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Comment

M. J. Bayarri

I would like first of all to congratulate the authors
for such an interesting and enjoyable paper. The wide-
spread use of tests of hypotheses to statistically ana-
lyze experimental data, together with the failure of
classical methods to make statements about the truth
of Hy in a given problem, has almost unavoidably
resulted in interpreting P-values as a measure of the
evidence against H, provided by the data at hand. The
authors show how misleading this procedure can be.
They also provide the statistical community with some
“automatic” tools as easy to implement as P-values
and with a better performance, but with the remark-
able suggestion of not just substituting a routine sta-
tistical analysis (P-values) by another one.

Berger and Delampady also justify the habitual
practice of testing a point null hypothesis by showing
that a point null can be a reasonable approximation
of a precise interval null, and the conditions under
which this approximation is appropriate. It is at this
point that I would like to raise a complaint more than
a real disagreement. It seems to me that their treat-
ment is unfair to statisticians who use conditional
measures of evidence against H,, for it rules out a lot
of interesting situations. I shall make my point clearer.
In the examples of Section 2, all that frequentist
statisticians have to care about in approximating an
interval null by a point null without much error, is
the length of their interval null being suitably small
compared with the sample standard deviation. (By the
way, this care would prevent them from using the
testing of a point null when n is very large.) On the
other hand, Bayesians who want to approximate the
same precise hypothesis (11) find that they have to
care not only about that in a similar way as the
frequentists, but also ought to “have in mind a prior
density, x(6), which is continuous but sharply spiked
near 6,.” Although I don’t deny the fact that these
sharply spiked densities often represent the prior be-

"liefs of statisticians performing tests of precise hy-
potheses, I do claim that this is not the case in many
interesting situations.

For instance, if the prior density, 7 (), belongs to a
conjugate class of prior distributions for any of the
common models, then no matter how concentrated
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w(0) is around 6, it would not usually be possible to
approximate a precise null by a point null. Another
interesting class of problems in which Bayesian stat-
isticians cannot use this approximation is that of
testing precise null hypotheses that are judged to be
false a priori. This situation is quite frequent. As a
matter of fact, the scientific literature is overwhelmed
with “significant results,” which are a natural conse-
quence of the misuse of statistical methods in many
areas of application through the almost exclusive re-
liance on tests of hypotheses (Zellner, 1980; DeGroot
and Mezzich, 1985). Some of these significant results
can be due to the unfavorable treatment given to the
null hypothesis by the P-value (as clearly shown in
this paper) even if the scientist believed it to be true
a priori, but confronted with this overpresence of
significant results, it is natural to suspect that some
of these tests of hypotheses have been carried out with
the sole purpose of rejecting the null hypothesis. Un-
der such an assumption, a Bayesian can no longer
have at her or his disposal the useful approximations
described in Section 2.2.

But maybe the most interesting problems to which
the methods described in this paper cannot be applied
(as the authors explicitly recognize in Section 5) are
those of goodness-of-fit tests when there is not a
spiked concentration of prior beliefs around the model
in the way described in Section 2. Checking models
usually is (or should be) a preliminary step in every
parametric statistical analysis. But models are seldom
thought of as true, they are just simplifications to
explain the random behavior of some quantities. Also,
this is one of those statistical problems in which a
statistician could wish to “let the data speak for them-
selves,” that is, to use an “objective” or “reference”
prior, perhaps in addition to her or his prior distribu-
tion.

For these situations I should like to discuss a
method to carry out the testing of a precise null that
still preserves the special nature of 6,. In a goodness-
of-fit scenario, the hypothetical model is special to us
because it is useful for us to use this particular model
instead of a more complicated one, usually because
statistical techniques are well developed and studied
for this particular model, or because it is the one
implemented in the statistical computer packages at
our disposal. Accordingly, we will make 6, “special” to
us in terms of the utility function instead of in terms
of the prior distribution.
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Consider the situation described in Example 5 in
which it is desired to test

(1) Hy: F=F, versus Hy F # F,

where F, is a specified distribution. If we transform
the data by F, then testing (1) is equivalent to testing
whether or not the transformed data can be assumed
to be a random sample from a uniform distribution.
Testing for uniformity can be carried out in several
ways. One interesting possibility is to choose a
parametric family of distributions {h(x]6), 6 € 6}
for 0 < x < 1 such that it contains the uniform distribu-
tion for a particular value 6,, say, of 6. In this way,
testing (1) is reduced to testing

(2) Hy: 0 = 6, versus Hy: 0 # 0,

but it should be kept in mind that in order for k(x| 6)
to be useful it should be rich enough to model inter-
esting alternatives and “neighborhoods” of F,, and also
be reasonably easy to handle. In addition, the param-
eter (or parameter vector) indexing the family should
have an intuitive meaning, not only to ease the task
of assessing prior distributions, but also and most
importantly to be able to draw conclusions about the
shape of the “true” distribution should H, be rejected.

In testing (2), we will adopt a decision-oriented
approach and follow the method proposed by Ferran-
diz (1985). Call d, the decision of continuing with the
statistical analysis of data as if F, were the “true”
model, and d; the decision of rejecting F, as a sensible
explanation of the data. After the previous steps men-
tioned above, dy can be reformulated as accepting H,
in (2) and d; as accepting H;. For this type of decision
problem it seems natural to assume that the increase
in utility derived from choosing d, (reject Hp) is a
continuous, nondecreasing function v of some “dis-
tance” 6 between the true parameter value 6 and the
hypothetical one 6,. We use quotation marks around
the term distance because we are not going to require
4 to be a proper distance, but only a kind of discrep-
ancy measure between h(x|#6) and h(x | 6,). Thus we
assume

u(dy, 0) — u(do, 8) = v{o(6, 6o},

where u(d;, 0) is the utility of choosing d; when 6 is
the value of the parameter.

Now, from the Bayesian approach, d, is the optimal
decision if and only if

3 Efv(d) | x} >0,

where expectation is taken with respect to the poste-
rior distribution of 6. If inparticular we take v to be
linear,

4) vd) =ab+d (a>0),

then condition (3) reduces to E{5(8, 6,) | x} > 8, where
0o is a constant. Thus, the null hypothesis is to be
rejected whenever the function of the (transformed)
data '

U(x) = E{5(0, 6,) | x}

exceeds some preassigned value 6.

The Bayesian decision rule so exposed looks like
the classical one, but note that &, is part of the utility
function and has to be interpreted in a special way.
As a matter of fact, if we take a = 1 In (4)
and naturally require 6(6y, 6o) = 0, then 6, = —b =
u(dy, 0o) — u(di, 6p) measures (in utility terms) the
relative advantage of using the simpler model when it
is adequate. Alternatively, we can write u(d;, 6p) =
u(do, 8o) — 8o and so interpret o as a penalty for using
a more elaborate model when a simpler one would
suffice.

This approach to goodness-of-fit problems was pro-
posed by Bayarri (1985), where a particular family
h(x ] 6) was selected and justified, and different 6 as
well as various methods for selecting &, were studied.
It was there found to be particularly appealing in
goodness-of-fit problems to choose § as the Kullback-
Leibler directed divergence between h(x|6) and
h(x|6,), but other &s such as quadratic or absolute
error were also considered. It was also shown that
keeping the same level of significance « as the sample
size increases can be interpreted as changing the util-
ity function with the sample size, namely, making &,
progressively smaller. Thus, keeping o fixed is equiv-
alent to saying that when F, is adequate, the bigger
the sample size, n, the less useful it is for us to use Fo,
and this does not seem very realistic.

The original formulation of Ferrandiz (1985) was
applied to testing the mean vector in a multivari-
ate normal distribution; & was selected to be the
Mahalanobis distance and §, the 1 — a quantile of the
sampling distribution of U = U(X) under the null
hypothesis. With this particular choice, and with an
“objective” prior for the parameter vector, he repro-
duced the standard frequentist results, and by estab-
lishing a one to one transformation between §, and
the level of significance o he showed how to modify
the latter as the sample size increases in order to be
coherent.

Of course this method can also be applied to the
testing situations described in the paper. Take for
instance Example 1 in which it is desired to test

Hy: 60 = 6, versus Hi: 0 # 0,.

If it is thought that 6, is special because of the utility
it has for us to take 6 = 6, when 6 is close to 6,, then
we can assume that

u(dly 0) - u(d(), 0) = 5(0, 00) + b:
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where d; means rejecting Hy and b is a constant. An
appropriate distance 6 between 6 and 6, in this case
is the standardized square distance (Mahalanobis
distance)

8(6, 80) = {(6 — 60)/a}?,

which happens to be twice the Kullback-Leibler di-
vergence between the N(0, ¢2) and the N(6o, ¢°) dis-
tributions. According to the discussion above, we will
reject H, if and only if

E[5(6, 6o) | x] > do.

If we take the usual “objective” prior for this prob-
lem, 7(6) « 1, then the posterior distribution of 6 is
simply N(x, ¢2/n) so that

U(x) = E[5(6, 60) | x]
= (1/n) + (& = 6,)*/0* = (1 + T?)/n

where T is given in Example 1. Then we will reject H,
whenever T2 > ¢(n) = né, — 1.

We could explicitly seek an analogy with the clas-
sical methodology and thus select §, to be the 1 — «
quantile of the sampling distribution of U = U(X)
under the null hypothesis, where « is the level of

Comment

George Casella and Roger L. Bérger

We congratulate Berger and Delampady on an in-
. formative paper. However, we do not believe that the
point null testing problem they have considered re-
flects the common usage of point null tests. Their
main thesis is that the frequentist P-value overstates
the evidence against the null hypothesis although the
Bayesian posterior probability of the null hypothesis
is a more sensible measure. A second point of their
paper is that point null hypotheses are reasonable
approximations for some small interval nulls. We
disagree with both of these points.

The large posterior probability of H, that Berger
and Delampady compute is a result of the large prior
probability they assign to H,, a prior probability that
is much larger than is reasonable for most problems
in which point null tests are used. Replacing a large
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significance (not the P-value as in Example 1). In this
case, with this particular value of n,mwe would repro-
duce the frequentist test procedure. But if the value
of n changes, d, still must have the same value, so that
¢(n) must change. Thus, the frequentist rule of choos-
ing c¢(n) so that the test has size « can have a
Bayesian interpretation as long as a changes accord-
ingly with the results above. Of course, this example
is just a particular case of the problem studied in
Ferrandiz (1985).
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prior probability for a point by an equally large prior
probability for a small interval about the point does
not remedy the problem. It only replaces one unreal-
istic problem with another. We will argue that given
a reasonably small prior probability for an interval
about the point null, the posterior probability and the
P-value do not disagree. Before moving to the main
points of our rejoinder, however, we would like to
make a general comment.

Contrary to what Berger and Delampady would
have us believe, a great many practitioners should not
be testing point nulls, but should be setting up confi-
dence intervals. Interval estimation is, in our opinion,
superior to point null hypothesis testing, Rejoinder 3
of Berger and Delampady notwithstanding. However,
we will not argue about the appropriateness of the test
of a point null. Instead, we will argue the following:
Given the common problems in which point null tests
are used, the Bayesian measure of evidence, as exem-
plified by equation (4) of Berger and Delampady is
not a meaningful measure. In fact, it is not the case
that P-values are too small, but rather that Bayes
point null posterior probabilities are much too big!



