
to justify this point of view, either philosophically or
empirically by examining a large number of examples
or by any other means? A closely related question
concerning statistical strategy is the following: at what
stage of analysis does the assumption of zero interac-
tion come under scrutiny?

a “smoother matrix.” Now suppose we have data (y,
X115 X12, =+ *5 X1p)y ** *5 (Yny Xn1, Xng, * -+, Xnp) and let S;
be the smoother matrix for the jth variable. Let s; =
(s1(x1), sa(2g), -, snlxn)),, j = 1,2, .-, p and
consider the following problem. Find s,, s3, - - -, s, to
maximize

(1) i) — 5 3 55(57 ~ Ds

where n = o + Y7 s; and S; is a generalized inverse of
S;. Then it is easy to show that the local scoring
procedure is a Fisher scoring step for maximizing (1)
(see Hastie and Tibshirani, 1986a, for details). Now a
typical smoothe: matrix is close to symmetric, has
eigenvectors that are close to polynomials, and has
eigenvalues that tend to decrease with increasing order
of the eigenvector. Hence, the penalty term in (1) puts
greater penalty on the higher order polynomial com-
ponents of each s;. There is also a close tie here to
smoothing splines. If we start with a penalty of the
form Y7 \;s; K;s;, where K;is an appropriate quadratic
penalty matrix, we derive a local scoring procedure
that uses cubic spline smoothers. Hence, there is close
relation of local scoring to the work of O’Sullivan,
Yandell, and Raynor (1986), Green (1985), and
Green and Yandell (1985). These authors consider a
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penalized likelihood approach, with emphasis on
quadratic penalties leading to spline smoothing, as
above. None of these authors use backfitting type
algorithms, however, because their models contain
only a single smooth function or surface (in addition
to parametric terms) and hence backfitting is not
required. i

Following Brillinger’s comment, we note that the
local scoring procedure can also be used for robust
estimation. For a general y function, the local scoring

V(Y| n)

step equivalent to (22) is
]
E(dy/dn| x)

As before, the conditional expectation is estimated by
a smoother, and for multiple covariates, » might be an
additive function.

Stone’s parametric splines can be cast in the same
setting. The spline fit on each covariate can be written
as a linear operation and hence his model could be fit
with a local scoring algorithm performing the appro-
priate linear fit at each smoothing step. By the results
quoted in Section 7, this procedure would converge to
the maximum likelihood estimates of the functions;
this would, however, be a very inefficient way to fit
the model, since it can be solved efficiently via the
usual iterative methods.

A disadvantage of this global minimization frame-
work is that it doesn’t incorporate nonlinear smooth-
ers. These include variable span smoothers (e.g.,
“supersmoother,” Friedman and Stuetzle, 1982) and
the “split-linear smoother” (MacDonald and Owen,
1984) for capturing discontinuities. These and other
nonlinear smoothers would be useful for capturing the
irregular or discontinuous functional behavior that
Brillinger mentions, but we’ve had only a limited
experience with them so far. We have incorporated a
cubic spline smoother into the lastest version of GAIM
(thanks to Finbarr O’Sullivan for his code) and have
been happy with the results. As a final point, we
reiterate another nice feature of local scoring: one is
free to choose different smoothers for different co-
variates. Hence, one could use a spline smoother
.for one covariate, a parametric spline for a second
covariate, a variable span smoother for a third
covariate, and so on. Of course, straight line fits and
categorical variables can also be used, resulting in a
rich class of models.

2. ADDITIVITY AND INTERACTION

Drs. Brillinger, McCullagh, and Nelder bring up the
question of additivity and interaction. It is difficult to
come up with a clear definition for the latter; one
possibility is to define interaction as being the lack of
fit in a standard (componentwise) linear model.
Phrased in this way, nonlinearity in a covariate is a
kind of interaction. We suspect that McCullagh is

2 n'(x) = E[n(x) -

referring to a more restrictive form of interaction,
something like product interactions of two or more
variables. We don’t feel that zero interaction (of this
latter sort) is “fundamentally more plausible” than
componentwise linearity; instead, we view the method
that we have presented for estimating nonlinearities
as just another tool for detecting departures from the
linear model. McCullagh’s question concerning when
(in an analysis) interaction should come under scru-
tiny is a deep one that we don’t know how to answer.
To further stress the difficulty of this question, we
note that transformations of Y are another way to
model certain kinds of product interactions on the
original Y scale. The overall goal of all these tools is
to find simple departures from a componentwise linear
model; developing an effective strategy for this is a
challenging and important problem.

We do want to emphasize that simple interactions
can be incorporated in a generalized additive model.
These include interactions of the form Bx;x,, s(x;x,),
and B8,(x1) - $2(x2) (suggested by Nelder), where §,(x,)
and $,(x,) are known functions, possibly obtained from
an additive fit. We don’t feel (as Nelder does) that
convergence of local scoring will be a problem in these
cases; it will simply take longer to converge as the
constructed variables become more correlated.

More recently, we have experimented with the use
of two-dimensional smoothers to fit surfaces more
general than an additive one. Figure 1B illustrates
such a surface.

The variables income (of the head of household)
and age are two of a number of variables used to model
the proportion of families having a telephone at home
(the datais part of a telephone survey kindly furnished
by Ed Fowlkes). The terms s;(Inc) + s.(Age) were
included in an additive logistic model, together with
several other variables. Figure 1A gives the additive
surface defined by these two fitted functions. Figure
1B shows the estimated interaction surface s;.(Inc,
Age). This was estimated by using a (kernel) surface
smoother within the local scoring algorithm for this

" pair. The single function for income was quadratic,

whereas in Figure 1B we see that that the income
effect appears mostly monotone (except for a dip
around the middle ages) and levels off at higher ages
(and thus higher incomes). This leveling off goes un-
noticed in the additive function model; rather it simply
dampens the overall effect. This example illustrates
the fact that an additive model can give us a reason-
able idea of what is going on, while finer details can
be discovered by fitting more general models.

3. COMPUTATIONAL CONSIDERATIONS

Brillinger reports many problems with iteratively
reweighted least squares algorithms, and while we
don’t doubt that better procedures will be developed,
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F1G. 1. (A) Additive surface defined by s:(Inc) + s,(Age). This gives an idea of the types of surfaces produced by additive models. (B)
Interactions surface s, 2(Inc, Age) reveals two-dimensional features not captured by the additive model. The surface was estimated using a two-

dimensional kernel smoother within the local scoring algorithm.

we have had few difficulties with the present algo-
rithm. Brillinger later told us that this problems oc-
curred in special models that incorporated random
effects, and perhaps this added complexity caused
some of the difficulty.

In the local scoring algorithm, many variations are
possible, in terms of the order of the smoothing and
updating operations. In some early experimentation
we had convergence problems with one variant. We
chose the present method because it converged well in
practice and because it reduces to Fisher scoring when
linear fitting is used.

More recently, we have developed (with Andreas
Buja, 1986) a new version of backfitting in which the
linear components for all the variables are all fit in a
separate projection. We have been able to prove con-
vergence of this modified algorithm when a practical
smoother like a cubic spline is used, something that
neither we nor Breiman and Friedman (1985) have
been able to do for the present algorithm. This algo-
rithm should also be much more efficient computa-
tionally.

We note that in general, one has a choice of observed
or expected information in the local scoring procedure;
these correspond to Newton-Raphson and Fisher scor-
ing, respectively. (In the exponential family with can-
onical link, they are the same.) In the paper, we used
observed information for the general case, but we
haven’t yet studied this choice. Nor have we thought
enough about concavity of the log likelihood, as men-
tioned by Stone.

Brillinger’s points about an “automatic” algorithm
are well taken. We were referring to the fact that our
procedures eliminate some of the detective work nec-
essary for finding nonlinearities from partial residual
plots.

Finally, in response to Nelder’s request for a GLIM
version of the algorithms, we think we have a simple
method for implementation via the new PASS facility
that he is alluding to, but neither of us have the
3-77 version of GLIM and are looking forward to
receiving it (for UNIX machines).

4. DIAGNOSTICS AND TOOLS FOR INFERENCE

Brillinger mentions the need for fit/validation pro-
cedures, diagnostics, and measures of influence. As
mentioned in Section 9 and demonstrated in the ex-
amples, we have developed a notion degrees of freedom

“effective number of parameters,” following that of
Cleveland (1979). This is useful for assessing the
importance of model terms. We also have a fairly
simple way of estimating pointwise confidence bands
for the estimated functions, if the smoothers used are
linear. These are based on + twice a local measure of
standard deviation. See Hastie and Tibshirani (1984,
1985¢) for further details of both the above techniques.
Resampling methods, as suggested by Brillinger,
would be another approach. An example of this is
given in Efron and Tibshirani (1986), but we haven’t
yet studied this problem in detail.

The local scoring algorithm is not very robust to



GENERALIZED ADDITIVE MODELS 317

outliers and making the smoothers robust would not
solve the problem completely, if more than one co-
variate is present. What is needed is another outer
loop in which points are downweighed based on the
current fit; however, this may be computationally
formidable. As far as diagnostics are concerned, Buja,
Donnell, and Stuetzle (1986) have studied the analo-
gous problem to collinearity in additive models (they
call it “cocurvity”). This and much more work is
needed to develop for additive models a diagnostic
“black bag” like the one available for linear models.

5. THE DATA ANALYSES

In the two examples of our paper, we are guilty, as
Brillinger points out, of brushing over the scientific
aspects of the problem at hand. We will briefly try to
make amends here. In the first example, the smooth
in Figure 3 is interesting because it shows a plateau
around age 50, something oncologists call the “Clem-
menson hook.” In the Cox model example, an inter-
esting result was the disagreement, between the par-
ametric and nonparametric analyses, as to whether
the relative risk dropped or was about constant be-
tween ages 10 and 40. Further investigation (see Efron
and Tibshirani, 1986) suggested that there was insuf-
ficient data in this age range to decide the issue.

To answer Nelder’s questions on the first example,
the addition of a term Bx, x, to the generalized additive
model did not significantly reduce the deviance, al-
though it was significant when added to the paramet-
ric model. On Nelder’s suggestion, we tried adding the
term B88:(x1) - S2(x2) to the model, §;(x;) and §;(x2)
being the functions from the generalized additive fit.
This produced a drop-in deviance of only 1.4. We also
tried replacing each smooth by the corresponding par-
ametric fit, as suggested by Nelder. The drops in
deviance were 5.7, 3.6, and .01 on 1.7, 1.5, and 1.4,
respectively. Hence, only the function for age is sig-
nificantly better than its parametric fit.

For a more thorough data analysis using generalized
additive models, we refer the reader to Hastie and
Tibshirani (1985a and 1985c¢).

6. RELATED WORK AND EXTENSIONS

Stone discusses another approach to generalized
additive model estimation, namely the use of fixed
knot “parametric splines.” His method does have the
conceptual and mathematical advantages that he
mentions, but practically speaking, we worry about
the task of picking the number and position of the
knots. How much does this choice effect the appear-
ance of the final estimate? When many covariates are
present, should the knots be chosen in some way to
account for the other variables in the model? Another

closely related approach, is that of smoothing splines,
mentioned in Section 3 of this discussion. A compar-
ative study of all these methods would be very useful.

Stone mentioned multiparameter models. We have,
in fact, generalized the logistic model to incorporate
ordered categorical responses (Hastie and Tibshirani,
1986b). We adapted the proportional odds model of
McCullagh (1980):

logit[P(Y = k| x)]

(3) p
=ak-2fj(xj)7 k=1’2”"’K—19
j=1

where the response Y has K categories. The model
essentially says that the histogram for the response
categories shifts with the covariates according to
n(x) = Y2 f;(x;). We use the multinomial likelihood
for estimation. The appropriate local scoring algo-
rithm has an additional loop; we alternate between
estimating the K — 1 constants by weighted averages
of K — 1 adjusted dependent variates, and the additive
functions by backfitting on a scalar linear combination
of adjusted dependent variates. The model (3) can also
be used when a continuous response has been catego-
rized, and thus fills the gap between the extreme 0-1
response logistic regression model and the continuous
response ordinary regression model.

Brillinger’s final question concerning ACE and gen-
eralized additive models is a fascinating one. We would
like to take this opportunity to clarify the relationship
between the methods and report some current re-
search. First note that, as alluded to in Section 9 of
the paper, the local scoring algorithm can be used to
estimate any function that appears in a model, not
just a function of a covariate. We simply add a step
like (22) to the algorithm for that function. Thus for
example, we can estimate a link function (see Hastie
and Tibshirani, 1984) or a variance function (Hastie
and Pregibon, 1986). This fact will become important
below.

Now consider the Gaussian additive model
E(Y|X) = a+ X7 5/(X)). (We'll relate our comments
to nonGaussian generalized additive models as we go
along.) Two ways to extend this model are to allow
a transformation of the mean, ie., E(Y|X) =
fla + Y7 s;(X))) or a transformation of the response,
ie, E@(Y)|X) = a Y7 s;(X;). The former has been
looked at by Friedman and Owen (1986) and is a
special case of link function estimation for generalized
additive models via local scoring. The second model is
the transformation model, for which Breiman and
Friedman’s (1985) ACE algorithm provides a method
for estimation. The two models are not the same, even
if 6(.) is forced to be monotone. That is, we should
not expect that 67*(-) will be close to f (-) for a given
data set.
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Brillinger’s question concerns two possible methods
for estimating the functions of the transformation
model. The ACE algorithm maximizes the correlation
of the transformed variables. Brillinger’s suggestion is
to instead maximize the likelihood of the untrans-
formed variables, by direct analogy to the parametric
method of Box and Cox (1964). This likelihood would
include a Jacobian, as Brillinger states, to account for
the transformation 6(-). One can carry through Bril-
linger’s suggestion using the local scoring algorithm:
unfortunately, the resultant algorithm requires esti-
mates of the second and third derivatives of 6(-).
While we haven’t tried it yet, our guess is that the
algorithm might be unstable because of this.

Another approach to this problem, similar to Bril-
linger’s suggestion, is given by Tibshirani (1986). He
proposes an algorithm in which a (nonparametric)
variance stabilizing transformation is used to estimate
6(-). The procedure is called “RACE” for regression
ACE. In both simulated and real data examples, he
demonstrates that RACE eliminates many of the
anomalies of ACE, in particular, sensitivity to the
marginal distribution of the X’s. RACE is likely to
produce similar results (qualitatively) to Brillinger’s
suggestion, because the effect of the Jacobian is
mainly to force 6(Y) to have constant variance
(see Box and Cox (1964) and Tibshirani (1984,
Remark F)).

A transformation of the response might also be
useful in other generalized additive models, such as a
Poisson model for categorical data. Marhoul (1984)
looks at a related technique.
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