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Bayesian approach works without independence: it
has only been assumed here for simplicity and com-
parison with beliefs. What the Bayesian view does is
to force one to consider the subtle nature of the
dependence between the witnesses.

L p(a|A) =p(@l|4), (i=1,2).

This asserts that the witnesses are equally reliable
whether A is true or false. Again it is easy to imagine
circumstances where this is not true. In some cultures
there is a tendency for witnesses to say what they
think will please the listener. So if A is the event “the
airport is near,” veracity is more likely when A is true
than when it is false. Consequently one cannot be sure
that p(a;| A) and p(a; | A) are both p;.

The Bishop certainly did not recognize the distinc-
tion, as have many writers after him. The Bayesian
approach does not demand the equality: it merely
forces one to recognize that two types of veracity are
possible.

Applied to the Bishop’s problem, the rector’s ap-
proach forces one to consider one’s initial belief in the
event, the nature of the dependence between the wit-
nesses, and the two forms of reliability that arise. We
suggest that, on reflection, it will be admitted that all
three features are relevant to the final answer. Even
if the independencies and the equalities of the relia-
bilities are admitted, as the Bishop and the modern

Comment

David J. Spiegelhalter

It is fairly predictable that I should agree whole-
heartedly with Professor Lindley’s lucid justification
of probability as the correct paradigm for handling
uncertainty in expert systems (but how strange it is
to see him cast in the role of defender of orthodoxy!).
In particular, his emphasis on remembering the back-
ground evidence H is crucial to avoid any conception
that there is a single “true” probability of an event,
and the frequent references to the operational mean-
ing of probability gives a practical as well as a the-
oretical justification. However, playing the devil’s
advocate, I see two main reasons why the artificial
intelligence community may not be convinced by the
argument.

Firstly, he turns all statements expressing uncer-
tainty into expressions of probability concerning (at
least theoretically) verifiable events, whereas many
constructors of expert systems would prefer to keep

equivalent tacitly do, the result is still different from
the Bishop’s. It is of interest to enquire when they are
equal. Equating (2) and 1 — (1 — p;)(1 — p,) easily
gives after a little algebra the condition that

(1 —m) =pper + (1 — p1)(1 — pa)(1 — ).

The righthand side is p(a;, as), the unconditional
probability that both witnesses assert A is true, so
that the Bishop and rector only agree (under assump-
tions II and III) if

p(A) = p(a;, ay).

In words, the probability that the event is false has to
be equal to the probability that both witnesses assert
its truth. This is surely unreasonable.

I put it to the readership: my challenge has survived,
probability does do better. Let us support the rector
of Tunbridge Wells and not the Bishop of Bath and
Wells: let us favor truth and not the establishment.
(Bayes was a minister in the unestablished church.)

ACKNOWLEDGMENTS

I am grateful to Richard E. Barlow for useful com-
ments on a first version of this tale, to Sir Richard
Eggleston for illuminating discussions on the legal
problems with two witnesses, and to Glenn Shafer for
drawing my attention to the Bishop’s paper.

their propositions deliberately imprecisely defined in
order to look more like human reasoning, and do not
provide an operational means of verification. Sec-
ondly, even if verifiable events are being considered,

‘the scoring rule argument presumes a certain type of

evaluation procedure which many might claim was
rarely appropriate, since the criteria for the “success”
of an expert system may only require a very coarse
handling of uncertainty.

Nevertheless, the theoretical arguments concerning
optimality and coherence are only one weapon in the
armoury. Pearl (1986b), in a recent strong advocacy
of probability, uses no normative criteria but concen-
trates on the power of the theory in adequately mod-
eling complex evidential reasoning, and I feel, in the
end, it will be the intuitive appeal and flexibility of
probabilistic reasoning that will change the current
climate.
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Professor Shafer’s historical perspective puts the
current discussion in an appropriate context, and em-
phasizes that many of the issues raised in expert
system research are by no means novel. The interest
in belief function methodology is understandable, as
it appears to provide a means of avoiding full subjec-
tive assessment of ‘a joint probability distribution,
and—by formulating “uncertainty” in terms of relia-
bility of evidence—it seems to attach uncertainty
directly to the rule rather than the consequences of
the rule. All this is very attractive, but users of the
methodology also have to take on board a rule of
combination that can lead to somewhat unintuitive
results (Zadeh, 1986), problems in providing an oper-
ational interpretation of the numerical inputs and
outputs, and a considerable computational burden.

Shafer does show how computationally efficient
schemes are available on simple trees, but this is an
extremely restrictive class of model, excluding both
multiple causes of the same event, and an element
being a member of two taxonomic hierarchies (for
example, “gallstones” may also be part of a “dyspep-
sia” taxonomy). In contrast, efficient probabilistic
schemes are now being devised for general graphical
structures.

This still leaves the ability of belief functions to
deal with “unknown” or “unknowable” probabilities.
From a historical point of view, it would be easy to

Rejoinder

Glenn Shafer

Watson and Dempster and Kong underline the
point that belief functions are a form of probability.
I can only say that I agree wholeheartedly.

I still have some bones to pick, on the other hand,
with Spiegelhalter and Lindley.

Spiegelhalter’s comments on the computational sit-
uation are misleading. He suggests that computation-
ally efficient schemes for belief functions are available
only for a very restrictive class of models, whereas
efficient Bayesian schemes “are now being devised”
for very general models. In fact, most Bayesian com-
putational schemes have belief-function generaliza-
tions. It is true that the Bayesian special cases usually
require less computation; Bayesian models require
more complicated inputs than belief-function models,
and there is less need for computation when you begin
with more information. But the trade-off between
complexity of input and complexity of computation

slip into the “likelihood versus Bayesian” debate at
this point. But I believe the objective of constructing
expert systems enables us to avoid such arguments.
In such technological applications, there is real un-
derstanding of the problem to be exploited, and from
a purely pragmatic point of view, unknown probabili-
ties just do not occur—an assessment can always be
obtained by careful questioning. Of course, the subject
may not feel too confident in his assessment, and will
not be able to list a set of independent sources of
evidence for his opinion. But the opinion is there and
can be used, although, as Professor Lindley empha-
sizes, in certain circumstances the imprecision may be
relevant. As Professor Shafer points out; explanation
of a system’s conclusions may be provided at many
levels, and probability judgments that have not been
“constructed” on specified evidence can, if necessary,
be identified. Provided a system’s predictive perform-
ance is being monitored by scoring rules, it seems
quite reasonable in a medical area to exploit “informed
guesses” rather than rely on a legalistic paradigm that
models unreliable “witnesses.”
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differs from case to case, and belief-function compu-
tations are manageable in a greater variety of situa-
tions than Spiegelhalter suggests.

~In my article, I discussea Judea Pearl’s work on
propagating Bayesian belief functions in trees, and I
noted that Pearl’s Bayesian scheme is a special case
of a general scheme for propagating belief functions
in trees. This general scheme has now been described
in some detail by Shafer, Shenoy, and Mellouli (1986).
In recent unpublished work, Pearl and Spiegelhalter
have made progress in dealing with Bayesian networks
that are not trees. Similar work is also underway for
belief functions, with the most important contribution
so far being Augustine Kong’s dissertation at Harvard
(Kong, 1986). In the last chapter of this dissertation,
Kong shows how the belief-function scheme of Shafer
and Logan (1985) can be adapted to handle multiple
diseases with no additional computational cost.



