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Comment

David R. Brillinger

“All considered, it is conceivable that in a
minor way, nonparametric regression
might, like linear regression, become an
object treasured for both its artistic merit
as well as usefulness.”

L. Breiman (1977)

This paper by Hastie and Tibshirani lays bare the
insight of the above remark of Leo Breiman made in
the course of the discussion of a seminal work on
regression with smooth functions (Stone, 1977). Here
Hastie and Tibshirani increase the store of both artis-
tic merit and usefulness by plugging nonparametric
regression into the generalized linear model and by
alluding to a variety of possible further extensions. It
all makes being a statistician these days a joy—it
seems approaches are now available to attack most
any applied problem that comes to hand. (Under-
standing the operational performance of those ap-
proaches is clearly another matter however.)

It was nice to be asked to comment on such a
stimulating paper. I have divided my comments into
several sections, striving to focus on individual strains
present in the paper, believing that future research on
those strains will proceed at different rates.

1. STRUCTURE OF A BASIC PROBLEM

One has data (Y;, Xi),i =1, ---, n, with n moder-
ately large. One is willing to consider a model for the
individual Ys wherein: i) the conditional distribution
of Y given X belongs to an exponential family, ii) it
involves X only through 7 = Y s;(X;) with the s;(-)
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unknown, but smooth, and iii) E{Y | X} = h(} s;(Xj)),
with A(-) known. The parameter of the model is
6=1{sj(-),j=1, ---,p}, and possibly a scale. The two
key elements of the model are a) that the s;(-) are
smooth and b) that Y s;(X;) is additive.

It is to be noted that this model continues the
contemporary statistical trend to eliminate distinc-
tions between the cases of finite and infinite dimen-
sional 8 or between discrete and continuous data.

The problem is of interest, for one may wish to
make inferences from the data via the model or one
may wish to validate a model with a low dimensional
parameter by imbedding it in a broader model, for
example.

2. CONSTRUCTION OF ESTIMATES

To begin, focus on estimating n = n(X), via a
relationship that characterizes the true value .
Suppose one has a function p(Y|#n) such that
Eo{p(Y|n)|X} is maximized at n = no. An example
would be log f(Y|n), f(-) denoting the conditional
density of Y. Alternately, suppose one has a function
Y(Y | n) such that Eo{y(Y|7n)| X} = 0 at n = 5. An
example would be 9 log (Y| n)/dn. Estimates of the
true 7, may be constructed by paralleling these rela-
tions on the data. For example, given weights W,,;(X)
such as in Stone (1977) one might take # to maximize

% o (Y| 7) Wil X)

or to satisfy
2y (Yi| D) Wa(X) = 0.

The estimate of Hastie and Tibshirani based on (26)
takes this form. One can expect such estimates to be
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consistent under regularity conditions. Stone (1977,
page 643) gives some simple conditions. Such esti-
mates were called conditional M -estimates by Brillin-
ger (1977) and it was remarked there that one could
form robust estimates directly (by limiting the influ-
ence of individual observations for example). It is
further clear that partial likelihood estimates, cen-
sored data estimates, and unequal probability of selec-
tion estimates are particular cases.

The critical advance of Hastie and Tibshirani
is to look for extrema with 5 of the form Y s;(X;).
They limit consideration to likelihood- and partial
likelihood-based estimates, but it is clear that they
could go on to form for example robust-resistant ones
by choice of p or .

It is further apparent that were the dimension of X,
D, unclear one could add an Akaike type term in p and
estimate p as well. Continuing, this makes it apparent
that penalized maximum likelihood estimates also
may be fit into this general setup. We have here a
type of inverse unstable problem. These are often
solved by forms of regularization (smoothing). It is
perhaps worth remarking that the first approach
above is a form of Courant regularization, while pen-
alized likelihood would correspond to Tihonov regu-
larization. (These techniques are discussed in Allison
(1979).)

There is much insight in Hastie and Tibshirani’s
remark that because of the additivity of » in the s;(-),
the smoothing need not be local (in the X-space).

3. COMPUTATIONS

In the next few years, the structure set out in the
preceding section may not be expected to change too
much. This is probably not true for the algorithms
numerically determining the extrema.

Hastie and Tibshirani propose an iteratively re-
weighted least squares solution, as in GLIM, inter-
woven with a stepwise selection procedure as in
Breiman and Friedman (1985). My experience with
such algorithms is that they are troubled by initial
values, precision/round-off, convergence criterion,
underflow/overflow, and instability among other
, things. Nonlinear iterations can do strange things. In
particular I expect better algorithms for determining
the components of Y, s;(-) to be developed.

4. SOME QUIBBLES

I do have some disagreements with the paper. In
the abstract, it is stated: “It has the advantage of being
completely automatic ...” I see this as both a disad-
vantage and not true. A disadvantage because surely
one wants flexible analyses. Not true because someone
(the programmer?) has made many choices: machine
precision, convergence criterion, smoother, .... The
analyst will not know these choices at his peril.

In Section 7 it is stated: “This is the chief motiva-
tion for the additive model.” The reason given is a
statistical one. To my mind the motivation is substan-
tive. Additivity is basic to science (see Luce and
Tukey, 1964, particularly the references therein).

Two medical data sets are analyzed, but no infer-
ences are made. Can the authors not set down some
(biological) insight or understanding that has been
gained from the analyses? Otherwise they might have
just as well presented the results of simulations.

5. FURTHER ISSUES AND PROBLEMS

In this section I am not complaining about possible
omissions from the present paper, rather I am inter-
ested in the authors’ thoughts regarding future direc-
tions of work. The paper certainly stands on its own.

The statistical properties of the estimates need to
be understood. What are they actually estimating in
the case of a finite sample? In time series we know
that the conventional spectrum estimate is estimating
an average of the power spectrum, albeit concentrated
near the frequency of concern. Is that the case here or
are remote values influential? The time series case
further suggests the possible utility of pretransforming
the Xs to reduce bias.

The sampling variability of the estimates need to
be assessed. Could the authors indicate their preferred
technique. Mine would be a jackknife variant, because
of its bias reducing properties and nonmodel depend-
ence. There is a need for goodness of fit/validation
procedures, diagnostics, measures of influence.

In power spectrum estimation, I do not generally
take the same bandwidth for all frequencies in the
conventional estimate (and more complex estimators
have a similar effect). Here the span is taken to be
the same. Have the authors thought of making it
variable?

Smoothness is essential in the development in the
paper. Yet many natural relationships are discontin-
uous and even multivalued. It would seem appropriate
to develop techniques for such situations. For the
former, perhaps one would smooth only when an
estimate of the derivative is small.

6. A QUESTION

In Section 1, the authors refer to the ACE procedure
of Breiman and Friedman (1985) as a means of deter-
mining a transform of the dependent variable. This
involves maximizing a correlation. In Section 9, they
refer to the use of local scoring (i.e., a likelihood-based
technique) for the analogous problem of determining
the link function. The two criteria are quite different
seemingly. Can the authors comment? I wonder about
yet another alternative, namely picking the transfor-
mations to maximize a nonparametric estimate of the
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mean information in 7(X) about 8(Y). (This does not
involve a Jacobian.)
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Comment

J. A. Nelder

I congratulate the authors on a fascinating piece of
work and offer three comments.

1. In order to make smoothing work it is necessary
to restrict it to one-dimensional covariate spaces,
hence the strong assumption of additivity. In principle
one could introduce cross-terms, e.g., have x;; = x;x,,
as well as x; and x,, in the model; however, I suspect
the convergence of the algorithm might now become
immensely slow or even nonexistent because of the
functional relations between the covariates. An alter-
native might be to include a term of the form
s1(x1) - s2(x2), with coefficient to be estimated. Have the
authors any comments on this problem?
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Comment

Charles J. Stone

Hastie and Tibshirani deserve commendation for

the originality, significance, and interest of their ap- .

proach and the excellent expository review in the
present paper. )

Recently I have been working on a different ap-
proach to fitting more or less the same class of models,
but using polynomial cubic splines to model the com-
ponent functions s;(-) and the Newton-Raphson
method to calculate the ordinary maximum likelihood
estimate. In order to avoid artificial end effects of
polynomial fits such as those shown in Figures 2 and
3, the splines are constrained to be linear to the left
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2. To me it seemed intuitively surprising that the
figures in Table 2 show the generalized additive model
to have one parameter more than the original para-
metric one, but a deviance nearly 6 higher. I then
realized that the latter has a cross-term in it, and this
appears to be important. What would be the effect of
adding a term in s;(x;)-sa(x2) to the former? Also it
would help interpretation if the difference in deviance
were given when each term in their model was replaced
by a parametric form. This would give summary
statistics for differences visible in Figures 3, 4,
and 5.

3. The new version of GLIM (3-77) now available
has a facility for inserting new code. I very much hope
that the authors can be persuaded to exploit this in
order to make available the fitting of generalized
additive models in GLIM.

of the first knot and to the right of the last knot. To
avoid multiple representations of the constant term,
zero sum constraints are imposed on the individual
terms (when p = 2), as is done in this paper. Thus, if
there are N knots, there are N + 4 degrees of freedom
for the unconstrained spline and N — 1 degrees of
freedom for the constrained spline. There is also 1
degree of freedom for the constant term; so there are
(N — 1)p + 1 degrees of freedom in total. This ap-
proach will be referred to as the parametric spline
approach to distinguish it from the smoothing spline
approach favored by Wahba and others in which
smoothing is achieved by a roughness penalty instead
of by confining attention to spline models with a
modest number of degrees of freedom. In theory, N
should tend to infinity as the sample size n tends to



